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Abstract

Dans un système d’inférence peer-to-peer, chaque peer peut raisonner locale-
ment mais peut également solliciter son voisinage constitué des peers avec lesquels
il partage une partie de son vocabulaire. Dans cet article, on s’intéresse aux sys-
tèmes d’inférence peer-to-peer dans lesquels la théorie de chaque peer est un en-
semble de clauses propositionnelles construites à partir d’un vocabulaire local.
Une caractéristique importante des systèmes peer-to-peer est que la théorie globale
(l’union des théories de tout les peers) n’est pas connue (par opposition aux sys-
tèmes de raisonnement fondés sur le partitionnement). La contribution de cet arti-
cle est double. Nous exposons le premier algorithme de calcul d’impliqués dans un
environnement peer-to-peer: il est anytime et calcul les impliqués progressivement
depuis le peer interrogé jusqu’aux peers de plus en plus distant. Nous énonçons
une condition suffisante sur le graphe de voisinage du système d’inférence peer-to-
peer garantissant la complétude de notre algorithme. Nous présentons également
quelques résultats expérimentaux prometteurs.

Abstract

In a peer-to-peer inference system, each peer can reason locally but can also
solicit some of its acquaintances, which are peers sharing part of its vocabulary.
In this paper, we consider peer-to-peer inference systems in which the local theory
of each peer is a set of propositional clauses defined upon a local vocabulary. An
important characteristic of peer-to-peer inference systems is that the global theory
(the union of all peer theories) is not known (as opposed to partition-based rea-
soning systems). The contribution of this paper is twofold. We provide the first
consequence finding algorithm in a peer-to-peer setting: it is anytime and com-
putes consequences gradually from the solicited peer to peers that are more and
more distant. We exhibit a sufficient condition on the acquaintance graph of the
peer-to-peer inference system for guaranteeing the completeness of this algorithm.
We also present first experimental results that are promising.

∗Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS, École Polytechnique – X
INRIA et Université Paris Sud
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1 Introduction

Recently peer-to-peer systems have received considerable attention because their un-
derlying infrastructure is appropriate to scalable and flexible distributed applications
over Internet. In a peer-to-peer system, there is no centralized control or hierarchical
organization: each peer is equivalent in functionality and cooperates with other peers
in order to solve a collective task. Peer-to-peer systems have evolved from simple
keyword-based peer-to-peer file sharing systems like Napster [Nap] and Gnutella [Gnu]
to schema-based peer data management systems like Edutella [NWQ+02] or Piazza [HITM03],
which handle semantic data description and support complex queries for data retrieval.
In those systems, the complexity of answering queries is directly related to the expres-
sivity of the formalism used to state the semantic mappings between peers schemas
[HIST03].

In this paper, we are interested in peer-to-peer inference systems in which each
peer can answer queries by reasoning from its local (propositional) theory but can also
ask queries to some other peers with which it is semantically related by sharing part
of its vocabulary. This framework encompasses several applications like peer-to-peer
information integration systems or intelligent agents, in which each peer has its own
knowledge (about its data or its expertise domain) and some partial knowledge about
some other peers. In this setting, when solicited to perform a reasoning task, a peer,
if it cannot solve completely that task locally, must be able to distribute appropriate
reasoning subtasks among its acquainted peers. This leads to a step by step splitting of
the initial task among the peers that are relevant to solve parts of it. The outputs of the
different splitted tasks must then be recomposed to construct the outputs of the initial
task.

We consider peer-to-peer inference systems in which the local theory of each peer
is composed of a set of propositional clauses defined upon a set of propositional vari-
ables (called its local vocabulary). Each peer may share part of its vocabulary with
some other peers. We investigate the reasoning task of finding consequences of a cer-
tain form (e.g., clauses involving only certain variables) for a given input formula ex-
pressed using the local vocabulary of a peer. Note that other reasoning tasks like finding
implicants of a certain form for a given input formula can be equivalently reduced to
the consequence finding task.

