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ABSTRACT. Given a graph G with n vertices, we call ¢x(G) the
minimum number of elementary cycles of length at most k& neces-
sary to cover the vertices of G. We bound ¢ (G) from the minimum
degree and the order of the graph.

1. INTRODUCTION AND DEFINITIONS

For unexplained terminology, see [1].

Let G = (V, E) be a simple non oriented graph and N C V a subset
of V. The order of the graph is the number of vertices of the graph. A
path Pla,b] of G is a path with extremities @ and b; such a path is V-
alternated if @ is a vertex of V and P does not contain 2 consecutive
vertices not in N. Similarly, a cycle C' is N-alternated if it does not
contain 2 consecutive vertices not in N. If there is no ambiguity we will
just say alternated.

The triangle graph of GG, denoted T'(G) = (V, E'), is the graph on the
set of vertices V' whose set of edges is the set of edges of the triangles of
G. We recall that for p and ¢ two non zero integers K, , is the complete
bipartite graph with partite sets of cardinalities p and g. Similarly for
P, ¢ and r three non zero integers, K, , » is the complete tripartite graph
with partite sets of cardinalities p, ¢ and r.

For any graph G let a(() be the cardinality of a maximum stable
set of G.

In this work we consider coverings of the vertices of a graph by
elementary cycles. A covering of G is a family of cycles of G such that
cach vertex of (@ is at least in one cycle of the family. If the minimum
degree is at least half of the order of the graph then by Dirac’s lemma [2]
we know that the graph is hamiltonian. More generally many authors
bounded the minimum number of cycles necessary to cover the vertices,
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in function of the minimum degree and the order of the graph. Let us
recall somme results. Kouider and Lonc [4] proved:

"Let G be a graph of order n. Let s > 2 be any integer.

If Zdeggsc > n, for every stable set S C V and |S| = s, then the

z€S
vertex set V' can be covered by at most s — 1 cycles, edges or vertices.

If G is supposed 2 connected we can take only cycles.”

Here we fix an integer k and we consider only cycles of length at most
k. We denote by ¢;(G) the minimum number of such cycles necessary
to cover the vertices. We bound ¢;(G) in function of the minimum
degree and the order of the graph.

2. RESULTS
2.1. Case k=3 and k = 4.

Proposition 2.1. Let G be a graph with t, vertex disjoint triangles.

Then
= tl

2

Proof. The t; disjoint triangles cover 3t; vertices and the n — 3t; re-
maining vertices are covered at worst 1 by 1 and at most 2 by 2. This

— 3t
- : -|—t1 SCg(G) S(n—?ytl)-i—tl (|

S C3(G) S n — 2t1

gives

Proposition 2.2. Let G be a graph of order n and T(G) its triangle
graph. Then
T
(@) < 22 2TE)

Proof. Let S be an independent set of maximum size in 7'(G). Let M be
a maximum matching in the complement of S. So vertices saturated by
M can be covered by triangles 2 by 2. The remaining vertices of T'(G)
form a stable set X' = V'\ (S U V(M)). By maximality of S we have
for every subset X" of X', IN(X")N S| > |X"|. By Konig-Hall theorem
there is a matching in SUX’ which saturates X’. So we have a covering
— (e(T(@)) — | X' n+a(T(G

@T@N = IXD o - < H2TE).

n
by at most

Let us take the graph G with n vertices contructed by adding an edge
in the 2 vertices part in the K3 .. We have T(G) = G, o(T(G)) = n—2
and ¢3(G) = n—2 while the bound given by the preceeding proposition
isn— 1.
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For k = 4, there are graphs with n vertices such that c4(G) >
n—3

2[

with a diametral chord [zs, x5 ]; the graph G is composed by s copies
of H such that the common vertices to any pair of copies are exactly
1,22, T3.

| for example, consider a graph H which is a cycle ( 2y, 22, z3, .., Z¢ )

2.2. General case. We will use intensively the following easy lemma.

Lemma 2.3. Let p > 2 be an integer and ¢ > 1 be a number. Let G =
(V, E) be a graph with minimum degree § strictly more than By ed,
P

Let x1,29,... 2, be p vertices of G and Ny, Ns,... ,N, be subsets of
V' of cardinality at most c. Then there exist two vertices z; and z;
(I <i<j<n) such that

i) either x; and z; are adjacent;and, z; ¢ N; or z; & N;,

it) or x; and x; have a common neighbor v outside N; U N;.

Proof. As § > . + ¢ — 1, we have
p
Zd(;(:ci) >n + plc—1).

By hypothesis on the sets (NV;),

Z(dg(mi) +1—n;)>n.

?

This implies that the sets (z; U N(x;)) \ N;); are not disjoint. O

Theorem 2.4. Let k > 5 be an integer. Let G = (V,E) be a 2-
connected graph with minimum degree § at least 3_% then ¢, (G) <

T

k
g+g_ min( 6,k +1/4 )+ 1.

