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Abstract

In the area of software testing, numerous methods have been proposed and used for
selecting finite test sets and automating this selection. Among these methods some are
deterministic and some are statistical. In the recent years, the general problem of studying
and simulating random processes has particularly benefitted from progresses in the area
of random generation of combinatorial structures. We explore the idea of using such
concepts and tools for statistical software testing. We describe a generic method for using
these tools as soon as there is a graphical description of the behaviour of the system
under test. Uniform generation is used for drawing paths from the set of execution paths
or traces of the system under test, or, more efficiently, among some subsets satisfying
some coverage conditions. The paper presents a general method and in the last section,

some experimental results on applying it to structural statistical testing.

1 Introduction

In the area of software testing, numerous methods have been proposed and used for
selecting finite test sets and automating this selection. Among these methods some are
deterministic and some are probabilistic. Depending of the authors, methods of this last
class are called statistical testing or random testing.

In the recent years, the general problem of studying and simulating random processes
has particularly benefitted from progresses in the area of random generation of combina-

torial structures. The seminal works of Wilf and Nijenhuis in the late 70’s [28, 23] have



led to efficient algorithms for generating uniformly at random a variety of combinatorial
structures. In 1994, Flajolet, Zimmermann and Van Cutsem [11] have widely general-
ized and systematized the approach. Briefly, their approach is based on a non-ambiguous
recursive decomposition of the combinatorial structures to be generated. Their work con-
stitutes the basis of powerful tools for uniform random generation of complex entities,
as graphs, trees, words, paths... In the present paper, we explore the idea of using such
concepts and tools for random software testing.

Actually, there are several ways to use uniform generation in the area of testing,.

A natural idea is to uniformly draw data from the input domain. This approach,
generally called random testing, was studied a long time ago for numerical data [9, 10],
and turned out to have an uneven detection power, becoming unsatisfactory when applied
to realistic complex programs [3, 26].

In this paper, we follow another idea: We describe a generic method for using these
tools as soon as there is a graphical description of the behaviour of the system under
test. It may be the control graph of the program, or some specification, either directly
graphical (Statecharts, Petri nets) or indirectly via some semantics in terms of transition
systems, automata, state machines, Kripke structures, etc. Such behavioural graphs can
be described as combinatorial structures. Therefore, uniform generation can be used for
drawing paths from the set of execution paths or traces of the system under test, or, more
efficiently, among some subsets satisfying some coverage conditions.

The paper is organised as follows: Section 2 presents our general method to count and
uniformly draw paths in a graph, based on some translation into a combinatorial structure
specification; Section 3 recalls some basic notions of statistical testing, coverage criteria
and test quality; In Section 4 we present a path generation scheme guided by test quality,
and in Section 5 we discuss the issue of deriving test inputs, once a set of paths has been
generated. In the two last sections, we recall some experimental results on applying our

method to structural statistical testing and we sketch some perspectives.

2 Combinatorial preliminaries

We present here some combinatorial concepts and methods which will be used in the
sequel of the paper. Let us consider a connected directed graph GG where vertices, as

well as edges, are labelled in such a way that any two distinct vertices (resp edges) have



Figure 1 : A graph with starting and ending vertices

distinct labels. Furthermore, there exist two vertices v, (starting vertex) and v, (ending
vertex) such that, for any vertex v, there exists a path from v, to v and a path from v to
ve in G. Figure 1 presents such a graph, where vertices are labelled with numbers from 0
to 7 and edges are labelled with letters from ’a’ to ’k’; vertices 0 and 7 are the starting
and ending vertices respectively. If n is a positive integer, P, (resp. P<n) denotes the set
of paths of length n (resp. whose length is < n) in G from v, to v, and P< denotes the

whole (possibly infinite) set of paths from v to v,.