The contribution of this paper is twofold. We provide the first consequence finding
algorithm in a peer-to-peer setting: it is anytime and computes consequences gradually
from the solicited peer to peers that are more and more distant. We exhibit a sufficient
condition on the acquaintance graph of the peer-to-peer inference system for guaran-
teeing the completeness of this algorithm.

It is important to emphasize that the problem of distributed reasoning that we con-
sider in this paper is quite different from the problem of reasoning over partitions ob-
tained by decomposition of a theory ([DR94, AM00]). In that problem, a centralized
large theory is given and its structure is exploited to compute its best partitioning in
order to optimize a partition-based reasoning algorithm. In our problem, the whole
theory (i.e., the union of all the local theories) is not known and the partition is im-
posed by the peer-to-peer architecture. As we will illustrate it on an example (Sec-
tion 2), the algorithms based on transmitting clauses between partitions in the spirit

2



of ([AM00, DR94, dV99]) are not appropriate for our consequence finding problem.
Our algorithm splits clauses if they involve vocabularies of several peers. Each piece
of a splitted clause is then transmitted to the corresponding theory to find its conse-
quences. The consequences that are found for each piece of splitted clause must then
be recomposed to get the consequences of the clause that had been splitted.

The paper is organized as follows. Section 2 defines formally the peer-to-peer
inference problem that we address in this paper. In Section 3, we describe a distributed
consequence finding algorithm and we state its properties. Section 4 reports some
experimental results. Related work is summarized in Section 5. We conclude with a
short discussion in Section 6.

2 Peer-to-peer inference: problem definition

A peer-to-peer inference system (P2PIS) is a network of peer theories. Each peerP is
a finite set of propositional formulas of a languageLP . We consider the case whereLP

is the language of clauses without duplicated literals that can be built from a finite set
of propositional variablesVP , called thevocabularyof P . Peers can be semantically
related by having common variables in their respective vocabularies, calledshared
variables. In a P2PIS, no peer has the knowledge of the global P2PIS theory. Each
peer only knows its own local theory and that it shares some variables with some other
peers of the P2PIS (itsacquaintances). It does not necessarily knowall the peers
with which it shares variables. When a new peer joins a P2PIS it simply declares its
acquaintances in the P2PIS, i.e., the peers it knows to be sharing variables with. A
P2PIS can be formalized as anacquaintance graph.

Definition 1 (Acquaintance graph) LetP = (Pi)i=1..n be a family of clausal theo-
ries on their respective vocabulariesVPi , letV = ∪i=1..nVPi . An acquaintance graph
is a graphΓ = (P, ACQ) whereP is the set of vertices andACQ ⊆ V ×P ×P is a set
of labelled edges such that for every(v, Pi, Pj) ∈ ACQ, i 6= j andv ∈ VPi

∩ VPj
.

A labelled edge(v, Pi, Pj) expresses that peersPi andPj know each other to be
sharing the variablev. For a peerP and a literall, ACQ(l, P ) denotes the set of peers
sharing withP the variable ofl.

For each theoryP , we consider a subset oftarget variablesT VP ⊆ VP , supposed
to represent the variables of interest for the application, (e.g., observable facts in a
model-based diagnosis application, or stored classes in an information integration ap-
plication). The goal is, given a clause (called thequery) provided as an input to a given
peer, to find all the consequences (calledanswers) that belong to sometarget language.

The point is that the query only uses the vocabulary of the queried peer, but that the
expected answers may involve target variables of different peers. The target languages
handled by our algorithm are defined in terms of target variables and require that a
shared variable has the same target status in all the peers sharing it.

Definition 2 (Target Language) LetΓ = (P, ACQ) be a P2PIS, and for very peerP ,
let T VP be the set of its target variables such that if(v, Pi, Pj) ∈ ACQ thenv ∈ T VPi

iff v ∈ T VPj
. For a subsetSP of peers ofP, we define itstarget languageT arget(SP )

as the language of clauses (including the empty clause) involving only variables of⋃
P∈SP T VP .
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Among the possible answers we distinguishlocal answers, involving only target
variables of the solicited peer,navigational answers, which involve target variables of
a single peer, andintegrating answerswhich involve target variables of several peers.