Proof. By Dirac’s Lemma there exists a cycle Cp of length at least 24.
If the length of Cy is at most k, we take Cy as a cycle of the covering
and N = V' \ V(Cy). If not we make the following construction.

k+1
Let C be a cycle of length £(C) at least k +1. Let p = | i3 | and

{c1,... ,¢,} be p vertices of C' mutually at distance at least 3 in the

cycle C. Since § > Pl o 1, then by lemma 2.3, there are 2 vertices

c; and ¢; who are neighbors or with a common neighbor. If ¢; and ¢;
have a common neighbor outside the cycle C' then we get two smaller
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cycles than C' with the sum of their size equal to |C| + 4. In the case
they are neighbors or have a common neighbor on the cycle C we get
two smaller cycles than C' with the sum of their size equal to |C| + 2.
In all these cases, we get by taking the bigger of the two cycles a cycle

and strictly less then ¢(C). Starting with the

cycle C and iterating, if necessary, this construction we get a cycle of

of length at least

k+1
length ¢, satisfying —;— < {; < k. In any case the first cycle covers
E+1
2
n +

1
Let N the set of uncovered vertices. If |N| > 1 then N contains

min( 26, ) vertices.

two vertices a and b at distance at most 2.

a)lf [a,b] is an edge, let us consider a cycle C' which contains the
edge [a,b]. If the length of C' is greater than k, we use the preceding
construction. In any case, we get a cycle of length at most k containing
[a, b].

b)If @ and b have a common neighbor ¢, as G is 2-connected there
exists a cycle C' which contains the path [a,¢,b]. If the length of C is
greater than k, we use the preceding construction by considering the

neighborhoods in G\ C. As §—12 3+ -

. 1, in any case, by lemma

2.3, we get a cycle of length at most & containing [a, ¢, b].
We can cover the vertices 2 by 2 until we get a set N of uncovered
n+1

-1
that we will cover 1 by 1.

vertices of cardinality |]\;| < Tl o 3
So we used at most g—k 5 min( 6,k + 1/4 )+ 1 cycles for a covering
of V. O

Theorem 2.5. Let k > 4 be an integer. Let G = (V,E) be a 2-

connected graph of order n with minimum degree ¢ strictly more than
n k-3 n

el < _
2-|— 5 thenck(G’)_(k_l]

Proof. It is known that the fact that § > g- implies that the graph

is hamiltonian. Let vy, vs,...,v,,v; be an hamiltonian cycle in G.
_ n k-3 ;
Since § > 5 + 5 by lemma 2.3, any two vertices v; and viy_o are

adjacent or have a common neighbour outside the interval [v;, Vigh—2)-
So we have a cycle C; composed of the interval [v;,... ,vipr—2] and
eventually one more vertex. This implies that the cycles Cyj—1) for

1 =1, cover V. U

7 from 0 to [knl
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2
Forn evenand 4 < k < ?n , the bound of the last theorem is almost
n—a

tight for the tripartite graph K, , with o = k—3 and r = . For

k odd we have ¢;(G) = [Z—?] 2o & il i

By using more difficult constructions, we will give smaller coverings
when the minimum degree is bigger then in the previous theorem. The
construction is based on the existence of an alternated cycle of length
between k and some fraction of k.

The first step is to show the existence of an N-alternated cycle of
size at least this fraction of & but maybe bigger then k in Corollary
2.7. The second step will be to break this cycle until we get a cycle of
size at most k in Theorem 2.8.

Lemma 2.6. Let p be an integer, ¢ > 3 be a positive number. If
41
5>

true.
(1) There exists an alternated cycle of length at least c.
(2) There exists a covering of N by at most p — 1 alternated paths.

+ ¢ — 3 then at least one of the two following assertions is

Proof. Let Py be an alternated path starting with a vertex a; of N of
maximum cardinality. If the (P;)i<j<; are already defined and if they
dont cover N, then let Pj[a;,b;] be an (N \ U;; P;)-alternated path of
maximum cardinality. By this process we construct a covering of N by
say r paths. The vertices a; are necessarily distinct by construction.

We may suppose that assertion (2) is false and we shall show that (1)
is true. So we have r > p. Let NN; be the set of ¢ — 2 vertices following
a; in P, if {(P;) > ¢—1 and N; be P; \ a; otherwise.

