GENERALIZED CONNECTED DOMINATION IN GRAPHS

KOUIDER M / VESTERGAARD P

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

11/2003

Rapport de Recherche N° 1377
Generalized connected domination in graphs

Mekkia Kouider1 and Preben Dahl Vestergaard2

1 Laboratoire de Recherche en Informatique, UMR 8623, Bât. 490, Université Paris Sud, 91405 Orsay, France.
E-mail: km@iri.fr
2 Dept. of Mathematics, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg Ø, Denmark.
E-mail: pdv@math.auc.dk

received 23 October 2003, revised 4 November 2003, accepted tomorrow.

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order $\gamma^c_k(G)$ of such a smallest set we relate to $\gamma(G)$, the order of a smallest connected dominating set. For a tree T we give bounds on $\gamma^c_k(T)$ in terms of minimum valency and diameter. For trees the inequality $\gamma^c_k(T) \leq n - k - 1$ is known to hold, we determine the class of trees, for which equality holds.

please also repeat in the submission form

Keywords: connected domination, domination, tree
Mathematics Subject Classification: 05C69

Contents

1 Introduction .. 1

2 General graphs 2
2.1 Other bounds on γ^c_k 3

3 Trees .. 4

1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by $\Delta(G) = \Delta$, the smallest by $\delta(G) = \delta$. P_n is a path on n vertices and C_n is a circuit on n vertices. In a graph a leaf or pendent vertex is a vertex of valency one and a stem is a vertex adjacent to at least one leaf. In K_2 a vertex is both a leaf and a stem. The set of leaves in T is denoted by $\Omega(T)$. By $K_{1,k}$ we denote a star with one central vertex joined to k other vertices. A subdivided star is a star with a subdivision vertex on each edge. A graph G is called a corona graph if each vertex of G is a leaf or a stem adjacent to exactly one leaf. For
a corona graph we write $G = H \circ K_1$, where H is the subgraph in G spanned by all stems in G. If H is a tree we obtain a corona tree $T = H \circ K_1$.

The eccentricity $e(x)$ of a vertex x is the distance to a vertex at maximum distance from it, $e(x) = \max\{d(x, y)\} y \in V(G)$. The diameter of G is $\text{diam}(G) = \max\{e(x)\} x \in V(G)$. Let $D \subseteq V(G)$, then $N(D)$ is the set of vertices which have a neighbour in D and $\overline{N}(D)$ is the set of vertices which are in D or have a neighbour in D. $N[D] = D \cup N(D)$. A set $D \subseteq V(G)$ dominates G if $V(G) \subseteq N[D]$, i.e., each vertex not in D is adjacent to a vertex in D. The domination number $\gamma(G)$ is the cardinality of a smallest dominating set in G.

Ore (1962) proved the inequality below and Payan and Xuong (1982), Fink et al. (1985) determined its extremal graphs.

Theorem (Ore, Payan, Xuong). Let G be a connected graph with n vertices, $n \geq 2$. Then $\gamma(G) \leq \frac{n}{2}$ and equality holds if and only if G is either a corona graph or a 4-circuit.

If a tree T has $\gamma(T) = \frac{n}{2}$, then n is even and this Theorem implies that T is a corona tree.

Definition For a positive integer k and a graph G with at most k components we define

$$\gamma_k^*(G) = \min \{|D|; D \subseteq V(G), D \text{ has at most } k \text{ components and } D \text{ dominates } G\}.$$

A set D attaining the minimum above is called a γ_k^*-set for G.

Example

$$\gamma_k^*(C_n) = \begin{cases} n - 2k & \text{for } n \geq 3k \\ \frac{n}{3} & \text{for } 1 \leq n \leq 3k \end{cases}$$

For $k = 1$ we have that γ_k^* is the usual connected domination number, $\gamma_k^*(G) = \gamma_c(G)$.

For G connected and $k \geq 1$, obviously, $\gamma(G) \leq \gamma_k^*(G) \leq \gamma_c(G)$.

