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Abstract

In this report, we propose a simple data model for the composition and metadata management of
Learning Objects (LOs) in a distributed setting that we call a Self-eLearning Network, or SeLeNe
for short. We assume that each LO resides at the local repository of its author, so all authors’
repositories, collectively, can be thought of as a database of LOs spread over the network. Authors
willing to share their LOs with other authors in the network must register them with a coordinator,
or syndicator, and authors that search for LOs matching their needs must address their queries to
the syndicator.

The process of registering (or un-registering) a LO, formulating a query to the syndicator, or
answering a query by the syndicator, all rely on LO content description. In this report, we focus
only on one dimension of content description, namely subject area.

During registration of a LO o, if o is atomic its author is required to submit a description -
the author description - whereas if the LO is composite the author description is optional but the
author is required to submit all the LOs that are parts of o; based on the parts, the syndicator
then computes the implied description of o. In this respect, the main contributions of the present
deliverable are:

1. providing an appropriate definition of LO description;
2. providing an algorithm for the computation of the implied description;

3. defining the main functionalities that the syndicator should support, in particular, a querying
facilities.

This report also contains a case study that illustrates some features and functionalities of a
SeLeNe in which the LOs are XML documents, and the network is served by a single syndicator
(see Appendix A). This case study has been conducted in the context of a Master thesis, within
our research group.

Integration of our results with those of our SeLeNe partners has started since end July 2003,
and concerns two activities:

1. Integration of our algorithms into the change propagation module developed by Birkbeck
(see Deliverable 4.4).

2. Embedding of our model in the RDF suite developed by ICS-FORTH (see Appendix B).

We stress the fact that, in this deliverable, we do not deal with the management of LO content, but
only with the management of content description, and in particular with subject area description.
Therefore our model and query language capture only one part of content description, and further
work is needed to extend the model to other kinds of LO metadata and hence to other modes of

querying.



Chapter 1

Introduction

In this report, we propose a simple data model for the composition and metadata management of
Learning Objects (LOs) in a distributed setting that we call a Self-eLearning Network, or SeLeNe
for short [9].

In a SeLeNe, a community of LO euthors co-operate in the creation of LOs to be used also by
other authors and by a community of learners. Each author is a “provider” of LOs to the network
but also a “consumer”, in the sense that he creates LOs based not only on other LOs that he
himself has created but also on LOs that other authors have created and are willing to share [4].
In a nutshell, our approach can be described as follows.

We distinguish LOs into atomic and composite. Intuitively, an atomic LO is any piece of learn-
ing material (text, image, sound, etc.) that can be identified uniquely; its nature and granularity
are entirely up to its author. A composite LO consists of a set of parts, i.e., a set of other LOs
that can be either atomic or composite. We assume that each LO resides at the local repository of
its author, so all authors’ repositories, collectively, can be thought of as a database of LOs spread
over the network. Typically, an author wishing to create a new LO will use some of the objects in
his local database as components and will also search for relevant LOs available over the network.

Authors willing to share their LOs with other authors in the network must register them with
a coordinator, or syndicator, and authors that search for LOs matching their needs must address
their queries to the syndicator. The process of registering (or un-registering) a LO, formulating a
query to the syndicator, or answering a query by the syndicator, all rely on LO content description.

Such descriptions are actually sets of terms from a controlled vocabulary, or tazonemy, to which
all authors adhere. The well known ACM Computing Classification System [1] is an example of
such a taxonomy. In this respect, we distinguish three kinds of description: the author description,
the implied description and the registration description.

During registration of a LO at the syndicator, its author is required to submit the following
items:

1. The LO identifier, say o; this can be a URI allowing to access the LO.

2. A description of the LO content, that we call the author description of o; if o is atomic
then the author description must be nonempty, whereas if o is composite then the author
description can be empty.

3. If o is composite, then registration requires, additionally, the submission of all parts of o (i.e.,
all LOs that constitute the LO being registered); using the descriptions of these parts, the
syndicator then computes automatically a description that “summarizes” the descriptions of
the parts, and that we call the ¢mplied description of o.

To register a LO the syndicator uses the author description augmented by the implied descrip-
tion, after removing all redundant terms (i.e., terms that are subsumed by other terms). The final
set of terms used for registration is what we call the registration description.



The syndicator is actually a software module that maintains a catalogue of registered LOs:
during registration of a LO with identifier o, the syndicator inserts in the catalogue a pair (t,0),
for each term ¢ in the registration description of o. Authors and learners searching for LOs
that match their needs address their queries to the syndicator. In turn, the syndicator uses the
catalogue to answer such queries.

The main issues addressed in this report are:

1. providing appropriate definition of LO description;
2. providing an algorithm for the computation of implied descriptions;
3. defining the main services that the syndicator should provide.

This report proposes generic solutions to the above issues, i.e., solutions that are valid inde-
pendently of questions concerning network configuration. In other words, the solutions that we
provide are still valid whether the network is configured around a central syndicator (as in Nap-
ster), or whether it is organized in clusters, each cluster being served by a separate syndicator,
or even whether there is no syndicator but each node plays the role of a syndicator for all its
connected nodes (as in pure peer-to-peer network).

We have tested our results in a case study that illustrates the features and functionalities of a
SeLeNe in which the LOs are XML documents, and the network is served by a single syndicator
(see Appendix A). This case study has been conducted in the context of a Master thesis, within
our research group. Integration of our results with those of our SeLeNe partners has started since
August 2003, and concerns two activities:

1. Integration of our algorithms into the change propagation module developed by Birkbeck
(see Deliverable 4.4).

2. Embedding of our model in the RDF Suite developed by ICS-FORTH (see Appendix B).

We stress the fact that, in this deliverable, we do not deal with the management of LO con-
tent, but only with the management of content description, and in particular with subject area
description. We are aware that, apart from subject area, there are several other dimensions of
content description such as the format of the LO, its date of creation, its author, the language in
which the LO content is written (if there is text involved), and so on. However, in this report,
we focus only on the subject area dimension, and when we talk of content description we actually
mean subject area description.