By the hypothesis on d and r and Lemma 2.3, there are two vertices
a; and a; which either are adjacent or have a common neighbor outside
N; U N;. If the vertices a; and a; are adjacent or if their common
neighbor is outside F; U P; it contradicts the maximality of P; or P;.
And if their common neighbor w is in P; U P; \ (N; U N;). Let us say it
is in P;. We have a cycle Pj[a;, u] U [u, ;] which is of length at least c.
We get assertion (1) and this completes the proof. O

Corollary 2.7. Let p > 2 be an integer and ¢ a positive number. If

IN| > (p—1)?c+p—1and § > L + ¢ — 3 then there exists an

alternated cycle of length at least c.
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Proof. From the previous lemma, we may suppose we have an N-

N
alternated path P of order at least | |1 > (p—1)c+1. In the path P

there exists p vertices, vy, vs, ... ,vp, of N mutually at distance at least
¢ — 1. We choose an orientation on P. For 1 <1 < p—1, let N; be
the set of ¢ — 2 vertices following the vertex v;. By the hypothesis on
the minimum degree, there are two of them v; and v; which are either
adjacent or have a common neighbor outside the two intervals N; and
Nj. This gives an N-alternated cycle of length at least c. O

Now we show that once we have a circuit of size at least k& we can
obtain a circuit of size at most k but bigger than a fraction of k.

k
Theorem 2.8. Let p and k be two integers such that 2 < p < 3
2
Let G = (V, E) be a graph with minimum degree at least - + §k’ and
p

2
N C V. If G has an N-alternated cycle of length at least §k then it has
an N -alternated cycle of length between gk and k.

Proof. We may suppose that we have an alternated cycle C' = {ay,... ,as}
of length £ at least k+1 and so £ > 8p+1 (1). We will construct from

2
the cycle C' a cycle of length between —k and £ — 1. For any vertex a;

of C' we define N; the interval of the vertices of C' at distance on C at

£ & 2
least 573 + 1 from a;. The cardinality of N; is between gk — 3 and

2
—k — 1. We may suppose that there is no vertex a; of C N N with a
neighbor in C'\ (N; U {a;_1, a;41}) otherwise we have the desired cycle

of length at least gk‘.

Let vy, ..., v, be p vertices of CNN and mutually at distance at least
3 (I > 4p). By lemma2.3, there exist v; and v; which are either adjacent
and v; ¢ Nj, or, have a common neighbor. By the previous remark they
can not be adjacent. So there exist two vertices ¢; and a4, (with > 3)
of C'N N with a common neighbor w in V'\ C. Let us choose a couple

such that x is minimum. We may suppose that 3 < ¢ < - otherwise we

have the desired cycle. Now, the interval [a;11, ¢;14p] contains at least
p vertices of C'N N and mutually at distance at least 3. By hypothesis
on the minimum degree, this interval contains two vertices a; and a;4.,
with a common neighbor v in V' \ C'. By the minimality of z and the



A

; l k
hypothesis on p, we have 3 <yand y <4p+1 < 5 + 1 < 2z; the
two segments [a;, a;y,] and [a;, @;1,] intersect in at least two vertices

: 2 S
otherwise, by (1), we have = <z+4y< 5 which is a contradiction. Let

.l : ; . ; 4

b =j—i,0, =i+z—jand 3 =j+y—i—2z. Wegetz =4, +4, > 3
£ k

andy = ly +43 > 3 and 0; +4; +13<4p < g It follows that £y > 5
The cycle Cy = (@i4ys Gityts - - ,ai,u,aiﬂ,aéﬂ_l,... i, Gty ) 08
as desired: I(C3) > b +4+({—-4p—1) > gk This completes the
proof. 0

Using similar proofs we can get the following more general results.

Theorem 2.9. Let t and k be two positive numbers such that t > 4
? k
Let G = (V, E) be a graph with minimum degree at least ,,E | 5 and

k
N C V. If G has an N-alternated cycle of length at least 3 then it has

k
an N-alternated cycle of length between 5 and k.

We remark that in our construction the condition ¢ > 4 is necessary.

16
Now we shall give for ¢ > 3 2 generalization of Theorem 2.8.

16
Theorem 2.10. Lelt and k be lwo positive numbers such thatt > 5

Let G = (V, E) be a graph with minimum degree at least %E—I—k(l — %)
and N C V. If G has an N-alternated cycle of length at least k(1 — fi‘,)

then it has an N-alternated cycle of length between k(1 — ﬁ) and k.

k
Theorem 2.11. Let p and k be two integers such that 2 < p < 3 Let

2k
G = (V, E) be a graph of order n > (p— 1)2? +(p—1) with minimum
n

degree § at least — + %k. Then the number ci(G) verifies:
P

loak
Ck(G) < i o3

3
gl g 2 (o 2 i) 4 1.

k
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Proof. Step 1 We call N the set of uncovered vertices. At the begin-
ning, from Corollary 2.7 and Theorem 2.8, we know that there exists

a cycle of G which covers at least 5 vertices of V. jFrom Corol-

lary 2.7 and Theorem 2.8, while |N| > (p — 1)2%'% + p — 1 there

exists a cycle in G which covers at least 3 vertices of N. Then at

3
most —- — 2(p — 1) — —(p — 2) cycles are necessary to cover the first
2k
n—(p— 1)2? — (p— 1) + 1 vertices.

