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Abstract

Wireless sensor networks benefit from communication protocols that reduce power
requirements by avoiding frame collision. Time Division Media Access methods schedule
transmission in slots to avoid collision, however these methods often lack scalability when
implemented in ad hoc networks subject to node failures and dynamic topology. This
paper reports a distributed algorithm for TDMA slot assignment that is self-stabilizing
to transient faults and dynamic topology change. The expected convergence time is O(1)
for any size network satisfying a constant bound on the size of a node neighborhood.

Résumé

Les réseaux sans fils de senseurs bénéficient de protocoles de communication qui
évitent les collisions de trames utilisées pour la communication. Les méthodes utilisant
le multiplexage temporel pour Paccés au media (TDMA) planifient les transmissions
pour éviter les collisions, cependant ces méthodes souffrent d’un probléme de dimen-
sionnement quand elles sont utilisées dans des réseaux ad hoc a topologie dynamique et
sujets & des défaillances de neeuds. Cet article propose un algorithme réparii pour la plan-
ification TDMA qui est auto-stabilisant aux défaillances transitoires et aux changements
dynamiques de topologie. Le temps de convergence attendu est O(1) indépendement de
la taille du réseau si celui-ci admet une borne constante sur la taille du voisinage de
chaque nceud.



Chapter 1

Introduction

Collision management and avoidance are fundamental issues in wireless network protocols.
Networks now being imagined for sensors [9] and small devices [8] require energy conservation,
scalability, tolerance to transient faults, and adaptivity to topology change. Communication
protocols that avoid collisions may indirectly conserve energy, because the need for message
retransmission is reduced. Time Division Media Access (TDMA) is a reasonable technique for
avoiding collisions, however the priorities of scalability and fault tolerance are not emphasized
by most previous research.

The algorithmic problem of allocating time slots for TDMA is related to the well-studied
problem of allocating frequencies in FDMA. These problems can be formulated as constrained
vertex coloring problems in a graph [5]. For FDMA, each color represents a frequency and
the basic constraint for collision avoidance is to ensure that no pair of vertices at distance two
or less have the same color. A further engineering constraint is to allocate colors so that the
frequencies of neighboring vertices are separated far enough apart to avoid interference. Let
the set of vertex colors be the integers from the range [0, A]; then colors (fy, fu) of neighboring
vertices (v, w) should satisfy |f, — fu] > 1 to avoid interference. The standard notation for
this constraint is L(#;, £;): for any pair of vertices at distance ¢ € {1,2}, the colors differ by
at least £;. The coloring for FDMA thus should satisfy the L(2,1) constraint. Furthermore,
a solution using the fewest number of colors is desirable, since this reduces the number of
frequencies needed.

The graph coloring problem for TDMA is slightly different from that of FDMA. Let L'(£y, £5)
be the constraint that for any pair of vertices at distance i € {1,2}, the colors differ by at
least £; mod (A +1). This constraint represents the fact that time slots wrap around, unlike
frequencies. (a deeper explanation for the wrap around of time slots is given in Chapter 3).
The usual coloring constraint for TDMA is L'(1,1). If time slots are imprecise (perhaps due to
imperfect time synchronization), one could ask for a stricter separation of colors, for instance
L/(2,2) could be a desired constraint. In this paper, we confine attention to L'(1,1), which
is equivalent to L(1,1). (Our algorithms can be extended to satisfy L/(2,2).) Minimizing
the number of colors for TDMA is desirable because, if a time period corresponding to the
sequence of colors 0..) is normalized to the unit interval [0, 1], then each color represents
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Figure 1.1: two solutions to distance-two coloring

a 1/(A + 1) fraction of bandwidth; a smaller value of A gives each node a larger share of
bandwidth.

Coloring problems with constraints L(1,0), L(0,1), L({1,1), and L(2, 1) have been well-studied
not only for general graphs but for many special types of graphs [2, 3, 4]; many such problems
are NP-complete and although approximation algorithms have been proposed, such algorithms
are typically not distributed.

Even a solution to minimum coloring does not necessarily give the best result for TDMA
slot assignment. Consider the two colorings shown in Figure 1.1, which are minimum L(1, 1)
colorings of the same network. We can count, for each node p, the size of the set of colors used
within its distance-two neighborhood (where this set includes p’s color); this is illustrated in
Figure 1.2 for the respective colorings of Figure 1.1. We see that some of the nodes find more
colors in their distance-two neighborhoods in the second coloring of Figure 1.1. We will see
in Chapter 8 that the solution with fewer nodes in distance-two neighborhoods is preferable.
Intuitively, if some node p sees & < A colors in its distance-two neighborhood, then it should
have at least a 1/(k + 1) share of bandwidth, which is superior to assigning a 1/(A+ 1) share
to each color. Of course, the problem of getting such an interesting coloring for TDMA is also
NP-complete.

Contributions. The main issues for our research are dynamic network configurations, tran-
sient fault tolerance and scalability of TDMA slot assignment algorithms. Our approach
to both dynamic network change and transient fault events is to use the paradigm of self-
stabilization, which ensures the system state converges to a valid TDMA assignment after
any transient fault or topology change event. Our approach to scalability is to propose a
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Figure 1.2: number of colors used within distance two

randomized slot assignment algorithm with O(1) expected convergence time. The basis for
our algorithm is, in some way, a probabilistically fast clustering technique which could be
exploited for other problems of sensor networks.