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let $\varepsilon_F(G)$ be the maximum number of leaves among all spanning forests of G, let $\varepsilon_T(G)$ be the maximum number of leaves among all spanning trees of G. Then Niemen (1974) proved statement (i) below about γ and (Hedetniemi and Laskar (1984) generalized it to statement (ii) about γ_k^*

(i) $\gamma(G) = n - \varepsilon_F(G)$,

(ii) $\gamma_c(G) = n - \varepsilon_T(G)$.

We extend these results to γ_k^*.

Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let $\varepsilon_{F_k}(G)$ be the maximum number of leaves among all spanning forests of G with at most k trees. Then $\gamma_k^*(G) = n - \varepsilon_{F_k}(G)$.

Generalized connected domination in graphs

Proof: In any spanning forest F with at most k trees the leaves will be dominated by their stems, so $\gamma_c^k(G) \leq n - |\Omega(F)|$ and hence $\gamma_c^k(G) \leq n - \varepsilon_k(G)$.

Conversely, let $D = D_1 \cup D_2 \cup \ldots \cup D_t$, $1 \leq t \leq k$, be a γ_c^k-set for G. Choose for each D_i a spanning tree T_i, $1 \leq i \leq t$. For each vertex in $V(G) - D$ choose one edge to D. We have constructed a spanning forest F with t components and at least $n - |D| = n - \gamma_c^k(G)$ leaves. Therefore $\varepsilon_k(G) \geq n - \gamma_c^k(G)$ and Theorem 1 is proven. □

Theorem 2 Let k be a positive integer and G a connected graph. Then

$$\gamma_c^k(G) = \min \left\{ \gamma_c^k(F_k) \mid F_k \text{ is a spanning forest of } G \text{ with at most } k \text{ trees} \right\}$$

$$= \min \left\{ \gamma_c^k(T) \mid T \text{ is a spanning tree of } G \right\}$$

Proof: Let F_k be a spanning forest of G with at most k trees. Clearly $\gamma_c^k(G) \leq \gamma_c^k(F_k)$ since a set which dominates F_k also dominates in G. Conversely, we can in G find a spanning forest F_k with at most k components such that $\gamma_c^k(G) = \gamma_c^k(F_k)$: As was also done in the proofs of (i) and (ii) above we construct F_k from a γ_c^k-set $D = D_1 \cup D_2 \cup \ldots \cup D_t$, $1 \leq t \leq k$, by choosing a spanning tree T_i in each connected subgraph D_i and joining each vertex in $V(G) - D$ to precisely one vertex in D. Obviously, $\gamma_c^k(F_k) \leq |D| = \gamma_c^k(G)$. This proves the first equality. For the second equality we observe that the first minimum is chosen among a larger set, so that $\min \gamma_c^k(F_k) \leq \min \gamma_c^k(T)$, and secondly that any F_k by addition of edges renders a tree T with $\gamma_c^k(T) \leq \gamma_c^k(F_k)$. □

Hartnell and Vestergaard (2003a) proved the following result.

Theorem (Hartnell, Vestergaard). For $k \geq 1$ and G connected

$$\gamma_c(G) - 2(k - 1) \leq \gamma_c^k(G) \leq \gamma_c(G).$$

From this theorem we can easily derive the following classical result proven by Duchet and Meyniel (1982).

Corollary (Duchet, Meyniel) For any connected graph G, $\gamma_c(G) \leq 3\gamma(G) - 2$.

Proof: Let G be a connected graph with domination number $\gamma(G)$. Choose $k = \gamma(G)$, then $\gamma_c^k(G) = \gamma(G)$. Substituting into Hartnell’s and Vestergaard’s theorem above we obtain $\gamma_c(G) - 2(k - 1) \leq \gamma(G)$ and that proves the corollary. □

2.1 Other bounds on γ_c^k

Theorem 3 For a positive integer k and a connected graph G with maximum valency Δ we have

(A) $\gamma_c(G) \leq n - \Delta$ and for trees T equality holds if and only if T has at most one vertex of valency ≥ 3.

(B) $\gamma_c^k(G) \leq n - \frac{(D - 1)(\delta - 2)}{3} - 2k$ if G has diameter $D \geq 3k - 1$ and the minimum valency $\delta = \delta(G)$ is at least 3.