2.1 Uniform random generation of paths in a graph

Our aim is, given an integer n, to generate uniformly at random (u.a.r.) one or several
paths of length < 7 from v, to v.. Uniformly means that all paths in P<, have the same
probability to be generated. At first, let us focus on a slightly different problem: the
generation of paths of length n exactly. We will see further that a small change in the
graph allows to generate paths of length < n.

The principle of the generation process is simple: Starting from vertex vy, draw a path
step by step. At each step, the process consists in choosing a successor of the current
vertex and going to it. The problem is to proceed in such a way that only (and all) paths
of length n can be generated, and that they are equiprobably distributed. This is done
by choosing successors with suitable probabilities. Given any vertex v, let f,,(v) denote
the number of paths of length m which connect v to the end vertex v.. Suppose that, at
any step of the generation, we are on vertex v which has k successors denoted vy, vg, ...,
vg. In addition, suppose that m > 0 edges remain to be crossed in order to get a path of
length n. Then the condition for uniformity is that the probability of choosing vertex v;

(1 <1i<k)equals fi,—1(vi)/ fm(v). In other words, the probability to go to any successor



of v must be proportional to the number of paths of suitable length from this successor
to v,.
So we need to compute the numbers f;(v) for any 0 < ¢ < n and any vertex v of the

graph. This can be done by using the following recurrence rules:

folv) = 1 if v =,

= 0 otherwise

filv) = Y, fici() fori>0

where v = v’ means that there exists an edge from v to v'. Table 1 presents the recurrence

rules which correspond to the graph of Figure 1.

fo(0) = £1(0) = f2(0) = f3(0) = f4(0) = f5(0) = f5(0) =0

f2(0) =1

folk) = filk—1) + fo(k - 1) (k> 0)
filk) = fa(k-1) (k> 0)
fa(k) = fs(k—1) (k> 0)
fa(k) = fa(k—1) + fs(k—1) (k > 0)
fa(k) = fe(k—1) (k> 0)
fs(k) = felk—1) + fr(k—1) (k> 0)
fo(k) = filk—=1) + fr(k—-1) (k> 0)
folk) = (k> 0)

Table 1 : Recurrences for the f;(k).

Now the generation scheme is as follows:
e Preprocessing stage: Compute a table of the f;(v)’s for all 0 < i < n and all vertices.
o Generation stage: Draw the path according to the scheme seen above.

Note that the preprocessing stage must be done only once, whatever the number of paths
to be generated. Easy computations show that the memory space requirement is n x |G|
integer numbers, where |G| stands for the number of vertices in the graph. The number
of arithmetic operations needed for the preprocessing stage, as well as for the generation

stage, is linear in n.

Now we address the problem of generating paths of length < n instead of exactly n.
The only change is the following: Add to the graph a new vertex v, which becomes the
new start vertex, with an edge from v} to vs and a loop edge from v} to itself. Each path

of length n + 1 from v} to v. in this new graph crosses &k times the loop edge for some



k such that 0 < k < n and once the one from v} to v,. With this path we obviously
associate a path of length n — & in the previous graph. It is straightforward to verify that

any path of length <n can be generated in such a way, and the generation is uniform.

Note that the above developments are a special case of a general method of generation
of combinatorial structures, which has been first adressed by Wilf [28] and then generalized
and systematized by Flajolet, Zimmermann and Van Cutsem [11]. More precisely, the
problem of generating paths of a given length in G is equivalent to the one of uniform
random generation of words of so-called regular languages, which has first been discussed
in [15]. Indeed, a regular language is defined by a particular labelled graph called finite
state automaton, and any word of the language corresponds to a path in the automaton.
We show in Table 2 the set of words which correspond to the paths of length < 10 of the

graph of Figure 1.

length | words
3 bdk
4 acfk, bdkj
5 acegj, acfhj
7 bdhicfk
8 acegicfk, acthicfk, bdhicegj, bdhicthj
9 acegicegj, acegicfhj, acthicegj, acthicfhj

Table 2 : The 14 paths of length < 10 from vertex vs = 0 to vertex v, = 7.