Related Work. The work of Kulkarni and Arumugam [1] is the first to develop self-stabilizing
TDMA. That paper starts from the view of a grid topology (and is applicable to general
networks by mapping them to grids) and supposes each node is given knowledge of its location
in the grid; knowing the location in grid can be used for generating a TDMA schedule. Also,
using the approach of [1] in general networks requires the grid mapping be the same for all
nodes and known before the TDMA algorithm is started. Thus their apporach does not suit
dynamic networks. By contrast, the algorithms of this paper are for general networks, and do
not require a node to have location information.

In the self-stabilizing setting, the most studied vertex coloring problem is L(1,0). Gosh and
Karaata [13] provide an elegant solution for coloring planar graphs, Sur and Srimani’s [16]
solution to the same problem is for bipartite graphs, Shukla et al. {14, 15] provide algorithms
for complete odd-degree bipartite graphs and tree graphs, while a solution for general graphs
is given by Gradinariu and Tixeuil [7]. Recently, Gradinariu and Johnen [6] presented a
solution to the L(1,1) coloring, using a number of colors proportional to n?, where n denotes
the number of nodes in the network. A common drawback to all previous approaches is that
a reliable and powerful communication system is assumed: in one atomic step, a node is able
to read the current state of every of its neighbors, and perform actions accordingly.

Our algorithms borrow from techniques of self-stabilizing coloring and renaming [6, 7]. This
paper is novel in the sense that it composes self-stabilizing algorithms for renaming and
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coloring for a base model that has only probabilistically correct communication, due to the
possibility of collisions at the media access layer. Also, our coloring uses a constant number
of colors for the L(1,1) problem, while the previous self-stabilizing solution to this problem
uses n? colors.

Paper Organization. Chapter 2 explains our system model and program notation. Chapter
3 gives the overall plan for TDMA slot assignment built on a CSMA model. As a building
block, Chapter 4 describes how nodes learn of their neighborhoods and how this technique
can be used to support the programming model. In Chapter 5 we present a randomized neigh-
borhood naming algorithm that is the basis for fast distributed coloring and slot assignment.
Then in Chapter 6 we use the unique naming to construct a maximal independent set of nodes,
which are responsible for the coloring given in Chapter 7, and the slot computation presented
in Chapter 8. Chapter 9 assembles all of the components into the final result and adds some
concluding remarks. ‘



Chapter 2

Wireless Network, Program Notation

The system is comprised of a set V of nodes in an ad hoc wireless network. Communication
‘between nodes uses a low-power radio. Each node p can communicate with a subset N, C V
of nodes determined by the range of the radio signal; N, is called the neighborhood of node p.
In the wireless model, transmission is omnidirectional: each message sent by p is effectively
broadcast to all nodes in N,. We also assume that communication capability is bidirectional:
g € N, iff p € N,. Define N} = Np, and for i > 1, let

N} = NV U {r] (g geN':re Ny}

We call N; the distance-: neighborhood of p. Distribution of these nodes is such that the
network is connected, meaning there exists at least one path of intersecting neighborhoods
between any two nodes; the distribution is also sparse enough with respect to radio range to
bound the neighborhood size of any node: there is some known constant & such that for any
node p, |N,| < 8. We use § in the design and analysis of algorithms for this network.

Each node has fine-grained, real-time clock hardware. We assume that all node clocks are
synchronized to a common, global time. Each node uses the same radio frequency (one
frequency is shared spatially by all nodes in the network). Communication is half-duplex:
node p cannot send one message and receive another message concurrently. In fact, while p is
transmitting, p is unable to detect whether or not another node is also transmitting. Therefore,
collisions are possible in this model. Nodes do not have collision detection hardware. If g € N,
and r € N, concurrently transmit, then p receives the superposition of their transmissions,
but p cannot detect that the superposition is a result of collision, because noise can corrupt
messages. We assume that each message contains sufficient error detection codes so that the
event of corruption or collision can be deduced — a node cannot distinguish between corruption
and collision.

These facts preclude the use of CSMA /CD access control to the radio medium, however some
basic techniques of CSMA are applicable: if node p has a message ready to transmit, but is
receiving some signal, then p does not begin transmission until it detects the absence of signal.
A statistical technique dealing with collisions in this model is CSMA/CA: before p transmits
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a message, 1t waits for some random period. We assume that nodes have such CSMA/CA
capability (as implemented, for instance, in [10]). We assume that the implementation of
CSMA/CA satisfies the following: there exists a constant 7 > 0 such that the probability of a
frame transmission without collision is at least 7 (this corresponds to typical assumptions for
multiaccess chanmnels [11]; the independence of 7 for different frame transmissions indicates
our assumption of an underlying memoryless probability distribution in a Markov model).

'To simplify the presentation, we suppose that nodes have unique identifiers. In Chapter 5, we
present a randomized algorithm to give each node p an identifier that is unique within Ng; we
conjecture that our assumption of globally unique identifiers is not necessary.

Notation. We describe algorithms using the notation of guarded assignment statements:
(G — S represents a guarded assignment, where G is a predicate of the local variables of a
node, and S is an assignment to local variables of the node. If predicate G (called the guard)
holds, then assignment S is executed, otherwise S is skipped. At any system state where a
given guard G holds, we say that G is enabled at that state.

The [] operator is the commutative and associative nondeterministic composition of guarded

assignments:
Gy — S [] Gi— 5 [] s [] Gr — Sk

is evaluated to be G; — S; for an arbitrary choice of ¢ € [0, k] such that G; is true, and if no
such choice of ¢ is possible, then the result is equivalent to a “skip” statement. The notation
(lg: g€ Lp: Gy 9,) is a closed-form expression of

Gpn =+ Su ]Gz = Spl] -+ [[Gax = Sa

where L, = {¢1,42,...,¢k}. Following the convention of many authors in describing self-
stabilizing algorithms, the operator “[}” is implicit for any list of labeled guarded assignments.
For example, a program of the form

RO: GU—)SQ Rk : ka}Sk

represents {[ji: 0<i<k: G; = 5;).