(C) If G is a connected graph with two vertices of valency Δ at distance d apart, $d \geq 3$, then $\gamma_c^k(G) \leq$
\(n - 2(\Delta - 1) - 2 \min(k - 1, \frac{d - 2}{3}) \).

(D) Let \(x \in V(G) \) have valency \(d(x) \) and eccentricity \(e(x) \). Then \(\gamma'(G) \leq n - d(x) - 2 \min(k - 1, \frac{e(x) - 2}{3}) \).

Proof: (A). Let \(T \) be a spanning tree of \(G \) with \(\Delta(T) = \Delta(G) = \Delta \). \(T \) has at least \(\Delta \) leaves, and hence \(\gamma_c(G) \leq \gamma_c(T) \leq n - \Delta \).

If \(T \) has two vertices of valency \(\geq 3 \), the number of leaves in \(T \) will be larger than \(\Delta \), and we get strict inequality in (A). Clearly, a tree \(T \) with exactly one vertex of valency \(\Delta \geq 3 \) has equality in (A) and for \(\Delta = 2 \), \(\gamma_c(P_3) = n - 2 \).

(B). Let \(P = v_1 v_2 v_3 \ldots v_{3k+u} \), \(k \leq t, 0 \leq u \leq 2 \), be a diagonal path in \(G \). \(P \) has length \(D = 3t + u - 1 \). For \(i = 1, \ldots, t \) let \(v_{3i-1} \) have neighbours \(v_{3i-2}, v_{3i} \) and \(a_{ij}, j = 1, \ldots, j \geq \delta - 2 \geq 1 \). In \(G - \{ v_{3i+1} \mid 1 \leq i \leq k - 1 \} \) consider the \(k - 1 \) disjoint stars with center \(v_{3i-1} \) and neighbours \(N(v_{3i-1}), 1 \leq i \leq k - 1 \), and the tree consisting of the path \(v_{3k-2} v_{3k-1} v_{3k} \ldots v_{3k+u} \) and leaves \(v_{3i-1} a_{3j-1}, j = 1, \ldots \) from vertices \(v_{3i-1}, k \leq i \leq t \).

Extend this forest of \(k \) trees to a spanning forest \(F \) with \(k \) trees in \(G - \{ v_{3i+1} \mid 1 \leq i \leq k - 1 \} \). The number of leaves in \(F \) is at least \(t(\delta - 2) + 2k \) and hence \(\gamma'_c(G) \leq n - t(\delta - 2) - 2k \). From \(t = \frac{D + 1 - u}{3} \)

\[\frac{D - 1}{3} \leq n - \frac{(D - 1)(\delta - 2)}{3} - 2k. \]

(C). Let \(d(v_1) = d(v_2) = \Delta \) and let \(P = v_1 v_2 \ldots v_s \) be a shortest \(v_1 v_2 \)-path, \(s = 3t + 1 + u, t \geq 1, 0 \leq u \leq 2 \). \(t \geq k - 1 \). In \(G - \{ v_{3i-1} v_{3i} \mid 1 \leq i \leq k - 2 \} \) we extend the \(k \) trees below to a spanning forest \(F \) of \(G \),

1. The star consisting of \(v_1 \) joined to all its neighbours,
2. the \(k - 2 \) paths of length two \(v_{3i+1} v_{3i+2}, 1 \leq i \leq k - 2 \),
3. the path \(v_{3k-3} v_{3k-2} \ldots v_s \) together with all \(\Delta - 1 \) neighbours of \(v_s \) outside of \(P \).

\(F \) will have at least \(2(\Delta - 1) + 2(k - 1) \) leaves.

\[t \leq k - 2; s = 3t + 1 + u, d = d(v_1, v_2) = s - 1 = 3t + u, t - 1 = \frac{d - u}{3} - 1 \geq \frac{d - 2}{3} - 1. \] As before, we can find a spanning forest \(F \) whose number of leaves is at least \(2\Delta + 2(t - 1) \geq 2(\Delta - 1) + \frac{2d - 2}{3} \) and consequently \(\gamma'_c(G) \leq n - 2(\Delta - 1) - 2 \frac{d - 2}{3} \). The proof of (D) is similar. \(\square \)

3 Trees

For trees Hartnell and Vestergaard (2003a) found

Theorem (Hartnell, Vestergaard). Let \(k \) be a positive integer and \(T \) a tree with \(|V(T)| = n, n \geq 2k + 1 \). Then \(\gamma'_c(T) \leq n - k - 1 \).