In our implementation, the generation of paths is programmed in MuPAD, using the
CS package. MuPAD [24] is a formal and algebraic calculus tool, developed at the Univer-
sity of Paderborn. CS [6, 7], is a package devoted to counting and randomly generating
combinatorial structures, based on the general notion of “decomposable structures” de-
fined in [11]. CS is now part of the MuPAD-Combinat package[16] which is freely available

at the following address: http://mupad-combinat.sourceforge.net/.

2.2 Constraints on paths and graphs transformations

As we will see in Section 4, our method of statistical testing involves counting and random
generation of paths subject to additional constraints. In this subsection, we show how to
change the graph in order to take into account such constraints.

Let us focus first on a rather simple constraint: we aim to construct, given a labelled



Figure 2 : Graph which contains only the paths of the graph of Figure 2 which cross edge labelled ‘e’.

connected graph G and an edge label ¢, a graph H whose set of paths is equal to the
set of paths of G which cross edge labelled £. This can be done by using the following
procedure:
1. Create a copy G' of graph G, in which the edges are labelled exactly as the edges of
G, and in which any vertice label v in G becomes v’ in G'.
2. Suppose that the edge labelled £ joins vertex u to vertex v in G. Then delete this
edge and replace it with a new edge labelled ¢ between vertex u (in ) and vertex
v (in G').
3. set v, as the ending vertex, instead of v, (but vs remains the start vertex.)
4. Delete all the vertices (and their adjacent edges) to which no path from v, exists.

5. Delete all the vertices (and their adjacent edges) from which no path to v, exists.

This concludes the construction of H. Figure 2 shows the result of the procedure, given
the graph of Figure 1 and the edge labelled ’e’. Note that steps 4 and 5 are not mandatory:
they are used only to "clean" the final graph by deleting useless elements.

Like in previous subsection, this process can be stated in terms of operations on regular
languages: the graph H may be seen as a finite automaton of the regular language which

is the intersection of the language of G and the (regular) language of words which contain



at least once the letter £. This approach can be generalized in order to perform more
complex transformations of graph G as for example, constructing a graph which contains
the paths which cross exactly k times a given edge, or which cross two or more given edges,
or which take k times a given cycle in the graph. Roughly, it suffices to be able to express
the desired constraint in terms of a regular language, i.e. to design a regular expression or
a finite automaton which recognizes the whole set of words which satisfy the constraint.
Then a standard algorithm for intersecting regular languages (see e.g. [17]) gives H. In
our special case, this general method consists exactly in the procedure described above.

Very similar procedures apply if we are given vertices instead of edges.

3 Coverage criteria and test quality

The notion of test quality for statistical testing methods has been defined first by Thévenod-
Fosse [25]. We slightly reformulate it for our context, but the notion remains the same.

Let D be some description of a system under test. D may be a specification or a
program, depending on the kind of test we are interested in (functional or structural). We
assume that D is based on a graph, (or, more generally, on some kind of combinatorial
structure.) On the basis of this graph, it is possible to define coverage criteria: all-
vertices, all-edges, all-paths-of a certain-kind, etc. More precisely, a coverage criterion C
characterises for a given description D a set of elements Ec (D) of the underlying graph
(noted E in the sequel when C and D are obvious). In the case of deterministic testing,
the criterion is satisfied if every element of the set is exercised by at least one test.

In the case of statistical testing, the satisfaction of a coverage criteria C' by a testing
method for a description D is characterised by the minimal probability gc n (D) of covering
any element of E¢(D) when drawing N tests. In [25], go,n (D) is called the test quality
of the method with respect to C.

The test quality go (D) can be easily stated if g¢,1(D) is known. Indeed, one gets
qgo,n(D) = 1— (1 — g1 (D)™, since when drawing N tests, the probability of reaching
an element is one minus the probability of not reaching it NV times.