Definition 3 (Proper prime implicate w.r.t a theory) Let P be a clausal theory and
q be a clause. A clausem is said to be:
• a prime implicateof q w.r.t P iff P ∪ {q} |= m and for any other clausem′, if

P ∪ {q} |= m′ andm′ |= m thenm′ ≡ m.
• a proper prime implicateof q w.r.t P iff it is a prime implicate ofq w.r.t P but

P 6|= m.

Definition 4 (Consequence finding problem)LetP = (Pi)i=1..n be a family of clausal
theories with respective target variables (T VPi

)i=1..n and let Γ = (P, ACQ) be a
P2PIS. Theconsequence finding problemis, given a peerP and a clauseq ∈ LP to
find the set of proper prime implicates ofq w.r.t

⋃
i=1..n Pi which belong toT arget(P).

The following example illustrates the main characteristics of the distributed algo-
rithm presented in Section 3.

Example 1 Let us consider 4 peers.P1 describes a tour operator. Its theory expresses
that its current far destinations (F) are either Kenya (K) or Chile (C). These far desti-
nations are international destinations (I) and expensive (E). The peerP2 is only con-
cerned with police regulations and expresses that a passport is required (P ) for interna-
tional destinations.P3 focuses on sanitary conditions for travelers. It expresses that, in
Kenya, yellow fever vaccination (Y ) is strongly recommended and that a strong protec-
tion against paludism should be taken (PL) when accomodation occurs in Lodges (L).
P4 describes accommodation conditions for the trips : Lodges for Kenya and Hotels
(H) for Chile. It also expresses that when anti-paludism protection is required, ac-
commodations are equipped with appropriate anti-mosquito protections (AM). Shared
variables are indicated on the edges of the acquaintance graph (Figure 1) and target
variables are defined by :T VP1 = {E}, T VP2 = {P}, T VP3 = {L, Y, PL} and
T VP4 = {L,H,PL,AM}.

P1 :
¬F ∨ E ¬F ∨ I
¬F ∨ K ∨ C

P2 : ¬I ∨ PI P3 :
¬K ∨ Y
¬L ∨ ¬K ∨ PLK P4 :

¬K ∨ L
¬C ∨ H
¬PL ∨ AM
K,CL,PL

Figure 1: Acquaintance graph for the tour operator example

Suppose that the queryF is asked to peerP1. The local consequences that can be
derived by local reasoning onP1 areE,I andK ∨ C. E is returned immediately as a
local answer since it is inT arget(P1). SinceI is shared withP2, it is transmitted to
P2, which produces the clauseP. SinceP is in T arget(P2), it is a navigational answer
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for the initial query. The clauseK ∨ C is made of shared variables. Our algorithm
splits such clauses and transmits each component (hereK and C) separately to the
acquaintances ofP1 sharing respectivelyK andC with P1. C is therefore transmitted to
P4, which returns the clauseH as unique answer. Similarly, the clauseK is transmitted
(independently) to peersP4 andP3 (both sharing the variablesK with P1). OnP4, this
produces locally the clauseL. SinceL ∈ T arget(P4) it is returned as an answer for
K. But L is also shared, and therefore it is transmitted to the peerP3, which in turn
produces the clause¬K ∨ PL. This clause is splitted in two pieces¬K andPL. P4 is
asked forPL and returnsAM as its only answer forPL. P1 is asked for computing the
implicates of¬K, while the complementary queryK is still under process. We will see
in Section 3 that this is handled in our algorithm by an history which keeps track of the
current reasoning branch: when a same reasoning branch contains two complementary
literals, it is stopped and returns2 as answer. In our example, the answer produced by
P1 for ¬K is thus2, which is sent back toP3. P3 now combines the answers obtained
from the two reasoning branches resulting from the splitting of¬K ∨ PL, namelyAM
returned byP4 for PL, and2 returned byP1 for ¬K. This producesAM as answer
produced byP3 for ¬K ∨ PL. P3 sends this answer back toP4 as an answer forL. P4