Therefore our model and query language capture only one dimension of content description,
and further work is needed to extend the model to other kinds of LO metadata and hence to other
modes of querying.



Chapter 2

The Representation of a Learning
Object

As mentioned earlier, in our model, a LO is represented by an identifier together with a composition
graph showing how the LO is constructed from other, simpler LOs. We do not consider the LO
content itself, but focus only on its representation by an identifier and a composition graph, as
this is sufficient for our metadata management and syndication purposes. Therefore, hereafter,
when we talk of a LO we shall actually mean its representation by an identifier and a composition
graph.

In order to define a LO formally, we assume the existence of a countably infinite set Obj whose
elements are used by all authors for identifying the created LOs. For example, the set Obj could
be the set of all URIs. In fact, we assume that the creation of a LO is tantamount to choosing a
(new) element from Obj and associating it with a set of other LOs that we call its parts.

Definition 1 (The Representation of a Learning Object) A LO consists of an identifier o
together with a (possibly empty) set of LOs, called the parts of o and denoted as parts(o). If
parts(o) = B then o is called atomic, else it is called composite.

Clearly, the choice of parts of a composite object and their arrangement to form a composition
graph should be left entirely up to its author. For notational convenience, we shall write o =
o1 + 03... 4+ 0, to stand for parts(o) = {01,02,...,0,}. We can represent a LO and its parts
graphically, as follows: if o has o; as a part then we draw an arrow from o to o;. Thus, if
0 =01 + 09...+ 0, then we represent this graphically as in Figure 2.1.

A

Figure 2.1: A LO and its parts

Based on the concept of part, we can now define the concept of component.

Definition 2 (Components of a Learning Object) Let 0o = 0y +03...+0,. The set of com-
ponents of o, denoted as comp(0), is defined recursively as follows:

if 0 is atomic then comp(o) = |}
else comp(o) = parts(o) U comp(o1) U comp(oz) U ... U comp(o,).

In this report, we assume that a LO o and its associated set of components can be represented
as a directed acyclic graph (dag) with o as the only root. We shall refer to this graph as the



composition graph of o. The composition graph of an atomic LO consists of just one node, the LO
identifier itself. We note that the absence of cycles in the composition graph simply reflects the
reasonable assumption that a LO cannot be a component of itself. Clearly, this does not prevent
a LO from being a component of two or more distinct LOs belonging to the same composition
graph, or to two different composition graphs.

It is important to note that in our model the ordering of parts in a composite LO is ignored
because it is not relevant to our purposes. Many different composite LOs, with different arrange-
ments of the same set of component LOs, have the same representation in the model. As we shall
see shortly, deriving the description of a composite LO from the descriptions of its parts does not
depend on any ordering of the parts. Therefore, we could see no reason for imposing an ordering
on the parts.



Chapter 3

Descriptions of Learning Objects

As we mentioned in the introduction, LO content descriptions are built based on a controlled
vocabulary, or tezonomy, to which all authors adhere. A taxonomy consists of a set of terms
together with a subsumption relation between terms. An example of taxonomy is the well known
ACM Computing Classification System [1].

Definition 3 (Taxonomy) A tezonomy is a pair (T, <) where T is a terminology, i.e., a finite
and non-empty set of names, or terms, and =< is a reflevive and transitive relation over T, called

subsumption.

Programming
fh o g
Theory Languages Algorithms
Fi |
OOL Sort
g NIy
O Tava MergeSort QuickSort  BubbleSort

#AR

ISP JavaBeans

Figure 3.1: A taxonomy

If s < t then we say that s is subsumed by t, or that ¢ subsumes s. A taxonomy is usually
represented as a graph, where the nodes are the terms and there is an arrow from term s to term
t iff s subsumes ¢ . Figure 3.1 shows an example of a taxonomy, in which the term Languages
subsumes the term 00L, the term Java subsumes the term JavaBeans, and so on. We note that
the subsumption relation is not antisymmetric, i.e., (s < t) and (¢ < s) does not necessarily imply
s = t. Therefore, we define two terms s and ¢ to be synonyms iff s < ¢ and ¢ < s. However,
in this report, we shall not consider synonyms. From a technical point of view, this means that
we work with classes of synonym terms, rather than individual terms. Put it differently, we work
with just one representative from each class of synonyms. For example, referring to Figure 3.1,
the term OOL is the representative of a class of synonyms in which one can also find terms such as
Object-Oriented Languages, 0-0 Languages, and so on, that are synonyms of 00L.

However, even if we work only with classes of synonyms, a taxonomy is not necessarily a tree.
Nevertheless, most taxonomies used in practice (including the ACM Computing Classification
System mentioned earlier) are in fact trees. In this report, we shall assume that the taxonomy
used by the authors of a SeLeNe to describe the contents of their LOs is in fact a tree. We shall
refer to this tree-taxonomy as “the SeLeNe taxonomy”, or simply “the taxonomy”, for short.



Now, in order to make a LO sharable, we must provide a description of the content, so that
users can judge whether the LO in question matches their needs. We define such a description to
be just a set of terms from the taxonomy. For example, if the LO contains the quick sort algorithm
written in java then we can choose the terms QuickSort and Java to describe its content. The
set of terms {QuickSort, Java} can be used as a description of the LO.

Definition 4 (Description) Given a tazonomy (T, <) we call description in T' any set of terms
from T.