This inequality is best possible. For \(k = 1 \) the extremal trees are paths \(P_n \) and for \(k \geq 2 \) extremal trees will be described in the following Theorem 4.

A tree is of type \(A \) if \(T \) contains a vertex \(x_0 \) such that \(T - x_0 \) is a forest of trees \(T_1, T_2, \ldots, T_\alpha, \alpha \geq 1 \), such that each tree \(T_i \) is a corona tree and \(x_0 \) is joined to a stem in each of the trees \(T_i, 1 \leq i \leq \alpha \). We note that a subdivision of a star is a tree of type \(A \).
A tree is of type B if \(T \) contains a path \(uvw \) such that \(T - \{ u, v, w \} \) is a forest of corona trees \(T_1, T_2, \ldots, T_s, T_{s+1}, \ldots, T_0, s \geq 2, 1 \leq s < \alpha \) and \(u \) is joined to a stem in each of the trees \(T_1, T_2, \ldots, T_s \), while \(w \) is joined to a stem in each of the trees \(T_{s+1}, \ldots, T_0 \).

The theorem below was proven by Randerath and Volkmann (1998) and Baogen et al. (2000).

Theorem (Randerath, Volkmann, Baogen, Cockayne, et al.). If \(T \) is a tree with \(n \) vertices, \(n \) odd, and \(\gamma(T) = \left\lfloor \frac{n}{2} \right\rfloor \) then \(T \) is a tree of type A or B.

We shall now determine the trees extremal for Hartnell, Vestergaard’s Theorem.

Theorem 4. Let \(k \geq 2 \) be a positive integer and \(T \) a tree with \(n \) vertices, \(n \geq 2k + 1 \). Then \(\gamma^c(T) = n - k - 1 \) if and only if one of cases (i)-(iii) below occur.

(i) \(k = \frac{n - 1}{2}, \gamma^c(T) = \gamma(T) = \frac{n - 1}{2} \) and \(T \) is of type A or B.

(ii) \(k = \frac{n - 2}{2}, \gamma^c(T) = \gamma(T) = \frac{n}{2} \) and \(T \) is a corona tree.

(iii) \(k = \frac{n - 3}{2}, \gamma^c(T) = \frac{n + 1}{2}, \gamma(T) = \frac{n - 1}{2} \) and \(T \) is a star \(K_{1,k+1} \) with a subdivision vertex on each edge.

Proof: Let \(k \geq 2 \) and a tree \(T \) of order \(n \) be given such that \(n \geq 2k + 1 \) and \(\gamma^c(T) = n - k - 1 \). We shall prove that one of cases (i)-(iii) must occur.

We note that \(\gamma(T) \leq k \) as well as \(\gamma^c(T) \leq k \) implies \(\gamma^c(T) = \gamma(T) \). We also note that for \(k \geq 1 \) and a tree \(T \) of order \(n \geq 2 \) we either have \(n \geq 2k + 1 \) and then \(\gamma^c(T) \leq \gamma(T) = n - k - 1 \) by Hartnell, Vestergaard’s Theorem or \(2 \leq n \leq 2k \) and \(\gamma^c(T) = \gamma(T) \) by Ore, Payan, Xuong’s Theorem.

If \(n = 2k + 1 \) we have \(\gamma^c(T) = n - k - 1 = k \). By the remark above \(\gamma(T) = k = \frac{n}{2} \) and from the Theorem by Randerath et al. we see that \(T \) is a tree of type A or B, so (i) occurs. If \(n = 2k + 2 \) we have \(\gamma^c(T) = n - k - 1 = k + 1 \) and \(\gamma(T) = \gamma^c(T) = \frac{n}{2} \), so \(T \) by Ore, Payan, Xuong’s Theorem is a corona tree and (ii) occurs. We may now assume \(n \geq 2 + 3 \).