transmits toP1 each of the answersL, PL andAM it has computed forL, as answers
for K. We do not detail the reasoning branch corresponding to the propagation ofK
in P3, which adds a new answer,Y, to the set of answers that are obtained byP1 for
K. As they are produced, those answers are combined with the only answer forC (i.e.,
H). Therefore, the set of answers for the initial query that will have been produced at
the end is:{H ∨ L, H ∨ PL, H ∨ AM, H ∨ Y}. Among those answers, it is important to
note that some of them (e.g.,H∨Y) involve target variables from different peers. Such
implicates cannot be obtained by partition-based algorithms like in [AM00]. This is
made possible thanks to the splitting/recombining strategy of our algorithm.

3 Distributed consequence finding algorithm

The message passing distributed algorithm that we provide is described in Section 3.2.
We show that it terminates and that it computes the same results as the recursive algo-
rithm described in Section 3.1. We exhibit a property of the acquaintance graph that
guarantees the completeness of this recursive algorithm, and therefore of the message
passing distributed algorithm (since both algorithms compute the same results).
For both algorithms, we will use the following notations :

- for a literalq, Resolvent(q, P ) denotes the set of clauses obtained by resolution
betweenq and a clause ofP ,

- for a literalq, q̄ denotes its complementary literal,
- for a clausec of a peerP , S(c) (resp. L(c)) denotes the disjonction of literals

of c whose variables are shared (resp. not shared) with any acquaintance ofP . The
conditionS(c) = 2 thus expresses thatc does not contain any variable shared with an
acquaintance ofP ,

- an historyhist is a sequence of triples(l, P, c) (wherel is a literal,P a peer, and
c a clause). An history[(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] represents a branch
of reasoning initiated by the propagation of the literall0 within the peerP0, and the
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splitting of the clausec0: for everyi ∈ [0..n− 1], ci is a consequence ofli andPi, and
li+1 is a literal ofci, which is propagated inPi+1,

- > is the distribution operator on sets of clauses:S1 > · · · > Sn = {c1 ∨ · · · ∨ cn

|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, we will use the notation>l∈LSl to
denoteSl1 > · · ·> Slp .

3.1 Recursive consequence finding algorithm

Let Γ = (P, ACQ) be a P2PIS.RCF (q, P, Γ) computes implicates of the literalq w.r.t
P, starting with the computation of consequences ofq w.r.t P , and then being guided
by the topology of the acquaintance graph of the P2PIS. To ensure termination, it is
necessary to keep track of the literals already processed by peers. This is done by the
recursive algorithmRCFH(q, SP, Γ, hist), wherehist is the history of the reasoning
branch ending up to the propagation of the literalq in SP (a set of acquaintances of the
last peer added to the history).

Algorithm 1: Recursive consequence finding algorithm
RCF (q, P, Γ)
(1)return RCFH(q, {P},Γ, ∅)

RCFH(q, SP, Γ, hist)
(1)if (q̄, _, _) ∈ hist return {2}
(2)else if there existsP ∈ SP s.t q ∈ P or for everyP ∈ SP , (q, P, _) ∈ hist

return ∅
(3)elseLOCAL ← {q} ∪ (

⋃
P∈SP Resolvent(q, P ))

(4)if 2 ∈ LOCAL return {2}
(5)elseLOCAL ← {c ∈ LOCAL|L(c) ∈ T arget(SP )}
(6)if for everyc ∈ LOCAL, S(c) = 2, return LOCAL

(7)elseRESULT← LOCAL

(8) foreach c ∈ LOCAL s.tS(c) 6= 2

(9) let P be the peer ofSP s.t. c ∈ Resolvent(q, P )
(10) P ′ ← P\{¬q ∨ c}, Γ′ ← (P ′, ACQ)
(11) foreach literal l ∈ S(c)
(12) ANSWER(l)← RCFH(l, ACQ(l, P ),Γ′, [(q, P, c)|hist])
(13) DISJCOMB← (>l∈S(c)ANSWER(l)) > {L(c)}
(14) RESULT← RESULT∪ DISJCOMB

(15) return RESULT

Theorem 1 RCF (q, P,Γ) is sound and terminates.