Execution Semantics. The life of computing at every node consists of the infinite repetition
of finding a guard and executing its corresponding assignment or skipping the assignment if
the guard is false. Some guards can be event predicates that hold upon the event of receiving
a message: we assume that all such guarded assignments execute atomically when a message
is received. Generally, we suppose that when a node executes its program, all statements with
true guards are executed in some constant time (done, for example, in round-robin order).

One node variable we do not explicitly use is the clock, which advances continuously in real
time. Guards and assignments could refer to the clock, but we prefer to discipline the use of
time as follows. A certain subset of the variables at any node are designated as shared variables.
If a statement G — S assigns to a shared variable, then we present the statement without
any reference to the clock and we suppose that there is a transformation of the statement into
a computation that slows execution so that it does not exceed some desired rate, and also
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Figure 2.1: shared variable propagation

provides randomization to avoid collision in messages that contain shared variable values. This
could be implemented using a timer associated with G — S. One technique for implementing
G — S could be by the following procedure:

Suppose the previous invocation of the procedure for G — S finished at time ¢; the next
evaluation of G -+ S occurs at time ¢ + 3, where 8 is a random delay inserted by the
CSMA/CA implementation. After executing S (or skipping the assignment if G is false), the
node transmits a message containing all shared variable values. This message transmission
may be postponed if the node is currently receiving a message. Finally, after transmitting the
message, the node waits for an additional x time units, where  is a given constant. Thus,
in brief, G — S is forever evaluated by waiting for a random period, atomically evaluating
G — S, transmitting shared variable(s), and waiting for a constant time period . Figure 2.1
illustrates the cycle of shared variable propagation for one node.

To reconcile our earlier assumption of immediate, atomic processing of messages with the
discipline of shared variable assignment, no guarded assignment execution should change a
shared variable in the atomic processing of receiving a message. All the programs in this paper
have this property, that receipt of a message atomically changes only nonshared variables.

Given the discipline of repeated transmission of shared variables, each node can have a cached
copy of the value of a shared variable for any neighbor. This cached copy is updated atomically
upon receipt of a message carrying a new value for the shared variable. Further details about
the propagation of shared variables and caches are given in Chapter 4.

Bibliographic Note. A typical model for self-stabilizing constructions uses shared variables
(but not shared memory). That is, each process in the system can atomically read variables
that other processes write (but no variable can be written by more than one process). Some
papers assume high-atomicity programming units, where a process step can read all variables
of neighboring processes atomically; other papers have weaker models, where a process can
only read or write one shared variable atomically per step. Many papers investigate the possi-
bility of implementing one model in terms of another under various topology, synchrony, and
symmetry assumptions (such as the availability of unique identifiers, a distinguished “root”
process, and so on). A few papers present self-stabilization for message-passing protocols.
The paper [12] presents a transaction-based technique for implementing atomic evaluation
of guarded assignments based on a message model. To the best of our knowledge, previous
studies use assumptions of asynchronous message-passing or guaranteed time-bounds on mes-
sage delivery over communication channels: previous research on self-stabilization does not
investigate local area network assumptions, where message collision is a consideration.



Chapter 3

Model Construction

Our goal is to provide an implementation of a general purpose, collision-free communication
service. This service can be regarded as a transformation of the given model of Chapter 2 into
a model without collisions. This service simplifies application programming and can reduce
energy requirements for communication (messages do not need to be resent due to collisions).
Let 7 denote the task of transforming the model of Chapter 2 into a collision-free model.

We seek a solution to 7 that is self-stabilizing in the sense that, after some transient failure
or reconfiguration, node states may not be consistent with the requirements of collision-free
communication and collisions can occur; eventually the transformer corrects node states to
result in collision-free communication. Our first design decision is to suppose that the imple-
mentation we seek is not itself free of collisions. That is, even though our goal is to provide
applications a collision-free service, our implementation may introduce overhead messages
susceptible to collisions. Initially, in the development of algorithms, we accept collisions and
resends of these messages, which are internal to 7 and not visible to the application.

To solve T it suffices to assign each node a color and use node colors as the schedule for a
TDMA approach to collision-free communication [5]. Even before colors are assigned, we use
a schedule that partitions radio time into two parts: one part is for TDMA scheduling of
application messages and the other part is reserved for the messages of the algorithm that
assigns colors and time slots to nodes. The following diagram illustrates such a schedule, in
which each TDMA part has five slots. Each overhead part is, in fact, a fixed-length slot in
the TDMA schedule.

le|l@|®@(®@)| - (|O|@|®|® &

— A —_— ~ N
TDMA overhead TDMA overhead

The programming model, including the technique for sharing variables described in Chapter 2,
refers to message and computation activity in the overhead parts. It should be understood that
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the timing of shared variable propagation illustrated in Figure 2.1 may span overhead slots:
the computation by the solution to 7 operates in the concatenation of all the overhead slots.
Whereas CSMA is used to manage collisions in the overhead slots, the remaining TDMA
slots do not use random delay. During initialization or after a dynamic topology change,
frames may collide in the TDMA slots, but after the slot assignment algorithm self-stabilizes,
collisions do not occur in the TDMA slots.