Let \(v_1, v_2, \ldots, v_n \) be a longest path in \(T \). Since \(\gamma^c(T) = n - k - 1 \geq k + 2 \geq 4 \), \(T \) is neither a star nor a bistar, so \(\alpha \geq 5 \). We have \(d_T(v_2) = 2 \). Otherwise \(d_T(v_2) \geq 3 \) and we could from \(T \) delete three leaves adjacent to \(v_2 \) if \(d_T(v_2) \geq 4 \) and in case \(d_T(v_2) = 3 \) we could delete \(v_2 \) and two leaves adjacent to it obtaining in both cases a tree \(T' \) of order \(n - 3 \geq 2(k - 1) + 1 \) which by Harthnell, Vestergaard’s Theorem has \(\gamma^c(T') \leq (n - 3) - (k - 1) - 1 \leq n - k - 3 \). Adding \(v_2 \) to a \(\gamma^c(T') \)-set we would obtain \(\gamma^c(T) \leq n - k - 2, \) a contradiction so \(d_T(v_2) = 2 \). No leaf is adjacent to \(v_3 \) because, if \(c \) were a leaf adjacent to \(v_3 \) let \(d \) denote either another leaf adjacent to \(v_3 \) or \(d = v_3 \) if no other leaf exists. Consider \(T' = T - \{ v_1, v_2, c, d \} \). \(T' \) has order \(n - 4 \geq 2(k - 1) + 1 \) and by Harthnell, Vestergaard’s Theorem \(\gamma^c(T') \leq n - k - 2, \) a contradiction, so \(v_3 \) is not a stem. On the other hand \(d_T(v_3) \geq 3 \), for assume \(d_T(v_3) = 2 \), then \(T' = T - \{ v_1, v_2, v_3 \} \) has \(\gamma^c(T') \leq n - k - 3 \) and addition of \(v_2 \) gives \(\gamma^c(T) \leq n - k - 2, \) a contradiction. Assume therefore that \(v_2 \) besides \(v_3 \) is adjacent to \(a_1, a_2, \ldots, a_t \), \(t \geq 1 \), where each \(a_i \) has valency two and is adjacent to the leaf \(b_1, 1 \leq i \leq t \). We have \(k - 1 \geq 1 \) because \(V(T) - \{ v_1, b_1, b_2, \ldots, b_t, v_3 \} \) is a connected subgraph with \(n - t - 2 \) vertices which dominate \(T \), so that \(n - k - 1 = \gamma^c(T) \leq n - t - 2 \) giving \(k - t \geq 1 \). Consider the tree \(T' = T - \{ v_1, v_3, a_1, \ldots, a_t, b_1, b_2, \ldots, b_t, v_3 \} \) of order \(n - 2t - 3 \). If \(n - 2t - 3 \geq 2(k - t) + 1 \) we obtain by Harthnell, Vestergaard’s Theorem that \(\gamma^c(T') \leq (n - 2t - 3) - (k - t) - 1 \leq n - k - 4 \), and adding \(t + 2 \) vertices \(\{ v_2, v_3, a_1, a_2, \ldots, a_t \} \), forming one component, to a \(\gamma^c(T') \)-set we obtain \(\gamma^c(T) \leq n - k - 2, \)
a contradiction. So we have
\[n - 2t - 3 \leq 2(k-t) \]
and by an earlier remark \(\gamma_{k-1}(T') \leq \frac{n-2t-3}{2} \). That implies
\[n - k - 1 = \gamma_k(T) \leq \frac{n-2t-3}{2} + t + 2 = \frac{n+1}{2} \] or \(n \leq 2k + 3 \). Together with the assumption \(n \geq 2k + 3 \) we get \(n = 2k + 3 \). Then \(\gamma_k(T) = k + 2 \) and we have \(\gamma(T) \leq k + 1 \) by Ore, Payan, Xuong's change Theorem. Thus \(\gamma(T) = k + 1 \) and any \(\gamma(T) \)-set consists of \(k + 1 \) isolated vertices. As \(\gamma(T) = \left\lfloor \frac{n}{k} \right\rfloor \) the tree \(T \) is of type A or B. But \(T \) cannot be of type B, for assume \(T \) is of type B. Then \(T \) consists of a \(3 \)-path \(uuv \), with each of its ends joined to stems of corona trees, and since we have just seen that \(v_1, v_{k-2} \) are neither stems nor leaves, they must play the role of \(u, w \), so \(\alpha = 7 \) and \(T \) consists of two subdivided stars centered at \(u = v_3 \) and \(w = v_5 \) and a vertex \(v = v_4 \) joined to \(u \) and \(w \). This graph \(T \) has a \(\gamma \)-set with two adjacent vertices \(v_2 \) and \(v_3 \), a contradiction, so \(T \) is of type A. Using, in analogy to \(v_2, v_3 \), that \(d_{T}(v_{k-1}) = 2 \) and that \(v_{k-2} \) is not a stem, we get that \(\alpha = 5 \) and \(T \) is a subdivided star so that (iii) occurs.