Sketch of proof: For the soundness, it is easy to show (by induction on the number
of recursive calls) that every result returned byRCFH(q, {P},Γ, ∅) is an implicate
of P ∪ {q}. For the termination, we notice that at each recursive call, anew triple
(sl, P, c) is added to the history. If the algorithm did not terminate, the history would
be infinite, which is not possible since the number of peers, literals and clauses within
a P2PIS is finite. Soundness: if the historyhist is not empty, it is of the form
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[(ln, Pn, cn), . . . , (l0, P0, c0)]. We prove by induction on the numberrc of recursive
calls of RCFH(q, SP, Γ, hist) that every result returned byRCFH(q, SP, Γ, hist)
is an implicate ofP ∪ {q, ln, . . . , l0} which belongs to the target language.
• rc = 0: either one of the conditions of Line (1), Line (2), Line (4) or Line (6) is

satisfied.
- If either there exists a peerP such that(q̄, _, _) ∈ hist or 2 ∈ LOCAL: in both

cases,2 is returned by the algorithm (in respectively Line (1) and Line (4)) and it is
indeed an implicate ofP ∪ {q, ln, . . . , l0} belonging to the target language.

- If there existsP ∈ SP such thatq ∈ P or for everyP ∈ SP , (q, P, _) ∈
hist: in this case, an empty result is returned (Line(2)) becauseq is already inP ∪
{q, ln, . . . , l0}.

- In the last case (Line (6)),r ∈ LOCAL, and it is obvioulsy an implicate of
P ∪ {q, ln, . . . , l0} (as a resolvent ofq and of a clause of

⋃
P∈SP P ), and it belongs to

the target language.
• Suppose the induction hypothesis true forrc ≤ p, and letΓ = (P, ACQ) a P2PIS

such thatRCFH(q, SP, Γ, hist) requiresp + 1 recursive calls to terminate. Letr a
result returned byRCFH(q, SP, Γ, hist).

- If r ∈ LOCAL, it is obvioulsy an implicate ofP ∪ {q, ln, . . . , l0} belonging to the
target language.

-If r 6∈ LOCAL, it is obtained at Line (13): there exist a clausec= S(c) ∨L(c) such
thatS(c) = ll1∨· · ·∨llk andr = r1 ∨ · · · ∨ rk∨L(c), where everyri is a result returned
by RCFH(lli, ACQ(lli, P ),Γ′, [(q, P, c)|hist]) (Line (12)). According to the induc-
tion hypothesis (the number of recursive calls ofRCFH(lli, ACQ(lli, P ),Γ′, [(q, P, c)|hist])
for everylli is less thanp), everyri is an implicate ofP\{¬q ∨ c}∪ {lli, q, ln, . . . , l0}
belonging to the target language. Therefore,r1 ∨ · · · ∨ rk is an implicate ofP\{¬q ∨
c} ∪ {S(c), q, ln, . . . , l0}, which belongs to the target language. SinceL(c) belongs to
the target language andc = S(c)∨L(c), r (i.e,r1∨· · ·∨rk ∨L(c)) belongs to the target
language, and is an implicate ofP\{¬q∨c}∪{c, q, ln, . . . , l0}. Sincec ∈ LOCAL, c is
an implicate ofP∪{q}, and thereforer is an implicate ofP∪{q, ln, . . . , l0} belonging
to the target language.
Termination: at each recursive call, anew triple (sl, P, c) is added to the history.
If the algorithm did not terminate, the history would be infinite, which is not possible
since the number of peers, literals and clauses within a P2PIS is finite. 2

The following theorem exhibits a sufficient condition for the algorithm to be com-
plete.