Let us come back to the example of Section 2, where the set of all paths of Figure 1
has been expressed as a specification of some combinatorial structure, and the CS system
is used for uniformly drawing among paths of length < n. Let us note P<, the set of such

paths as in Section 2. Considering the coverage criterion “all paths of length < n”, noted



below AP < n, we get the following test quality:

1 N
AP<aN =1—(1-
qaP<n, ( IPgnl)
In the example, choosing n = 10 allows the coverage of all elementary paths. Since there
are 14 paths of length less or equal to 10 (see Table 2) we have:
JAP<10,N = |14|
Table 3 gives the number of tests required for four values of test quality, for the

criterion “all paths of length < 10"

g | 0.9]0.99 | 0.999 | 0.9999
N|[32] 63 94 | 125

Table 3 : Number of tests N required for a test quality ¢

The assessment of test quality is more complicated in general. Let us consider more
practicable coverage criteria, such as “all-vertices” or “all-edges”, and some given statistical
testing method. The elements to be covered generally have different probabilities to be
reached by a test. Some of them are covered by all the tests, for instance the initial and
terminal vertices v, and v, mentioned in Section 2. Some of them may have a very weak
probability, due to the structure of the behavioural graph or to some specificity of the
testing method. For instance, in our example edges b and d appear in 5 paths of length
< 10 only. Edges a and ¢ appear in 9 such paths. It means that drawing uniformly from
P<io leads to a probability of f{z to reach edge b, and % to reach edge a.

Let E¢(D) = {e1,ea,...,em } and for any ¢ € (1..m), p; the probability for the element
e; to be exercised during the execution of a test generated by the considered statistical

testing method. Then
ge,N(D) =1 = (1 = pmin)", where ppin = min{p;li € (1..m)} (1)
Consequently, the number NV of tests required to reach a given quality go(D) is

log(1 — g (D))
N> —— >
[Og(l 7pmin)



By definition of the test quality, pmin is just go,1(D) . Thus, from the formula above
one immediately deduces that for any given D, for any given N, maximising the quality

of a statistical testing method with respect to a coverage criteria C' reduces to maximising

QC,I(D)a i e Pmin-

4 Generation of paths guided by the QoT

4.1 General scheme.

Now we describe a methodology in order to maximize the quality of test for any given
coverage criterion C. As a preliminary remark, note that the set of elements Ec(D) must
be finite, otherwise the quality of test would be zero. This implies, in particular, that the
coverage criterion “all paths” is irrelevant as soon as there is a cycle in the description, like
in our example (figure 1). Thus, this criterion has to be bounded by additional conditions,
for example “all paths of length < n”, “all paths of length between given n; and ny”, or “all
paths which take at most m times each cycle in the graph”. For the sake of simplicity, we
consider in the following that paths are generated within P<y, the set of paths of length
< n that go from v, to ve.

Now, we are given a suitable coverage criterion C, and we aim to optimize the quality
of test. We consider two cases, according to the nature of the elements of Eg (D).

If Ec (D) denotes a set of paths in the graph, we immediately state that the quality of
test is optimal if the paths of Ec(D) are generated uniformly, i.e. any path has the same
probability 1/|Ec(D)| to be generated. Indeed, if the probability of one or several paths
was greater than 1/|E¢(D)|, then there would exist at least one path whith probability
less than 1/|Ec(D)|, therefore the quality of test would be lower. We saw in Section 2.1
how to generate uniformly random paths of given length n in a graph, and how to modify
the graph in order to fit with the criterion “all paths of length < n”. The method easily
applies to other criteria that involve paths, as those given above, by ways similar to the
ones seen in Section 2.2.

Now, we consider the case where the elements of E¢(D) are not paths, but are consti-
tutive elements of the graph as, for example, vertices, edges, or cycles. Here, we have to
maximize the minimal probability of taking each element when drawing a path. Clearly,

uniform generation of paths does not ensure optimal quality of test in this case. So we



generate a path in two steps:

L. pick at random one element e of E¢(D), according to a suitable probability distri-

bution (which will be discussed in Section 4.2);
2. generate uniformly at random one path of length < n that goes through e.