Conversely, it is easy to see that if (i), (ii) or (iii) holds then \(\gamma_k(T) = \gamma(T) = n - k + 1 \). This proves Theorem 4.

\[\Box \]

References

B. Hartnell and P. Vestergaard. Dominating sets with at most \(k \) components. Ars Combinatoria, 2003a. Accepted for publication.

Generalized connected domination in graphs

<table>
<thead>
<tr>
<th>N°</th>
<th>Nom</th>
<th>Titre</th>
<th>Nbre de pages</th>
<th>Date parution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1345</td>
<td>FLANDRIN E</td>
<td>A SUFFICIENT CONDITION FOR PANCYCLABILITY OF GRAPHS</td>
<td>16 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1346</td>
<td>BARTH D</td>
<td>SOME EULERIAN PARAMETERS ABOUT PERFORMANCES OF A CONVERGENCE ROUTING IN A 2D-MESH NETWORK</td>
<td>30 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1347</td>
<td>FLANDRIN E</td>
<td>A CHVATAL-ERDOS TYPE CONDITION FOR PANCYCLABILITY</td>
<td>12 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1348</td>
<td>AMAR D</td>
<td>BIPARTITE GRAPHS WITH EVERY MATCHING IN A CYCLE</td>
<td>-26 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1349</td>
<td>FRAIGNIAUD P</td>
<td>THE CONTENT-ADDRESSABLE NETWORK D2B</td>
<td>26 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1350</td>
<td>FAIK T</td>
<td>SOME b-CONTINUOUS CLASSES OF GRAPH</td>
<td>14 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1351</td>
<td>FAVARON O</td>
<td>TOTAL DOMINATION IN CLAW-FREE GRAPHS WITH MINIMUM DEGREE TWO</td>
<td>14 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1352</td>
<td>HENNING M A</td>
<td>WEAK CYCLE PARTITION INVOLVING DEGREE SUM CONDITIONS</td>
<td>14 PAGES</td>
<td>02/2003</td>
</tr>
<tr>
<td>1353</td>
<td>JOHNEN C</td>
<td>ROUTE PRESERVING STABILIZATION</td>
<td>28 PAGES</td>
<td>03/2003</td>
</tr>
<tr>
<td>1354</td>
<td>PETITJEAN E</td>
<td>DESIGNING TIMED TEST CASES FROM REGION GRAPHS</td>
<td>14 PAGES</td>
<td>03/2003</td>
</tr>
<tr>
<td>1355</td>
<td>BERTHOMÉ P</td>
<td>GENERALIZED PARAMETRIC MULTI-TERTINAL FLOW PROBLEM</td>
<td>18 PAGES</td>
<td>03/2003</td>
</tr>
<tr>
<td>1356</td>
<td>FAVARON O</td>
<td>PAIRED DOMINATION IN CLAW-FREE CUBIC GRAPHS</td>
<td>16 PAGES</td>
<td>03/2003</td>
</tr>
<tr>
<td>1357</td>
<td>HENNING M A</td>
<td>AUTO-STABILISATION ET PROTOCOLES RESEAU</td>
<td>26 PAGES</td>
<td>03/2003</td>
</tr>
<tr>
<td>1358</td>
<td>FRANOVA M</td>
<td>LA "FOLIE" DE BRUNELLESCHI ET LA CONCEPTION DES SYSTEMES COMPLEXES</td>
<td>26 PAGES</td>