Step 2 We have that 2(p — 1)> < |[N|—-(p—1) < (p — ])2%_ By

Corollary 2.7 and Theorem 2.8, we can find an N—alternatec% cycle
[N —(p—1) ; || — (p—1)
——— % So it covers at least ——————=
(p—1)? 2(p—1)?
vertices of N. Let denote by n'(¢) the number of uncovered vertices after

1 .
2(}3’__1)5- ;From the preceeding

of length at least

using ¢ cycles in step 2. Let a =1 —

remarks, we have that

n'(t+1) <an'(t) + 2 =1)

This inequality is equivalent to
W(t+1) = (p—1) < a(w'(t) - (p— 1),
It follows that
W(t) = (p— 1) < a(w/(o) — (p— 1).

We continue to apply Corollary 2.7 and Theorem 2.8 until we get
n'(ty) < 2(p —1)* + (p — 1). So tp is bounded by the smallest solution
of the inequation a’(r'(0) — (p — 1)) < 2(p — 1)*. We get that

log% log%
llog(a)| "~ |log(c)|

Step 3 After step 2 is over, we have |[N| < 2(p — 1)* + (p — 2)

+ 1.

to <[

uncovered vertices. As the minimum degree is bigger then — > p

we have that any vertex z is contained in a C3 or a Cy (by applying
Lemma 2.3 to N(z)). So we can recover the remaining 2(p—1)*+(p—2)
vertices 1 by 1.



So after the 3 steps we need at most 3% —2(p — 1)2 = %(P -2)+
log® 3n logs
+Ap- 12— : il
;log(l — 2(;v+1)2) k *log(l ey 2(;,11)2)
E)(P —2) + 1 cycles. O

Theorem 2.12. Let p and k be two integers such that 2 < p < g Let
G = (V,E) be a graph of order n such that 2(p —1)* <n —(p—1) <

(p — 1)2? with minimum degree § at least 2 + gk Then the number
b
cx(G) verifies:

n—(p—1)

(@) < D o 1P 40,

log

Proof. The proof is the same as the previous one, starting at step 2
and replacing n'(0) by n. O

If we take k = 8p, we deduce by using the majoration [log(1—=z)| > @
for a number 0 < ¢ < 1 from the preceeding theorem the following
result.

Corollary 2.13. Let k be an integer and let G = (V, E) be a graph

2
with minimum degree § at least ?n + §k — 2. Then

3 (k—8)?, k. k k(k—8)% k

S i bl -
(@) < T % log(3)+ 5 if n > 96 + 2 1 and
(k —8)? k., k . (k—8)? k k(k — 8)?
= =))+= if <n—(=—1) < ——,
(@) < E= L iogak o B < by <HE

By similar proofs, by using Theorem 2.9 and Theorem 2.10, we get
the following results:

Theorem 2.14. Let k be an integer and let G = (V, E) be o graph

with mintmum degree at least 4% + g Then the number c;(G) verifies:
in  (k—4)* k k , k(k—4)* &k
’ < — — 4 - — —_ - —
ck(G)_k—l- 3 Iogz+4 1 §fm S T +4 1

and
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(k_84) (1+zog(§))+§ i (k—84) Sn—(g—l)<@3_2—4)—-

We get the simpler bound:

in  (k—4)?* k k
@ Ml i
c(G) < 7 + S log2 +4

cr(G) <

o

Theorem 2.15. Let t and k be two numbers such that t > 13—6 and
(3t — 8)k(k —1)? . k—t

let G = (V,E) be a graph of order n > 353 - and
with minimum degree at least %E + k(1 - g) Then the number cx(G)
verifies:
2n 3t EogmlE k
WG S~ e — —2).
e )ﬁk3t—8+—log(1—2(£—1_!)~2)+(t )

By replacing the log by a bound, we get the simpler bound:

2n 3t (k—1t)* (3t—8)k k
(GF) < — ——2).
SllsTaatr » a G2

For example if we take k = 16p, we deduce directly from the pre-
ceeding theorem the following result.

log

Corollary 2.16. Let k be an integer and let G = (V, E) be a graph of

16 5k
order n > (—)* and with minimum degree § at least _kj + 7 —2

6
Then
12n  k? % k

G) < — —.
(@) < p-+ glod(p) + 35
For the complete bipartite graph Kj,_s and k even,we have ¢, =
n—24 _ 16n bk : .
2[ ? ]. By taking ¢ = 7 + 5~ 2 we obtain that ¢ is of order
15 2
" which is not too far from the 12n of the last Corollary.
8k 5k
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