Several primitive services that are not part of the initial model can simplify the design and
expression of 7’s implementation. All of these services need to be self-stabilizing. Briefly put,
our plan is to develop a sequence of algorithms that enable TDMA implementation. These
algorithms are: neighborhood-unique naming, maximal independent set, minimal coloring,
and the assignment of time slots from colors. In addition, we rely on neighborhood and
N3-neighborhood services that update cached copies of shared variables.
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Chapter 4

Neighborhood Identification

We do not assume, in Chapter 3, that a node p has built-in knowledge of its neighborhood Ny
or its distance-three neighborhood Ng. This is because the type of network under considering
is ad hoc, and the topology dynamic. Therefore some algorithm is needed so that a node can
refer to its neighbors. We describe first how a node p can learn of Ng, since the technique can
be extended to learn NJ in a straightforward way.

Each node p can represent N, and Ng by a list of identifiers learned from messages received
at p. However, because we do not make assumptions about the initial state of any node, such
list representations can initially have arbitrary data. Let L be a data type for a list of up to
6 items of the form a : A, where o is an identifier and A is a set of up to § identifiers. Let
5L, be a shared variable of type L. Let message type mN with field of type L be the form of
messages transmitted for sL,. Let L, be a private variable of a type that is an augmentation
of L — it associates a real number with each item: age(a: A) is a positive real value attached
to the item.

Function update(L,, a : A) changes L, to have new item information: if L, already has some
item whose first component is g, it is removed and replaced with a : A (which then has age
zero); if L, has fewer than § items and no item with @ as first component, then a : A is added
to Lp; if L, has already ¢ items and no item with a as first component, then a : A replaces
some item with maximal age.

Let maxAge be some constant designed to be an upper limit on the possible age of items in
L,. Function neighbors(L,) returns the set

{ala#p A (F(@:4): (a:A) el a=gq)}

Given these variable definitions and functions, we present the algorithm for neighborhood
identification.

NO: receive mN(a : A) — update(L,,a: A\ {p})
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NL: ([J(a: A) € Ly : age(a: A) > maxAge —
Ly:=Lpy\(a:4))

N2: true — 8L, := (p : neighbors(L,))

We cannot directly prove that this algorithm stabilizes because the CSMA model admiis
the possibility that a frame, even if repeatedly sent, can suffer arbitrarily many collisions.
Therefore the age associated with any element of L, can exceed maxAge, and the element will
be removed from L,. The constant maxAge should be tuned to safely remove old or invalid
neighbor data, yet to retain current neighbor information by receiving new mN messages
before age expiration. This is an implementation issue beyond of the scope of this paper: our
abstraction of the behavior of the communication layer is the assumption that, eventually for
any node, the guard of N1 remains false for any (a : A) € L, for which a € N,,.

Proposition 1 Eventually, for every node p, sL, = N, holds continuously.

Proof: TEventually any element (a : A) € L, such that a ¢ N, is removed. Therefore,
eventually every node p can have only its neighbors listed in sL,. Similarly, with probability
1, each node p eventually receives an m/N message from each neighbor, so sL, contains exactly
the neighbors of p. a

By a similar argument, eventually each node p correctly has knowledge of Ng as well as .
The same technique can enable each node to eventually have knowledge of Np3 (it is likely that
Ng is not necessary; we discuss this issue in Chapters 5 and 7). In all subsequent chapters, we
use NV, Nﬁ, and NS as constants in programs with the understanding that such neighborhood
identification is actually obtained by the stabilizing protocol described above.

Building upon L,, cached values of the shared variables of nodes in N,, N3, and N} can be
maintained at p; erroneous cache values not associated with any node can be discarded by
the aging technique. We use the following notation in the rest of the paper: for node p and
some shared variable var, of node g € NS, let = var, refer to the cached copy of var, at p.
The method of propagating cached copies of shared variables is generally self-stabilizing only
for shared variables that do not change value. With the exception of one algorithm presented
in Chapter 5, all of our algorithms use cached shared variables in this way: eventually, the
shared variables become constant, implying that eventually all cached copies of them will be
coherent.

For algorithms developed in subsequent chapters, we require a stronger property than eventual
propagation of shared variable values to their caches. We require that with some constant
probability, any shared variable will be propagated to its cached locations within constant
time. This is tantamount to requiring that with constant probability, a node will transmit
within constant time and the transmission will not collide with any other frame. Chapter
9 states our assumption on wireless transmission, based on the constant 7 for collision-free
transmission. The discipline of shared variable propagation illustrated in Figure 2.1 spaces
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shared-variable updates (or skipping updates when there is nothing to change) by s+ 3, where
£ is a random variable. Our requirement on the behavior of transmitting shared variable
values thus also implies that for any time ¢ between transmission events, there is a constant
probability that the next transmission event will occur by ¢ + « for some constant «. Notice
that the joint probability of waiting at most time o, and then sending without collision, is
bounded below by a constant. It follows that the expected number of attempts to propagate a
shared variable value before successfully writing to all its caches is O(1). {In fact, it would not
change our analysis if random variable 8 is truncated by aborting attempted transmissions
that exceed some constant timeout threshold.) We henceforth assume that the expected time
for shared variable propagation is constant.
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Chapter 5

Neighborhood Unique Naming

An algorithm providing neighborhood-unique naming gives each node a name distinct from
any of its N3-neighbors. This may seem odd considering that we already assume that nodes
have unique identifiers, but when we try to use the identifiers for certain applications such as
coloring, the potentially large namespace of identifiers can cause scalability problems. There-
fore it can be useful to give nodes smaller names, from a constant space of names, in a way
that ensures names are locally unique.