However, a problem arises with descriptions: a description can be redundant if some of the
terms it contains are subsumed by other terms. For example, the description {QuickSort, Java,
Sort} is redundant, as QuickSort is subsumed by Sort. If we remove either Sort or Java then
we obtain a non-redundant description: either {QuickSort, Java}or {Sort, Java}l, respectively.
As we shall see later, redundant descriptions are undesirable as they can lead to redundant com-
putations during query evaluation. We shall therefore limit our attention to non-redundant, or
reduced descriptions, defined as follows:

Definition 5 (Reduced Description) A description D in T is called reduced if for any terms
sandtin D, s At andt £ s.

Following the above definition one can reduce a description in (at least) two ways: removing
all but the minimal terms, or removing all but the maximal terms. In this report we adopt the
first approach, i.e., we reduce a description by removing all but its minimal terms. The reason
for our choice lies in the fact that by removing all but minimal terms we obtain a more accurate
description. This should be clear from our previous example, where the description {QuickSort,
Java} is more accurate than {Sort, Java}.

Definition 6 (Reduction) Given a description D in T we call reduction of D, denoted reduce(D),
the set of minimal terms in D with respect to the subsumption <.

A description can be seen both as a summary of the LO content and as a support to find and
retrieve the LO. In the case of an atomic LO the description can be provided either by the author
or by the system via a semi-automatic analysis of the LO content. In the case of a composite LO,
though, we would like to derive a LO description automatically from the descriptions of the LO
parts. We shall refer to such a derived description as the implied description of the composite LO.
To get a feeling of the kind of implied description that we have in mind for a composite LO, let
us see an example.

Example 1 Let 0 = 0y + 02 be a composite LO with the following descriptions of its parts:
Descr(o;) = {QuickSort, Java} Descr(o;) = {BubbleSort, C++}

Then the implied description of 0 = 01 + 0y will be {Sort, O0L}, that summarizes what the
two parts have in common.

We shall come back to this example after the formal definition of implied description. Now,
the question is: how can one define the implied description of a composite LO so as to best reflect
the contents of its parts. Roughly speaking, what we propose in this report is that the implied
description of a LO should satisfy the following criteria:

o it should be reduced, for the reasons explained earlier;
e it should summarize what the parts have in common;

e it should be minimal.



To illustrate points 2 and 3 above, suppose that a composite LO has two parts with descrip-
tions {QuickSort} and {BubbleSort}. The term Sort is a good candidate for being the implied
description, as it describes what the two parts have in common. Moreover, as we can see in Fig-
ure 3.1, Sort is the minimal term with these properties. On the other hand, the term Algorithm
is not a good candidate because, although it describes what the two parts have in common, it is
not minimal (as it subsumes the term Sort).

Coming back to Example 1, following the above intuitions, we would like the implied description
of o to be {Sort, 00L}. Indeed,

e {Sort, 00L} is a reduced description;

e the term Sort summarizes what QuickSort and BubbleSort have in common, and 00L
summarizes what Java and C++ have in common;

e it is minimal, as any other description with the above properties will have terms subsuming
Sort or 00L.

In order to formalize these intuitions, we introduce the following relation on descriptions.

Definition 7 (Refinement Relation on Descriptions) Let D and D’ be two descriptions. We
say that D is finer than D', denoted D T D', iff for each t' € D', there exists t € D such that
t <t

In other words, D is finer than D' if every term of D' subsumes some term of D. For example,
the description D ={QuickSort, Java, BubbleSort} is finer than D' = {Sort, 00L}, whereas
D' is not finer than D. To gain some more insight into this ordering, let us see another example.
Referring to Figure 3.1, consider the following reduced descriptions:

D = {JSP, QuickSort, BubbleSort} D' = {Java, Sort}

Then D C D', as each term t' of D' subsumes some term ¢ of D. Indeed, Java subsumes JSP
and Sort subsumes QuickSort (of course, Sort also subsumes BubbleSort, but the existence of
one term in D subsumed by Sort is sufficient).

Note that, according to this ordering, once we have verified that D C D' we may add to D as
many extra terms as we wish, without destroying the ordering. Thus, in our previous example, if
we add to D the term Theory, D still remains finer than D’. This is consistent with our objective
that the implied description should summarize what is common to all parts (and Theory is not
common to all parts).

Clearly, C is a reflexive and transitive relation, thus a pre-ordering over the set of all descripions.
However, C is not antisymmetric, as the following example shows. Consider D; = {00L, Java,
Sort} and D, = {Java, Sort, Algorithms}. It is easy to see that Dy C Dy and Dy C Dy,
although Dy # D,. However, as we have explained earlier, for the purposes of this report, we
restrict our attention to reduced descriptions only; and, as stated in the following proposition, for
reduced descriptions, the relation C becomes also antisymmetric, thus a partial order.

Proposition 1 The relation C is a partial order over the set of all reduced descriptions.

Proof. Indeed, assume D C D' and D' C D, and consider a term ¢’ of D’. Then there is a term
t in D such that ¢t < #'. We claim that ¢’ < ¢ as well, and therefore that ¢ = /. Otherwise, as
D' C D and t is in D, there is a term t" (different than ¢') such that ¢ < ¢, and thus " < ¢
Assuming ¢ # t', we have a contradiction to the fact that D' is a reduced description. O

Now, using this ordering, we can define formally the implied description of a composite LO so
as to satisty the criteria for a “good” implied desription, given earlier. First, we need the following
result:



Theorem 2 (Least Upper Bound of a Set of Reduced Descriptions) Let D =
{D1,..,D,} be any set of reduced descriptions. Let U be the set of all reduced descriptions S such
that D; € 5,4 = 1,2,...,m, de., U = {S|D; C S,i=1,...,n}. Then U has a least upper bound,
that we shall denote as lub(D,C).