Algorithms for achieving the second step are detailed in Section 2. The next subsection

deals with the first step.

4.2 Probability distribution for an optimal quality of test.

The problem consists in choosing the suitable probability distribution over E¢ (D) in order
to maximize the quality of test. Given E¢(D) = {ey,es,...,em}, with m > 0, we denote,
for any i and j in (1..m),
® «; the number of paths of P<, which takes element e;;
¢ a;; the number of paths which take both elements e; and e;; (note that a;; = o;
and a; ; = @;;);
o 7; the probability of choosing element e; during step 1 of the above process.

Now, let us compute, for any ¢, the probability p; for the element e; to be reached by a

path:

Qi j
je(l.m)—{i}

Indeed, the probability of choosing element e; in step 1 is m;; and the probability of

reaching e; by drawing a random path which goes through another element e; is =&,
The above equation simplifies in
o
pi = ; m bag (2)

since a;,; = ;. Note that coeflicients a; and a; ; are easily computed by ways given in
Section 2.
Now we have to determine probabilities {my,m2 ..., Ty} with 3 m; = 1, which maxi-

mize Pmi, = min{p;,7 € [1..m]}. This can be stated as a linear programming problem:

L. . Yi < m, Pmin < Pi;
Maximize p,;, under the constraints:
Ty+mg+oor+ =1,

10



where the p;’s are computed as in Equation (2). Standard methods lead to a solution in
time polynomial according to m.

Let us illustrate this with our example. Given the coverage criterion “all the edges”
and given n = 10, Table 4 presents the coefficients a,,,, where z and y denote letters
from ’a’ to k’. For example, the value 9’ in row ’f’ and column ’c¢’ means that ac¢ =9,
i.e. there are exactly 9 paths of length lower or equal to 10 from v, to v, which cross both

edges c and f in the graph of Figure 1.

o
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Table 4 : Table of the ay;.

The corresponding linear program is shown in Table 5. Each line, but the last one, is
an inequation which corresponds to a row in Table 4. The first term of the inequation is
Prmin, the value to be maximized. The second term is one of the p;’s, computed according
to Formula 2. The first one, for example, means that p,,;, must be lower or equal to
Pa, the probability of reaching edge ’a’ with a random path. By maximizing pmi,, one
maximizes the lowest p;, so that the quality of test is optimal. The last line ensures that
the probabilities m; that we are searching for sum to 1.

Solving this linear program leads to my = Tc =mq =M =175 =M =1 = 7 = 0,
while mp, = m, = % and me = %, which is the best choice. This gives p = %, therefore the

optimal quality of test equals 1 — ZLN, according to Formula 1.

5 From paths to input data

So far we have presented a generic method for generating execution paths in a way that

maximizes test quality. This method relies on existing algorithms and tools and can be

11



Pmin & Tq +%7Tc JF%':’TQ +§7Tf +%ﬂ’g +§7Th +%TT@ +%ﬂj +%Wk
Pmin < h +3Te +7Wg +gme +57f +37g -{-gﬂh +5m; +§ﬂj +"§7Tk
Pmin < Ta +§m’ T +%7rd tre  Amp AWy +g”h +7i +?7rj +§ﬁk
Pmin < b +%Wc + 74 Jr%ﬂe +‘§‘7Tf -I-%?rg +?7rh +§’ﬂ'z +g7rj +§7rk
Pmin < gﬂ-“ +%”Tb +gﬂ-c +§ﬂ-d + e +§ﬂ-f +my +§’ﬂ'h +‘?‘?Tz +gﬂ'j +§7Tk
Pmin < gﬂa +§Wb +?{WC +§7rd +%ﬂ-e +my +%7rg +??Th +g’ﬂ'z' +E‘ITJ‘ +:?“7Tk
Prmin < g'ﬂ"a +§Wb +gﬂc +§"Td +e +$"Tf +7g +§?Th +g’ﬂ'z +g?rj 'f‘gﬂ'k
Pmin = g”a +§Wb +§7fc +§"Td +éﬂ'e +g7rf +é7rg +rp gm +g’ﬂ'j +§ﬂ'k
Pmin < gl Tgm tyme +gme Agme +omp g, +?Z‘fl'h +m 5T +Em
Pmin < 3Ta +§7Tb +§7Tc +§Wd +%ﬂ’e +g’frf +§7Fg +g?rh +-$—m +7;
Pmin £ 3Ta +5T +3Te T4 +gme +gmp 4T A§TH g -y
1= Mg +mp +7we +Wg AW  Awp Awg 4w 4w 4w AWy