The problem of neighborhood unique naming can be considered as an N3-coloring algorithm
and quickly suggests a solution to 7. Since neighborhood unique naming provides a solution
to the problem of L(1,1) coloring, it provides a schedule for TDMA. This solution would
be especially wasteful if the space of unique identifiers is larger than |V/|. Tt turns out that
having unique identifiers within a neighborhood can be exploited by other algorithms to obtain
a minimal N2-coloring, so we present a simple randomized algorithm for N3-naming.

Our neighborhood unique naming algorithm is roughly based on the randomized technique
described in [6], and introduces some new features. Define A = [4%] for some ¢ > 3; the
choice of ¢ to fix constant A has two competing motivations discussed at the end of this
chapter. We call A the namespace. Let shared variable Id, have domain 0..A; variable Id,
is the name of node p. Another variable is used to collect the names of neighboring nodes:
Cids, = {=1Id, | ¢ € N2\ {p} }. Let random(S) choose with uniform probability some
element of set S. Node p uses the following function to compute fd,:

_ 14, if Id, ¢ Cidsy
newld(Id;) = { random(A \ Cids,} otherwise

The algorithm for unique naming is the following.
N3: true — Id, := newld(Id,)

Define Uniq(p) to be the predicate that holds iff (¢) no name mentioned in Cids, is equal to
1d,, (ii) for each g € N3, ¢ # p, 1d, # Idy, (i4i) for each ¢ € N7, no name in Cids, equals Id,,
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(iv) for each ¢ € N2, ¢ # p, the equality = Id, = Id, holds at node ¢, and (v) no cache update
message en route to p conveys a name that would update Clids, to have a name equal to Id,.
Predicate Uniq(p) states that p’s name is known to all nodes in Ng and does not conflict with
any name of a node g within Ng’, nor is there a cached name liable to update Cids, that
conflicts with p’s name. A key property of the algorithm is the following: Unig(p) is a stable
property of the execution. This is because after Uniq(p) holds, any node ¢ in N} will not
assign Id, to equal p’s name, because N3 avoids names listed in the cache of distance-three
neighborhood names — this stability property is not present in the randomized algorithm [6].
The property (Vr: r € R: Unig(r)) is similarly stable for any subset R of nodes. In words,
once a name becomes established as unique for all the neighborhoods it belongs to, it is stable.
Therefore we can reason about a Markov model of executions by showing that the probability
of a sequence of steps moving, from one stable set of ids to a larger stable set, is positive.

Lemma 1 Starting from any state, there is a constant, positive probability that Unig(p) holds
within constant time.

Proof: The proof has three cases for p: (a) Uniq(p) holds initially, (5} —Unig(p) holds, but
p cannot detect this locally (this means that there exists some neighbor ¢ of p such that
=1Id, # Id, at q); or (¢) p detects —Uniq(p) and chooses a new name. Case (a) trivially
verifies the lemma. For case (b), it could happen that Unig{p) is established only by actions
of nodes other than p within constant time, and the lemma holds; otherwise we rely on
the periodic mechanism of cache propagation and the lower bound 7 on the probability of
collision-free transmission to reduce (b) to (¢) with some constant probability within constant
time. For case (¢) we require a joint event, which is the following sequence: p chooses a name
different from any in N3 and their caches (or messages en route), then p transmits the new
name without collision to N, each node ¢ € NN, transmits the cache of p’s name without
collision, and then each node in NE\NP transmits the cache of p’s name without collision. Fix
some constant time @ for this sequence of events; time ® could be (6% + 1) - i, where p is the
average time for a cached value to be transmitted without collision. The joint probability z for
this scenario is the product of probabilities for each event, with the constraint that the event
is transmission without collision within the desired time constraint ;. This sequence is not
enough, however to fully estimate the probability for case (c¢), because it could be that nodes
of Nj’ concurrently assign new identifiers, perhaps equal to p’s name. Therefore we multiply
by z the product of probabilities that each invocation of newld by ¢ € Np3 during the time
period ® does not return a name equal to p’s name. Notice that the number of times that any
gc Np3 can invoke N3 is bounded by ®/&, because assignment to shared variables follows the
discipline of at least x delay. Thus the entire number of invocations of newld in the ®-length
time period is bounded by a constant. Therefore the overall joint probability is estimated by
the product of z and a fixed number of constant probabilities; the joint probability for this
scenario is thus bounded by a product of constant probabilities (dependent on A, 6, 7, and ).
Because this joint probability is bounded below by a nonzero constant, the expected number
of trials to reach a successful result is constant. Q
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Corollary 1 The algorithm self-stabilizes with probability 1 and has constant expected con-
vergence time.

Proof: The Markov chain for the algorithm has a trapping state for any p such that Uniq(p)
holds. The stability of Unig(p) for each p separately means that we can reason about self-
stabilization for each node independently. The previous lemma implies that each node con-
verges to Uniq(p) with probability 1, and also implies the constant overall time bound. a

Using the names assigned by N3 is a solution to L(1,1) coloring, however using A colors is
not the basis for an efficient TDMA schedule. The naming obtained by the algorithm does
have a useful property. Let P be a path of ¢ distinct nodes, that is, P = py, pe, ..., p:. Define
predicate Up(P) to hold if id, < idp, for each ¢ < j. In words, Up(P) holds if the names
along the path P increase.

Lemma 2 There is a constant d such that every path P satisfying Up{P) has fewer than d
nodes.