Proof. Let P = D) x Dy x...x Dy, be the cartesian product of the descriptions in D, and suppose
that there are & tuples in this product, say P = {Ly, Lo, ..., Ly }. Let D = {lub<(L1),lub<(La), ... ,lub<(Ly)},
where lub<(L;) denotes the least upper bound of the terms in L;, with respect to <. As (T, <) is
a tree, this least upper bound exists, for all ¢ = 1,2, ...,n. Now, let R be the reduction of D, i.e.,
R = reduce(D). We shall show that R is the smallest element of I{.
Indeed, it follows from the definition of R that D; C R, for ¢ = 1,2,...,n. Moreover, let S be
any description in U, and let ¢ be a term in S. It follows from the definition of I/ that there is a
term v; in each description D; such that v; < t. Consider now the tuple v =< vy, v9,...,v, >. By
the definition of least upper bound, lub<(v) < ¢, and as lub<(v) is in R, it follows that R C S,
and this completes the proof. 0

With this theorem at hand, we can now give the formal definition of the implied description
of a composite LO.

Definition 8 (Implied Description) Let o = 01 + 02 ...+ 0, and let D, .., D, be the descrip-
tions of its parts, respectively. We call implied description of o, denoted I Descr(o), the least upper
bound of {D1,..,D,} in C, i.e., IDescr(o) = lub({D1, .., D, },C)

Note that, in this definition, the descriptions of the parts are assumed to be known. In Section 4
we shall describe the mechanism by which we can associate a description to each part of a LO,
prior to the computation of its implied description.

Theorem 2 suggests the following algorithm for the computation of the implied description of
a set of reduced descriptions. Its proof of correctness follows directly from the theorem.

Algorithm IMPLIEDDESCRIPTION
Input: A composite LOo=0;+...+ o0,

The descriptions of the parts, Dy, Da,..., Dy
Output: The implied description IDescr(o)

begin
Compute P=D; x Dy x ... x Dy,
for each tuple Ly = [t},%,...,t8] in P, compute T), = lub<(¢f,t5,. .. 1)

Let D = {Tl,. 5 ,T[}
return reduce(D)
end

In the algorithm, the function lub<(t1,...,t,) returns the least upper bound of the set of terms
t1,...,¢, with respect to <. We end this section by working out a few examples illustrating how
this algorithm works, referring to the taxonomy of Figure 3.1.

Example 2 Consider the LO 0 = 01 + 02, composed of two parts with the following descriptions:
Descr(o;) = {QuickSort, Java} Descr(oy) = {BubbleSort, C++}

In order to compute the implied description, first we compute the cross-product P = Descr(oy) %
Descr(os). We find the following set of tuples:

Ly =jQuickSort, BubbleSort;
Loy =jQuickSort, C++s

= L3 =jJava, BubbleSort;
Ly =jJava, C+tj
Nezt, for each tuple L;, i = 1,...,4, we compute the least upper bound of the set of terms in

Bz



1. 171 = Sort

2. Ty = Programming

3. Ts = Programming

4. Ty = 00L

We then collect together these least upper bounds to form the set
D = {Sort, Programming, OOL}
Finally we reduce D to obtain the implied description:

Implied Description = {00L, Sort}

In view of our discussions so far, this result can be interpreted as follows: each part of the LO
concerns both, sorting and object-oriented languages.

Example 3 Consider now the composite LO o' = 01 + o3, with the following descriptions of its
parts:

Descr(o1)= {QuickSort, Java} Descr(oz) = {BubbleSort}
Proceeding similarly, as in Example 2, we find successively:

1. The cross-product:
Pe Ly =jQuickSort, BubbleSorts
~ | L, =jJava, BubbleSort;

2. The set of least upper bounds D = {Sort, Programming}
3. The implied description IDescr(o) = reduce(D) = {Sort}

The following comments are noteworthy:

1. The term Java is not reflected in the implied description of Example 3, as it is not something
that both parts share.

2. The fact that Java has disappeared in the implied description means no loss of information:
if a user searches for documents related to java, o; will be in the answer and o' will not,
which is consistent.

3. If we had put Java in the implied description of o', this would give rise to the following
problem: when one searches for documents related to java, the system will return both o;
and o'. Clearly, this answer is at the same time redundant (because o is part of ¢'), and
partially irrelevant as only a part of o' concerns java.

The same LO will generate different implied descriptions, depending on what the “companion”
parts are. This is illustrated by our last example.

Example 4 Consider the composite LO o' = 0, + o4, with the following descriptions of its paris:
Descr(oy) ={Java, QuickSort} Descr(os) ={C++}
Proceeding similarly, as in Frample 2, we find successively:

1. The cross-product

L, =jJava, Ct++;
P = . X .
Ly =jQuickSort, Ct++j



2. D ={00L, Programming}
3. reduce(D) = {00L}

Note that, in the two previous examples, 0, is part of the composite LO, but each time with a
different “companion part”: first with oz in o', then with o4 in o”. It is interesting to note that,
depending on the companion part, either the “Sort-aspect” of o; or the “OOL-aspect” appears in
the implied decription.

10



Chapter 4

The Syndicator

As we mentioned in the introduction, in a SeLeNe, a community of authors co-operate in the
creation of LOs to be used by other authors and by a community of learners. Each author is
a “provider” of LOs to the network but also a “consumer”, in the sense that he creates LOs
based not only on other LOs that he himself has created but also on LOs that other authors have
created and are willing to share. Each LO resides at the local repository of its author, so all
authors’ repositories, collectively, can be thought of as a database of LOs spread over the network.
Typically, an author wishing to create a new LO will use as components some of the LOs from
his local database, and will also search for relevant LOs that reside at the local databases of other
authors - provided that those other authors are willing to share them.

Authors willing to share their LOs with other authors in the network must register them with
a coordinator, or syndicator, and authors that search for LOs matching their needs must address
their queries to the syndicator. The syndicator is actually a software module at the heart of a
SeLeNe. It provides a set of services, among which the following basic services:

e query evaluation

e registration of a LO

e un-registration of a LO
e description modification

In this section, we discuss these basic services and outline their interconnections.