Table 5 : The linear program.

fully automated. A last step is to generate, for every path, input values that will cause

its execution.

5.1 The trivial case of finite models

First let us consider the case where the graphical description corresponds to a finite model
of the system under test (Finite State Automata, Finite State Machine, etc) [5]. Every
edge of the description is labelled by some symbol of a finite alphabet that represents
some input or event. This symbol may be coupled with some other symbol indicating
some expected reaction (output, action). Here, the test data for executing a given path is
just the sequence of inputs labelling its edges, possibly followed by some additional inputs

in order to observe that the system under test is in the expected state [18, 4].

5.2 The general case of infinite models

The problem is more difficult as soon as the model underlying the description is not finite
[18]. It is the case of various sorts of Extended Finite State Machines, State-charts, or the
control graph of pieces of code, namely any description including non-trivial data types
and guards.

An example is partially given in Figure 5.2, using a notation close to UML state charts.
A very similar example is completely presented in [19]. In this example, the M variable
is of a given type Message; every message has a priority. The @ variable is of type

PriorityQueue. The get operation returns the oldest message of the queue with the best

12



priority. The boxes labelled by Buf fer(Q)) and ClientReady((Q) denote infinite classes
of states, (as many states as possible values for the @ variable). A possible trace (or more

exactly class of traces) is:

_/Q.init(); M /Q.add(M); tready[-Q.isEmpty()]/ _;!Q.get()/Q.remove()

event  guard  action

Wors - fgul?

IMAD.add(M) nready [-Q.isEmpty )/ _ IM/Q.add (M)

Buffer(Q) |

[ ClientReady(Q)

_AQuinit()

1Q.get(FQ.remove()

Figure 3 : A statechart specification of a buffer with priorities

Given some path or some trace made of conditioned statements or guarded commands,
how to find some inputs triggering its execution? It is a classical issue in structural
testing, or in functional testing based on specifications with data types. Constructing, via
symbolic evaluation techniques, the predicate characterizing the input domain of the path,
can solve it: This predicate is the conjunction of the guards (or conditions) encountered
on the path, adequately updated in function of the variables assignments (see for instance
[14]). Then the problem reduces to a constraint-solving problem. Any data satisfying
the above predicate is an input covering the path. At this stage, the tool to be used is
highly dependent on the kind of guards and data types allowed in the description: There
exist a lot of specialised constraint solvers for various types of variables and constraints,
which ensure termination and completeness. However, in full generality the problem
is only semi-decidable and a general-purpose solver may not terminate when searching
for a solution. Lately, significant advances have been achieved with the introduction
of powerful heuristics and randomisation techniques, such as those used in the LOFT
and GATEL tools [20, 21] or the BZ-tools in [1]. Other uses of constraint solvers for
test generation are reported in [2, 12, 22]. A classical difficulty at this stage is that

unfeasible paths may arise. For instance, in the example of Figure 3, all paths beginning

13



by _/Q.init(); Tready[-Q.isEmpty()]/ _; ... are unfeasible since the init method assigns
an empty state to the Queue. In the next section we show how we cope with this problem

in the prototype that we have developed for structural statistical testing.