Proof: Let d = |A|+ 1. If a path P satisfying Up(P) has d nodes, then some name appears
at least twice in the path. The ordering on names is transitive, which implies that some name
a of a node in P satisfies a < a, which contradicts the total order on names. W

This lemma shows that the simple coloring algorithm gives us a property that node identifiers
do not have: the path length of any increasing sequence of names is bounded by a constant.
Henceforth, we suppose that node identifiers have this property, that is, we treat N; as if the
node identifiers are drawn from the namespace of size A.

There are two competing motivations for tuning the parameter ¢ in A = &', First, ¢ should be
large enough to ensure that the choice made by newld is unique with high probability. In the
worst case, |[N2| = 6* + 1, and each node’s cache can contain ¢* names, so a choosing ¢ ~ 6
could be satisfactory. Generally, larger values for ¢ decrease the expected convergence time of
the neighborood unique naming algorithm. On the other hand, smaller values of ¢ will reduce
the constant d, which will reduce the convergence time for algorithms described in subsequent
chapters. The need for uniqueness up to distance three is an artifact of our presentation:
uniqueness within distance two will likely suffice and reduce the constants considerably. We
only use Np3 at one point in a proof in Chapter 7, and further remarks there indicate an
alternative method could be used.
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Chapter 6

Leaders via Maximal Independent Set

Simple distance two coloring algorithms may use a number of colors that is wastefully large.
Our objective is to find an algorithm that uses a reasonable number of colors and completes,
with high probability, in constant time. We observe that an assignment to satisfy distance
two coloring can be done in constant time given a subset of leader nodes distributed in the
network. The leaders dictate coloring for nearby nodes. The coloring enabled by this method
is minimal (not minimum, which is an NP-hard problem). An algorithm selecting a maximal
independent set is our basis for selecting the leader nodes.

Let each node p have a boolean shared variable £,. In an initial state, the value of £, is
arbitrary. A legitimate state for the algorithm satisfies (Vp: p € V : £,), where
L, = (L= Vg: g€ N,: —4,))
A (= (3g: geN,: £))
Thus the algorithm should elect one leader (identified by the ¢-variable) for each neighborhood.
As in previous chapters, =14, denotes the cached copy of the shared variable £,.

R1: (Vg: g€ Ny: g>p) — £, :=true
R2: ([Jg: ge N, : B, A g<p — £y := false)

R3: (Jg: geNy: g<p) A (Vg: g€ Ny A
(q>p V —=¥E,)) — £, = true

Although the algorithm does not use randomization, its convergence technically remains prob-
abilistic because our underlying model of communication uses CSMA based on random delay.
The algorithm’s progress is therefore guaranteed with probability 1 rather than by determin-
istic means.

Lemma 3 With probebility 1 the algorithm RI-R3 converges to a solution of mazimal inde-
pendent set; the convergence time is O(1) if each timed variable propagation completes in O(1)
time.
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Proof: We prove by induction on the namespace that each each node p stabilizes its value
of ¢, within O(A) time. For the base case, a node p of name zero stabilizes in O(1) time to
4, = true. The claim follows from the fact that guards of R2 and R3 are false, whereas the
guard of R1 is permanently true. Furthermore, after O(1) additional time, =4, = true is a
- stable property at every node in N,. A generalization of the base case is the set .S of nodes
with locally minimum names, that is, (Vp,q: p€ S A ¢€ N,: p<g). Fachnode s € §
stabilizes to £, = true in O(1) time. Therefore for the induction step, we can ignore R1, as it
is dealt with in the base case.

To complete the induction, suppose that each node r has stabilized the value of £,, where
r < k. Now consider the situation of a node p with name k& + 1 (if there is no such node, the
induction is trivially satisfied). As far as the guards of R2 and R3 are concerned, the value
of £, is only relevant for a neighbor g with ¢ < p, and for any such neighbor, £, is stable by
hypothesis. Since guards of R2 and R3 are exclusive, it follows that p stabilizes £, and <¢,
is propagated within O(1) time.

Finally, we observe that in any fixed point of the algorithm R1-R3, no two neighbors are
leaders (else R2 would be enabled for one of them), nor does any nonleader find no leader
in its neighborhood (else R1 or R3 would be enabled). This establishes that £, holds at a
fixed point for every p € V. The induction terminates with at most |A| steps, the size of the
namespace, and because A is a constant, the convergence time is O(1) for this algorithm. O
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Chapter 7

Leader Assigned Coloring

Our method of distance-two coloring is simple: colors are assigned by the leader nodes given
by maximal independent set output. The following variables are introduced for each node p:

color, is a number representing the color for node p.
mind, is meaningful only for p such that £, holds: it is intended to satisfy
mind, = min {g|g€ N, A =4, }
In words, minf, is the smallest id of any neighbor that is a leader.

spectrum, is a set of pairs (c,r) where ¢ is a color and 7 is an id. Pertaining only to
nonleader nodes, spectrum, should contain (colory, minf,) and (B2 color,, R mint,) for
each g € N, '

setcol, is meaningful only for p such that £, holds. It is an array of colors indexed by
identifier: setcoly[q] is p’s preferred color for ¢ € N,. We consider color, and setcol,[p] to
be synonyms for the same variable. In the algorithm we use the notation setcol,[A] :==B
to denote the parallel assignment of a set of colors B based on a set of indices A. To
make this assignment deterministic, we suppose that A can be represented by a sorted
list for purposes of the assignment; B is similarly structured as a list.

dom, for leader p is computed to be the nodes to which p can give a preferred color; these
include any g € N, such that minf, = p. We say for ¢ € dom, that p dominates q.