The implementation of all the basic services relies on LO descriptions that are provided to the
syndicator during LO registration. Indeed, during registration of a LO, its author is required to
submit the LO identifier, say o, and a description of o that we call the author description of o,
denoted as ADescr(o). If o is atomic then the author description must be nonempty, whereas
if o0 is composite the author description can be empty. However, if o is composite the author is
also required to submit all parts of 0. Based on the descriptions of the parts, the syndicator then
computes (automatically) the implied description of o. Finally, to register o, the syndicator uses
the author description augmented by the implied description, after removing all redundant terms.
The final set of terms used for registration is what we call the registration description of o.

Definition 9 (Registration Description) The Registration Description of a LOo=o01+...+
On, denoted RDescr(o), is defined recursively as follows:

o if 0 is atomic, then RDescr(o) = reduce(ADescr(o0))

¢ else RDescr{o) = reduce(ADescr(o) U RDescr(o1) U ... U RDescr(o,))

11



One may wonder why the author description is not sufficient for LO registration. The answer
is that the author of a composite LO o may not describe the parts of o in the same way as the
authors of these parts have done. Let us see an example. Suppose that two LOs, 0; and o3, have
been created by two different authors, with the following author descriptions

ADescr(o1) = {QuickSort, Java} ADeser(o;) = {BubbleSort, C++}

Assume now that a third author considers these LOs as examples of good programming style,
and decides to use them as parts of a new, composite LO o = 0y + 02. Consequently, the author
of o provides the following author description:

ADescr(o) = {GoodProgrammingStyle}

Although this author description might be accurate for the author’s own purposes, the LO o still
can serve to teach (or learn) java and sorting algorithms. This information will certainly be of
interest to SeLeNe users searching for LOs containing material on java and sorting algorithms.
Therefore, before registration, the author description should be completed, or augmented by the
implied description, i.e., {00L, Sort}, to obtain the following registration description:

{GoodProgrammingStyle, 00L, Sort}

This description contains all descriptions, i.e., the one given by the author of o and those given
by the authors of its parts.

During LO registration, the registration description of o is what is actually stored by the
syndicator in a repository. Conceptually, the repository can be thought of as a set of pairs
constructed as follows: during registration of a LO o, the syndicator stores a pair (¢,0) for each
term ¢ appearing in the registration description of 0. The set of all such pairs (¢, 0), for all LOs
that are {currently) registered is what we call the SeLeNe Catalogue, or simply the catalogue.

Definition 10 (Catalogue) A catalogue C over (T, =) is a set of pairs (1,0), where t is a term
of T and o is a LO.

Programming
Theory Languages Algorithms
OOL Sort
?-H' /Java\:\ MergeSort QuickSort  BubbleSort
05' Jsp JavaBean AT '

i 03 ____ o0

3 5.
Og _

Figure 4.1: A catalogue

Figure 4.1 shows a catalogue over the taxonomy of Figure 3.1. The doted lines indicate the pairs
(t,0) of the catalogue, relating terms with LOs. Roughly speaking, the catalogue is a “shopping
list” in which SeLeNe users look for LOs that match their needs. As such, the catalogue is the
main conceptual tool for syndicating LOs in a SeLeNe. In what follows, we discuss in more detail
how the syndicator uses the catalogue to support the basic services listed earlier.
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Query Language

In our approach, a query is either a single term or a boolean combination of terms, as stated in
the following definition.

Definition 11 (Query Language) A query over the SeLeNe catalogue is any string derived by
the following grammar, where t is a term and € is the empty query:

a:=tlgAdlaVdlaA-q)(g)le

Roughly speaking, the answer to a query is computed as follows. If the query is a single term,
then the answer is the set of all LOs related either to ¢ or to a term subsumed by t. If the query
is not a single term then we proceed as follows. First, for each term appearing in the query,
replace the term by the set of all LOs computed as explained above; then replace each boolean
combinator appearing in the query by the corresponding set-theoretic operator; finally, perform
the set-theoretic operations to find the answer. These intuitions are reflected in the following
definition of answer, where the symbol tail(¢) stands for the set of all terms in the taxonomy
strictly subsumed by t, i.e., tail(t) = {s\s < ¢}.

Definition 12 (Query Answer) The answer to a query q over o catalog C, denoted by ans(q),
is a set of LOs defined as follows, depending on the form of q (vefer to Definition 11):

Case 1: q is a single term t from T, i.e., gq=1
ans(t) = if tail(t) = then {o\(t,0) € C} else | J{ans(s)|s € tail(t)}
Case 2: q is a general query
ans(g) =
if ¢ =t then ans(t)
else
begin
if ¢ = q1 A g2, ans(q) = ans(q1) N ans(ga)
if ¢ =q Vg2, ans(q) = ans(q1) U ans(qz)
if ¢ = q1 A—qa, ans(g) = ans(q1)\ans(gz)
end
Case 3: q is the empty query
ans(e) =0

Example 5 Consider the query ¢ = C++ V Sort. Applying the above definition we find ans(q)
= {05,068} U {03,04,06}{03,04,05,06}. Similarly, for the query g = C++ A— BubbleSort we find
{os}.

Registration

An author wishes to make a LO available to other users in the network.

To make a LO available to other users in the network, its author must submit the following
three items to the syndicator:

1. the LO identifier, say o;
2. a description (the author description of o, which must be nonempty if o is atomic);

3. the identifiers of the parts of o, if 0 is composite.
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The syndicator then computes the registration description of 0 on which the actual registration
will be performed. To do this, the syndicator uses the following algorithm, whose correctness is
an immediate consequence of Definition 9. The algorithm takes as input the above items, and
returns the updated catalogue (i.e., the old catalogue augmented by a set of pairs (¢, 0), one for
each term ¢ in the registration description of o).