<td>04/2003</td>
</tr>
<tr>
<td>1359</td>
<td>HERAULT T</td>
<td>APPROXIMATE PROBABILISTIC MODEL CHECKING</td>
<td>18 PAGES</td>
<td>01/2003</td>
</tr>
<tr>
<td>1360</td>
<td>HU Z</td>
<td>A NOTE ON ORE CONDITION AND CYCLE STRUCTURE</td>
<td>10 PAGES</td>
<td>04/2003</td>
</tr>
<tr>
<td>1361</td>
<td>DELAET S</td>
<td>SELF-STABILIZATION WITH r-OPERATORS IN UNRELIABLE DIRECTED NETWORKS</td>
<td>24 PAGES</td>
<td>04/2003</td>
</tr>
<tr>
<td>1362</td>
<td>YAO J Y</td>
<td>RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES</td>
<td>72 PAGES</td>
<td>07/2003</td>
</tr>
<tr>
<td>1363</td>
<td>ROUSSEL N</td>
<td>MIRRORSPACE : USING PROXIMITY AS AN INTERFACE TO VIDEO-MEDIATED COMMUNICATION</td>
<td>10 PAGES</td>
<td>07/2003</td>
</tr>
<tr>
<td>N°</td>
<td>Nom</td>
<td>Titre</td>
<td>Nbre de pages</td>
<td>Date parution</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1364</td>
<td>GOURAUD S D</td>
<td>GENERATION DE TESTS A L'AIDE D'OUTILS COMBINATOIRES : PREMIERS RESULTATS EXPERIMENTAUX</td>
<td>24 PAGES</td>
<td>07/2003</td>
</tr>
<tr>
<td>1365</td>
<td>BADIS H, AL AGHA K</td>
<td>DISTRIBUTED ALGORITHMS FOR SINGLE AND MULTIPLE-METRIC LINK STATE QoS ROUTING</td>
<td>22 PAGES</td>
<td>07/2003</td>
</tr>
<tr>
<td>1366</td>
<td>FILLIATRE J C</td>
<td>WHY : A MULTI-LANGUAGE MULTI-PROVER VERIFICATION TOOL</td>
<td>20 PAGES</td>
<td>09/2003</td>
</tr>
<tr>
<td>1367</td>
<td>FILLIATRE J C</td>
<td>A THEORY OF MONADS PARAMETERIZED BY EFFECTS</td>
<td>18 PAGES</td>
<td>09/2003</td>
</tr>
<tr>
<td>1368</td>
<td>FILLIATRE J C</td>
<td>HASH CONSING IN AN ML FRAMEWORK</td>
<td>14 PAGES</td>
<td>09/2003</td>
</tr>
<tr>
<td>1369</td>
<td>FILLIATRE J C</td>
<td>DESIGN OF A PROOF ASSISTANT : COQ VERSION 7</td>
<td>16 PAGES</td>
<td>09/2003</td>
</tr>
<tr>
<td>1370</td>
<td>HERMAN T TIXEUIL S</td>
<td>A DISTRIBUTED TDMA SLOT ASSIGNMENT ALGORITHM FOR WIRELESS SENSOR NETWORKS</td>
<td>32 PAGES</td>
<td>09/2003</td>
</tr>
<tr>
<td>1371</td>
<td>RIGAUX P SPIRATOS N</td>
<td>GENERATION AND SYNDICATION OF LEARNING OBJECT METADATA</td>
<td>32 PAGES</td>
<td>10/2003</td>
</tr>
<tr>
<td>1373</td>
<td>BLANCH R GUIARD Y BEAUDOUIN-LAFON M</td>
<td>SEMANTIC POINTING : IMPROVING TARGET ACQUISITION WITH CONTROL-DISPLAY RATIO ADAPTATION</td>
<td>12 PAGES</td>
<td>10/2003</td>
</tr>
<tr>
<td>1374</td>
<td>FORGE D KOUIDER M</td>
<td>COVERING OF THE VERTICES OF A GRAPH BY SMALL CYCLES</td>
<td>16 PAGES</td>
<td>10/2003</td>
</tr>
</tbody>
</table>