[ is a function used by each leader p to compute a set of unused colors to assign to the nodes
in domy,. The set of used colors for p is

{c|(Fq,r: g€ N, A (c,r) € specirum, A 7 <p)}

That is, used colors with respect to p are those colors in Nﬁ that are already assigned
by leaders with smaller identifiers than p. The complement of the used set is the range
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of possible colors that p may prefer for nodes it dominates. Let f be the function to
minimize the number of colors preferred for the nodes of dom,, ensuring that the colors
for dom, are distinct, and assigning smaller color indices (as close to 0 as possible)
preferentially. Function f returns a list of colors to match the deterministic list of dom,
in the assignment of R5. '

Re: £, — dom,:={p}U{q|lge N, AE=minl, =p}

RS £, — setcol,[domy| := f({c|Tq:
gEN, A r<p A (c,r) € Bspectrum, } )

R6: true — minf, :=min{q| g€ N, U {p} A ={,}
R7: -, — color, := = setcol.[p], where r = minf,

R8: —f, — spectrum, = (color,, minty) U U { (¢,7) |
(Fg,e,r: ¢ € Ny: c=BRcolory A 7 =Eminky)}

Lemma 4 The algorithm R4-R8 converges to a distance-two coloring, with probability 1; the
convergence time is Q1) if each timed variable propagation completes in O(1) time.

Proof: The proof is a sequence of observations to reflect the essentially sequential character
of color assignment. We consider an execution where the set of leaders has been established by
R1-R3 initially. Observe that in O(1) time the assignments of R6 reach a fixed point, based on
the local reference to 44, for neighbors. Therefore, in O(1) time, the shared variables miné,
are propagated to N, and caches min{, are stable. Similarly, in O(1) additional time, the
assignments of R4 reach a fixed point, so that leaders have stable dom variables.

The remainder of the proof is an induction to show that color assignments stabilize in O(d)
phases, where d is the constant of Lemma 2. For the base case of the induction, consider the
set S of leader nodes such that for every p € 5, within Np3 no leader of smaller name than p
ocenrs. We use distance three rather than distance two so that such a leader node’s choice
of colors is stable, independent of the choices made by other leaders. . Set S is non-empty
because, of the set of leaders in the network, at least one has minimal name, which is unique
up to distance three. Call S the set of root leaders. Given such a leader node p, each neighbor
g € N, executes R8 within O(1) time and assigns to spectrum, a set of tuples with the property
that for any (c,r) € spectrum,, r > p. Notice that although spectrum, could subsequently
change in the course of the execution, this property is stable. Therefore, in O(1) additional
time, no tuple of = spectrum, has a smaller value than p in its second component. It follows
that any subsequent evaluation of RS by leader p has a fixed point: p assigns colors to all
nodes of N,. After O(1) delay, for g € N, 52 setcol, stabilizes. Then in O(1) time, all nodes
of dom, assign their color variables using R7. This completes the base case, assignment of
colors by root leaders.
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We complete the induction by examining nodes with minimum distance &£ > 0 from any root
leader along a path of increasing leader names (referring to the Up predicate used in Lemma
2). The hypothesis for the induction is that nodes up to distance &£ — 1 along an increase
path of leader names have stabilized to a permanent assignment of colots to the nodes they
dominate. Arguments similar to the base case show that such nodes at distance k eliminate
colors already claimed by leaders of the hypothesis set in their evaluations of R5. The enfire
inductive step — extending by one all paths of increasing names from the root leaders —
consumes (1) additional time. The induction terminates at d, thanks to Lemma 2, hence
the overall bound of O(d) holds for convergence. Q

Only at one point in the proof do we mention distance-three information, which is to establish
the base case for root leaders (implicitly it is also used in the inductive step as well). Had we
only used neighborhood naming unique up to distance two, it would not be ensured that a
clear ordering of colors exists between leaders that compete for dominated nodes, eg, a leader p
could find that some node r N}? has been assigned a color by another leader ¢, but the names
of p and q are equal; this conflict would permit ¢ to assign the same color to r that p assigns
to some neighbor of r. We use distance-three unique naming to simplify the presentation,
rather than presenting a more complicated technique to break ties. Another useful intuition
for an improved algorithm is that Lemma 2’s result is possibly stronger than necessary: if
paths of increasing names have at most some constant length d with high probability, and the
algorithms for leader selection and color assignment tolerate rare cases of naming conflicts,
the expected convergence time would remain O(1) in the construction.

Due to space restrictions, we omit the proof that the resulting coloring is minimal (which
follows from the construction of f to be locally minimum, and the essentially sequential
assignment of colors along paths of increasing names).
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Chapter 8

Assigning Time Slots from Colors

Given a distance-two coloring of the network nodes, the next task is to derive time slot
assignments for each node for TDMA scheduling. Our starting assumption is that each node
has equal priority for assigning time slots, ie, we are using an unweighted model in allocating
bandwidth. Before presenting an algorithm, we have two motivating observations.

First, the algorithms that provide coloring are local in the sense that the actual number of col-
ors assigned is not available in any global variable. Therefore to assign time slots consistently
to all nodes apparently requires some additional computation. In the first solution of Figure
1.1, both leftmost and rightmost nodes have color 1, however only at the leftmost node is it
clear that color 1 should be allocated one ninth of the time slots. Local information available
at the rightmost node might imply that color 1 should have one third of the allocated slots.

The second observation is that each node p should have at least as much bandwidth as any
other node in sz. This follows from our assumption that all nodes have equal priority.
Consider the N; sizes shown in Figure 1.2 that correspond to the colorings of 1.1. The
rightmost node p in the first coloring has three colors in its two-neighborhood, but has a
neighbor g with four colors in its two-neighborhood. It follows that g shares bandwidth with
four nodes: ¢’s share of the bandwidth is at most 1/4, whereas p’s share is at most 1/3.
It does not violate fairness to allow p to use 1/3 of the slot allocation if these slots would
otherwise be wasted. Our algorithm therefore allocates slots in order from most constrained
(least bandwidth share) to least constrained, so that extra slots can be used where available.