Algorithm RDESCR
Input: The current catalogue C, a LO o, the author description ADescr, the parts {o01,02,...,0,} of 0
Output: The updated catalogue C
begin

D=4

for each o; € parts(o) do

if (o; is already registered)
Take the registration description R; from C

else
R; = RDEsc (C, 0;, ADescr, parts(o;)) [Recursive call to RDESC]
endif
D:=DUR;
end for

Let R = reduce(IDescr(o) U ADeser(0))
for each t in R, insert the pair (¢, 0) in the catalogue C
end

Note that, if o is atomic then its registration description reduces to the reduction of its author
description. From a practical point of view, the following scenarios can be envisaged for providing
the inputs to the algorithm RDESCR; they depend on the nature of the parts of o, as well as on
whether these parts have been registered beforehand or not:

e if a part o; of o has already been registered then its registration description is taken from
the catalogue, independently of whether o; is atomic or composite.

e else if 0; is composite and not yet registered, then its registration description is recursively
computed from the registration descriptions of the parts of o;; in this case, the full compo-
sition graph of o; is required as input.

e else if o; is atomic then its author description is required as input, and its registration
description is the reduction of its author description.

We assume that a LO o, whether atomic or composite, can be registered only if its registration
description is nonempty. This assumption is justified by the fact that search for LOs of interest
by SeLeNe users is based on descriptions. As a consequence, if we allow registration of a LO
with an empty description, then such a LO would be inaccessible by SeLeNe users. Therefore, the
syndicator needs at least one term ¢, in order to insert the pair (t,0) in the catalogue, and make
it accessible by SeLeNe users. This is ensured by the following constraint.

Constraint 1 (Registration Constraint) 4 LO can be registered only if its registration de-
seription is nonempty

For atomic LOs this is tantamount to requiring that the author decription be nonepmty.

Constraint 2 (Registration Constraint for Atomic LOs) An atomic LO can be registered
only if its author description is nonempty

If the LO is composite, then the registration constraint implies that either the author descrip-
tion must be nonempty or the implied description must be nonempty. A sufficient condition for
the implied description to be nonempty (and thus for the registration constraint to be satisfied)
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is that all parts of the LO be registered, or (reasoning recursively) that all atomic components
of the LO be registered. Indeed, if all atomic components have already been registered, then the
syndicator will be able to compute a nonempty implied description, and thus a nonempty regis-
tration description, independently on whether the author descriptions of one or more components
are missing. Therefore the following sufficient condition for the registration of a composite LO:

Constraint 3 (Sufficient Condition for Composite LO Registration) If every atomic com-
ponent of a composite LO is registered then the LO can be registered

Figure 4.2 shows an example of composite LO registration. As shown in the figure, two atomic
LOs, 03 and o4 have already been registered in the catalogue C, and so has the composite LO
02, whose parts are o3 and o4. The author descriptions of all three LOs are shown in the figure.
Although the author description of oq is empty, its registration was possible as both its parts have
nonempty author descriptions. Note that the registration deseriptions of 03 and o4 coincide with
their author descriptions (since both LOs are atomic and their author descriptions happen to be
reduced). The registration description of o, is easily seen to be {00L}.

bl alese S Tidary )

oI R S et i I 0 T ke et {Javabeans, Quicksort}
\

Figure 4.2: Registration description of a composite LO

Now, suppose that an author wishes to reuse o2 (and its parts) in order to create a new LO
0, composed of two parts: 0, and oz, where o; is an atomic LO from the author’s local database.
Suppose now that in order to register o, the author provides to the syndicator author descriptions
for o and o;, as shown in the figure. Based on these descriptions, and the registration description
of 02 (computed earlier), the syndicator will then compute the registration description of o - which
is easily seen to be {00L, Theory}. Finally, the syndicator will enter in the catalogue the two
pairs (00L, 0) and (Theory, 0).

Unregistration:
An author wishes to remove from the catalogue one of his registered LOs
To unregister a LO, its author must submit to the syndicator the LO identifier, say o. The
syndicator then performs the following tasks:
o Notify all users using o as a component in their composite objects
¢ Remove from the catalogue each pair (¢, 0);
e Re-compute the registration descriptions of all composite LOs affected by the removal of o;
o Use the re-computed registration descriptions to maintain the catalogue.

We note that notification can be done either by broadcasting the removal of o to all users, or
by first finding the users concerned and then notifying only those concerned. The first solution is
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probably cheaper but may create inconvenience to those users not concerned, whereas the second
avoids inconvenience but requires searching the catalogue for finding the users concerned (assuming
that the syndicator keeps track of the “foreign LOs” used by each user). In any case, once notified
of the (pending) unregistration of o, the users concerned have the option of first creating (in their
local database) a copy of 0 and then proceeding to re-register all composite LOs in which o appears
as a component. Otherwise, the registration description of such LOs might become empty.

Description modification:

An author wishes to modify the description of one of his registered LOs

To modify the description of a LO, its author must submit to the syndicator the LO identifier,
say o, and the new author description, say 1. The syndicator then performs the following tasks:

o Notify all users using o as a component in some of their composite objects;

e Remove from the catalogue each pair (¢, 0);

Using the new author description D, compute the new registration description RDescr(o)
from the catalogue;

e Re-register o, i.e., insert a pair (t,0) for each ¢ in RDescr(o).
e Re-compute the registration deseriptions of all composite LOs affected by the modification

Use the re-computed registration descriptions to maintain the catalogue

As in the case of un-registration, notification can be done either by broadcasting the modifica-
tion in the description of o to all users or by first finding the users concerned and then notifying
only those concerned. However, now, there is no need for any action on the part of the user: all
modified descriptions can be obtained by querying the catalogue.

There are several other services that a SeLeNe syndicator should support that lie outside the
scope of the present deliverable. Some of these Services are discussed in separate deliverables.
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Chapter 5

Concluding Remarks

We have presented a model for composing LOs from other simpler LOs and we have seen an
algorithm for computing implied descriptions of composite LOs based on the descriptions of their
parts.