6 The AuGuSTe prototype

In order to validate the applicability of our approach, Sandrine Gouraud has developed
a tool for statistical structural testing [13]. The programs under test are written in a
small programming language inspired from C. The data types are booleans, integers, and
arrays. The constraint solver is the one of GATEL [21], extended to arrays.

When an unfeasible path is detected (or suspected) by the constraint solver, it is
rejected and another path is drawn. This strategy does not affect the uniform distribution
on paths: any feasible path is still drawn with uniform probability. This ensures that,
if the coverage criterion involves paths only (like e.g. "all paths of length < n"), the
quality of test stays optimal. However, in other cases, it may decrease with regard to its
theoretical value, depending on the distribution of unfeasible paths in the graph.

Actually, our first experiments with AuGuSTe show that the difference may be signif-
icant in presence of big numbers of unfeasible paths.

We are currently investigating methods for improving this experimental quality of test.
For example, in some cases a number of infeasible paths can be detected by static analysis
of the description of the system. Then the combinatorial specification of the graph can
be modified in order to avoid these paths.

This tool has been used for testing the same set of four C programs as in [27], where
Pascale Thévenod-Fosse, Héléne Waeselinck and Yves Crouzet presented the first experi-
mental evaluation of the detection power of statistical structural testing. Thanks to them,
it was possible to reuse the same sets of mutants and to replay almost the same set of
experiments. In [27], the statistical method is different from here, since it is based on the
explicit construction of a distribution on the input domain, either analytically, or empiri-
cally (when there is some loop). In our case, we draw paths and then use constraint-solving
tools to produce inputs. Of course, this induces a distribution on the input domain. As
this distribution is highly dependent on the implementation of the constraint solver, it
remains implicit. Despite of this fundamental difference, the results of the experiments

are quite similar, with the advantage that our new approach is fully automated.

14



The fourth program, the one named FCT4 in [27], was the most difficult and the most
interesting. It contains a huge number of unfeasible paths. The coverage criterion was “all
the edges with maximal path length of 234”, in number of edges of the control graph (thus
much more in number of statements). Consequently, the predicates to be solved were
rather long too, since at least one out of two vertices on a path corresponds to a decision
point, thus to a condition to be added to the predicate. AuGuSTe was successfully used
to automatically produce several test sets for this program (see [13] for details). These

first experiments let think that the method scales up well.

7 Conclusion and perspectives

In this paper we have shown how uniform generation of combinatorial structures can be
used for statistical testing as soon as some graphical description of the program under test
is available. If the description is at the program level (control flow graph), our method
applies to structural statistical testing. If the description is at the specification level, it
applies to functional statistical testing.

Our approach was sketched in a previous paper|[14], where we presented a first example
for structural statistical testing. This paper presents the method in its generality, and
avoids the heuristic used in [14] for the implementation of the all-statements and all-
branches criteria: Indeed, in Section 4, we show how to build a probability distribution
on the elements to be covered for any given criteria. This distribution ensures an optimal
quality of test when associated with the methods of Section 2.2 for randomly generating
paths constrained to traverse these elements.

As mentioned in Section 6, this approach has been validated on realistic examples. It
seems that it can provide a basis for a new class of tools in the domain of testing.

Moreover, some interesting perspectives are still open. The CS tool can deal with
languages more complex than regular languages (for instance, with cardinality constraints
such as paths with the same number of iterations in loop 1 and loop 2). Practically,
it means that it could be possible to compile behavioural graphs into more elaborated
combinatorial structures, taking into account some knowledge on the system under test,
or some results of static analysis. This could improve significantly the efliciency of the
tools, by eliminating some major sources of infeasible paths.

Another possibility worth to explore is the use of the new approach proposed recently
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by Flajolet & al. [8] for random generation of combinatorial structures : It is based on
Boltzmann models and could avoid the introduction on a bound on the length of the

considered paths.
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