To describe the algorithm that allocates time slots for node p, we introduce these shared
variables and local functions.

base, stabilizes to the number of colors in N7. The value base,' = 1/base, is used as a
constraint on the share of bandwidth required by p in the TDMA slot assignment.

itvl, is a set of intervals of the form [z,y) where 0 < z < y < 1. To compute slots, each unit
of time is divided into intervals and éfvl, is the set of intervals that node p can use to
transmit messages. The expression |[z,y){ denotes the time-length of an interval.
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g(b, S) is a function to assign slots, where S is a set of subintervals of [0, 1}. Function g(b,5)
returns a maximal set 7' of subintervals of [0, 1) that are disjoint and also disjoint {rom
any element of S such that (3 .7 |a]) < b.

To simplify the presentation, we introduce .S, as a private (nonshared) variable.
RO:  true — base, :=| {=color, | g € N2} |

R10: true — Sp:=|) {=itvly | g€ N} A
(= basey > base, V
(= base, = base, A B color, < colory)) }

R11: ifrue — itvl, := g(base,™, Sp)

Lemma 5 With probability 1 the algorithm R9-R11 converges to an allocation of time slots
such that no two nodes within distance two have conflicting time slots, and the interval lengths
for each node p sum to |{ colory | ¢ € N2 }|7'; the expected convergence time of R9-R11 is O(1)
starting from any state with steble and valid coloring. .

Proof: The proof follows the same structure as that given for Lemma 4 and we omit details.
a

It can be verified of R9-R11 that, at a fixed point, no node ¢ € Ng is assigned a time that
overlaps with interval(s) assigned to p; also, all available time is assigned (there are no leftover
intervals). A remaining practical issue is the conversion from intervals to a time slot schedule:
a TDMA slot schedule will approximate the intervals calculated by g.
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Chapter 9

Conclusion

Given the component algorithms of Chapters 4-8, the concluding statement of our result
follows.

Theorem 1 The composition of NO-N3 and RI-R11 is a probabilistically self-stabilizing so-
lution to T with O(1) expected convergence time.

Proof: The infrastructure for neighborhood discovery and shared variable propagation NO-
N2 contributes O(1) delay (partly by assumption on the CSMA behavior), and N3 establishes
neighborhood unique naming in expected O(1) time. The subsequent layers R1-R3, R4-R8,
and R9-R11, each have O(1) expected convergence time, and each layer is only dependent
on the output of the previous layer. The hierarchical composition theorem (see [17]) implies
overall stabilization, and the expected convergence time is the sum of the expected convergence
times of the components. o

Discussion.

QOur scheme provides a collision-free communication medium between node in a wireless sensor
network. Our solution is self-stabilizing so that it can recover from any transient fault, but it
is also scalable since its stabilization time is O(1). Nodes dynamically leaving bring usually
no problems since no new collision can occur, but nodes dynamically coming up in any initial
state can be harmful — containing the effects of such events is an issue for further research.

Some component algorithms could find application to other problems in ad hoc networks. The
neighborhood unique naming combined with leader selection by maximal independent set can
be viewed as a clustering built in expected O(1) time. The clusterheads are nodes with locally
minimum names and the borders between clusters are nodes with locally maximum names.

Another application of our mechanism is to provide a transformer that takes as input a tra-
ditional self-stabilizing algorithm (written for the shared memory model with reliable atomic
neighborood communications) and gives as output a self-stabilizing algorithm written for the
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wireless sensor network model with probabilistically unreliable communications for the same
problem. The stabilization time would be the same (up to a constant factor).

Two possible implementations of this transformer with our algorithm are as follows. For
the distributed deamon (at each step, any subset of the activatable nodes is scheduled for
execution), we divide the TDMA schedule in two parts, the even parts and the odd ones.

ole@|1@|&)| --- ([®|@ @ |® |®

" "y o . e e d
TDMA (even)  overhead  TDMA (odd)  overhead

The even parts of the TDMA are used to propagate shared variables between nodes. Since
our algorithms provide a collision-free mechanism, it is guaranteed that shared variables are
transmitted among neighboring nodes in one TDMA part. The odd parts of the TDMA
schedule are used to execute rules of the upper algorithm as if in the shared memory model.
Since shared variables are accurate at this point, the semantics of the original algorithm are
preserved, and the stabilization time is expanded to a constant factor of 2.

For the locally central demon (at each step, a subset of non-neighboring nodes is scheduled
for execution), we divide the TDMA schedule in 2 x A parts, and number TDMA parts from
0 mod 2 x A. The parts of the TDMA that are even mod 2 x A are used to propagate shared
variables between nodes. The other parts of the TDMA schedule are used to execute rules of
the upper algorithm as if in the shared memory model. A node having color ¢ only executes
at TDMA part 2 x ¢ + 1 mod 2 x A. Since shared variables are accurate each time a node
executes its upper algorithm, the semantics of the original algorithm are preserved. Since A
is a constant, the stabilization time is expanded up to a constant factor. Note that algorithms
written in the shared memory model assuming the central demon (at each step, a single
activatable node is scheduled for execution) also perform correctly using the locally central
demon. Both transformers preserve the self-stabilizing properties of the original algorithm,
and ifs asymptotic stabilization time.
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