In our model, a LO is represented by an identifier together with a composition graph which
shows how the LO is composed from other, simpler LOs. The description of each LO is a set of
terms from the SeLeNe Taxonomy. We have distinguished three kinds of description:

1. the author description, i.e., the description provided to the syndicator explicitly by the
author;

2. the implied description, i.e., the description implied by the descriptions of the parts (and
computed by the syndicator during registration);

3. the registration description, i.e., the description computed from the previous two descriptions
and used by the syndicator to register the LO.

We have also outlined the main functionalities of the syndicator, a software module that acts as
a central server, registering or unregistering sharable LOs, notifying users of changes, maintaining
the SeLeNe Catalogue and answering queries by authors and/or learners.

Work in progress aims at:

e validating our model in the context of a prototype, in which the LOs are XML documents
(see Appendix A as well as a Master’s Thesis by B. Gueye, in French, contained in this
deliverable as a separate document);

e embedding our model in the RDF Suite developed by ICS-FORTH, a SeLeNe partner (see
Appendix B);

e integrating our description generating algorithms into the change propagation module de-
veloped by Birkbeck, a SeL.eNe partner (see Deliverable 4.4).

The basic assumption underlying our work is the existence of a network-wide SeLeNe Taxonomy
according to which LOs are described and queries are formulated. As a result, a SeLeNe functions
as a super-peer network served by a central catalogue — the SeL.eNe Catalogue.

Future work aims at relaxing this assumption, in order to arrive at a pure peer-to-peer network.
This will be done in two steps, as follows.

First, we will assume each author, or group of authors to have their own (possibly non-standard)
taxonomy, for describing their LOs locally and for formulating their queries to the syndicator.
This will require the establishment of articulations, i.e., semantic mappings between each local
taxonomy and the SeLeNe Taxonomy. Work in that direction will be based on previous work on
mediation [12, 13, 10, 14, 11, 6].
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Second, we will assume that the role of the syndicator can be played by any local taxonomy.
Indeed, in principle, any local taxonomy can play the role of a syndicator for all other local
taxonomies that are articulated to it.

Another line of future research concerns a personalized interaction with the network. Indeed,
from a conceptual point of view, all one has to do is to let the network user express his needs in
terms of a set of named queries, or views of the form:

<term-name> = <query-to-the syndicator>

The set of terms thus declared (plus, eventually, a user-defined subsumption relation) will then
constitute the user-defined taxonomy, that will serve as the personalized interface to the network.
Queries to this personalized taxonomy can be answered by simple substitution, based on the user
declarations defining the terms of the personalized taxonomy. Work on the personalization aspects
is ongoing and will be reported later.
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Appendix A

A Case Study

Authors: B. Gueye, Ph. Rigaux, N. Spyratos

We are currently implementing a prototype to experiment in a practical setting the function-
alities of the model. In this prototype the LOs and their components are XML documents, and
the system relies on XML tools and languages for addressing and transformation tasks.

The architecture of the system is summarized in Figure A.1. Here are some comments, be-
fore looking into the technical details. First the composite LOs are represented in this specific
implementation by XML documents which are valid with respect to the DocBook DTD [15]. The
hierarchical nature of XML documents fits well with the composition mechanism of our model,
which allows to construct composite LOs from simpler ones. Each fragment of the XML structure
(i-e, each subtree) corresponds to a L, and the leaves are the atomic LOs introduced in the model.
When submitting a document to the system, it is required that each of the leaves is labelled with
a set of terms form the network terminology.

] — Mediator

Indexing <query>

<query>

Query
evaluation

registration

Storage

DocBook Indexing ;

documents with XPath Visualization Materialization
/monitoring

Figure A.1: Overview of the system’s architecture

From these documents, a program (written with the XML transformation language, XSLT)
produces the description for each document. Descriptions are sent to the syndicator which stores
them in a repository, creates description on objects, and proposes querying services. Finally users
can create composite LOs as DocBook documents augmented with the <query> element. The
content of such an element is a query which is executed by the syndicator and replaced by the
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result of the query. From this the user can:

e cither browse through the query result, visualize the fragments coming from atomic docu-
ments, and possibly remove some of them,

e or materialize the document, including the result of queries, and store it locally.

We now embark in a detailed description of each part.

A.1 The terminology

The terminology used in the system is the ACM Computing Classification System (see http://www.acm.org/class/).
It is initially designed to classify published works in the field of computer science. We use an XML

representation, stored at the syndicator and accessible through a Web interface to users and au-

thors who want to pick up terms for, respectively, describing their documents or expressing queries.

Here is a small part of this terminology.

<7xml version="1.0" encoding="IS0-8859-1"7>
<term name="Computer_Science'>
<term name="Artificial_intelligence'>

<term name="Knowledge_representation"/>

<term name="Machine_learning">

<term name="analytical_learning"/>

<term name="artificial_neural_networks'"/>

<term name="algorithms_for_pattern_discovery"/>

...)

</term>

(...)
</term>

<term name="Databases">
<term name="Database_management_system">
...
</term>

<term name="SQL">
(...)
</term>
</term>
</term>

A.2 Documents

DocBook is a DTD for writing structured documents using SGML or XML. It is particularly
well-suited to books and papers about computer hardware and software, though it is by no means
limited to them. DocBook is an easy-to-understand and widely used DTD: dozens of organiza-
tions use DocBook for millions of pages of documentation, in various print and online formats,
worldwide. Many publishers use DocBook to represent and exchange their books or parts of their
books, and given the wide acceptance of this DTD and its maturity, it seems reasonable to adopt
it as a de facto standard.

It is worth mentioning however that any other DTD would do, the important assumption
here being that all authors in the system provide their LO content in a common format. This

22



assumption is mostly motivated by practical considerations. Indeed the exchange of fragments and
their integration is greatly facilitated by the homogeneity of the representation. In particular, it
is easy with minimal effort to ensure that inserting a DocBook fragment in a DocBook document
keeps the whole document valid with respect to the DTD.

We distinguish in a DocBook document the following tags that identifiy the structure of the
document: book, chapter, section and subsection. Elements of type subsection are considered
to form the leaves of the composition graph, to which a description must be associated. The
inference mechanism described in the model is then used to create the descriptions for the upper-
level elements book, chapter and section. As an example, here is a (quite simplified) document:

<book title="Databases'>

<chapter title="Conceptual modelling">
Some text ...
<section title="The Entity-relationship model">
Some text ...
</section>
<section title="Schema design'>
Some text ...
</section>
</chapter>

<chapter title="Database programming">
Some text ...
</chapter>
</book>

Beyond the (somehow heavy) syntax of XML, we are interested in the structure of the infor-
mation contained in this document. This structure is defined by the tags and is better represented
as a tree, shown in Figure A.2.

Element
book
Databases

Element
chapter
Database programming

Text Element Element Text
- section section -
Some text The E/R model Schema design using FD Some text

Text Text

Element
chapter

Conceptual modelling

Some text Some text

Figure A.2: The hierarchical structure of the document

BEssentially, nodes of type Text represent the content, while nodes of type Element represent
the structure. The role of the author, before submitting such a document to the syndicator, is
to describe the elements located at the lower level in the structure (here <section>) with terms
from the terminology. This is simply done by adding an attribute to the <section>, as illustrated
in the document below:

<book title="Databases'">
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<chapter title="Conceptual modelling">
Some text ...
<section title="The E/R model" term="E/R">
Some text ...
</section>
<section title="Schema design"
term="FD">
Some text ...
</section>
</chapter>

<chapter title="Database programming'>
Some text ...
</chapter>
</book>

We obtain a new structure derived from the previous one, and illustrated in Figure A.3. The
document represented in this figure contains descriptions for all the elements, at any level. The
descriptions for <chapter> and <bock> elements have been derived automatically from the de-
scriptions of the leaves in the way explained earlier.

Element
book
Databases

—

- ~ -

/ Attr N
{ tern ]

\ databases /
~

Element
chapter

Conceptual modelling

Element
chapter
Database programming

i
Es = o ¥4
- y 4
P 3 - TR
4 Attr AN Text Element Element Vd Attr AN Text
{ term ] = section section { term ) -
\, modelling Some text The E/R model Schema design using FD \, programming Some text
e N —— - / / i ey e -
/
P e - -./
/! Attr \ ! oater N Text
| term |} | tem | -
\ E/R Vi \ FD i Some text
~ -

Figure A.3: A document enriched with descriptions

Finally the composition graph together with the descriptions of the leaves is sent to the syndi-
cator who stores, with each term of the terminology, the path to the XML subtree(s) that relate(s)
to this term. Currently we use the XPath language [16] to refer to these subtrees, and complete
XPath expressions with the URL of the document. The table below shows the information handled
by the syndicator to refer to the nodes of the document used so far.

Term XPath expression

databases /book

modelling /book/chapter[1]

E/R /book/chapter[1]/section[1]
E/R /book/chapter[1]/section[2]
programming | /book/chapter[2]
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Element
boock
My courses

Element
chapter

Element
chapter
My database course

B r—
Elament Elament
section query
My notes on data modelling
Element Text
query =
JDBC programming
S
"\
Text Text
My personnal notes modelling

Figure A.4: A derived document

Element
Text

Finally let us illustrate how one can create composite documents by inserting queries. The
example of Figure A.4 shows the structure of a DocBook document, enriched with <query> ele-
ments that allow to express queries. In this particular example, the document is that of a student
who collect course notes, introduces his own course notes, and mixes them with fragments/LO
extracted from the set of available sources. When submitted to the syndicator via a client/server
dialog whose description is omitted here, the <query> is replaced by the content of the answer to
the query (or, more generally, by the concatenation of the contents of the set of XML subtrees
obtained as query results).
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Appendix B

Embedding in RDF

Authors: V. Christophides, Ph. Rigaux, N. Spyratos

In this appendix we describe briefly integration activities in progress between LRI and ICS-
FORTH, aiming at embedding the model proposed by LRI in Deliverable 4.1 into the RDF Suite
developed by ICS-FORTH [2].

In a nutshell, Deliverable 4.1 proposes a model for composing LOs from other simpler LOs
and an algorithm for generating descriptions of composite LOs based on the descriptions of their
parts.

A LO is represented by an identifier together with a composition graph which shows the
structure of the LO. The description of a LO is seen as a set of terms from a network-wide
taxonomy, the SeLeNe Taxonomy, and consists of two parts, a part provided by the author and
a part implied by the LO structure. A central server, the syndicator, maintains the SeLeNe
Catalogue and answers queries by authors and/or learners.

Below, we summarize the guidelines that we have agreed upon, for the embedding of this model
into the RDF Suite. These guidelines have already been used while conducting the case study (see
Appendix A).

1. A SeLeNe Taxonomy will be represented as a RDF scheme:

e cach term of the SeL.eNe Taxonomy will be represented as a class name;

e cach subsumption relationship as a ISA link between the corresponding classes.

2. The SeLeNe Catalogue will be represented as a RDF database:

e cach LO will be represented as a RDF resource;

e cach LO (resource) will be classified under each of the terms (class names) appearing
in its description.

3. RQL facilities will be used for browsing, querying, and LO composition.

In this respect, we note that RQL facilities include browsing and querying facilities that cover
the SeLeNe requirements identified so far, as well as primitives for expressing that a set of re-
sources constitute parts of a given resource. This last feature is essential for expressing that the
LOs appearing in the answer of a query to the syndicator are parts of a composite LO under
construction.

Moreover, the RQL facilities provide graphic interfaces for user-friendly interaction.
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