Theorem 2 LetΓ = (P, ACQ) be a P2PIS all local theories of which are saturated by
resolution. If for everyP , P ′ andv ∈ VP ∩VP ′ there exists a path betweenP andP ′ in
Γ, all edges of which are labelled withv, then for every literalq ∈ LP , RCF (q, P, Γ)
computes all the proper prime implicates ofq w.r.tP which belong toT arget(P).

Sketch of proof: If the historyhist is not empty, it is of the form[(ln, Pn, cn), . . . , (l0, P0, c0)].
We prove by induction on the numberrc of recursive calls thatRCFH(q, SP, Γ, hist)
computes all the proper prime implicates ofq w.r.t P ∪ {ln, . . . , l0} which belong to
the target language.
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• rc = 0: either one of the conditions of Line (1), Line (2), Line (4) or Line (6) is
satisfied.

- If either there exists a peerP such that(q̄, _, _) ∈ hist or 2 ∈ LOCAL: in both
cases,2 is the only prime implicate ofq w.r.t P ∪ {ln, . . . , l0} and is returned by the
algorithm (respectively Line (1) and Line (4)).

- If there existsP ∈ SP such thatq ∈ P or for everyP ∈ SP , (q, P, _) ∈ hist:
in this case, all the prime implicates ofq w.r.tP ∪ {ln, . . . , l0} are prime implicates of
P∪{ln, . . . , l0}. Therefore, the set of proper prime implicates ofq w.r.tP∪{ln, . . . , l0}
is empty: it is returned by the algorithm (Line(2)).

- If for every P ∈ SP , every resolvent ofq w.r.t P has no shared variable with
any acquaintance ofP : if P satisfies the property stated in the theorem, this means that
every prime implicate ofq w.r.t P shares no variable with any other theory ofP.
According to Lemma 1, the set of proper prime implicates ofq w.r.tP ∪{ln, . . . , l0} is
included inLOCAL, and thus every proper prime implicates ofq w.r.tP ∪ {ln, . . . , l0},
which is in the target language, is returned by the algorithm (Line(6)).
• Suppose the induction hypothesis true forrc ≤ p, and letΓ = (P, ACQ) a P2PIS

satisfying the property stated in the theorem and such thatRCFH(q, SP, Γ, hist) re-
quiresp + 1 recursive calls to terminate. Letm be a proper prime implicate ofq w.r.t
P ∪ {ln, . . . , l0}, which is in the target language. Let us show that it belongs to the
result returned byRCFH(q, SP, Γ, hist).

- If m is a resolvent ofq w.r.t a givenP of SP , thenm ∈ LOCAL and is returned
by the algorithm if it is in the target language.

-If m is not a resolvent ofq w.r.t a givenP of SP , then, according to Lemma
1, eitherq shares its variable with clauses inP ∪ {ln, . . . , l0}\

⋃
P∈SP P , or there

exists a clause¬q ∨ c in
⋃

P∈SP P such that¬q ∨ c has shared variables withP ∪
{ln, . . . , l0}\

⋃
P∈SP P andm is a proper prime implicate ofc w.r.t P\{¬q ∨ c} ∪

{q, ln, . . . , l0}. Therefore, if the non shared variables ofc are target variables,c is in-
volved in an iteration of the loop of Line (8). IfΓ verifies the property stated in the the-
orem,Γ′ satisfies it too. According to the induction hypothesis (the number of recursive
calls to obtainANSWER(l) in Line (12) is less thanp), for everyl ∈ S(l), ANSWER(l)
includes the set of proper prime implicates ofl w.r.t P\{¬q ∨ c} ∪ {q, ln, . . . , l0},
which are in the target language. We now apply Lemma 2 to infer thatDisjComp,
which is computed in Line (13), includes the set of proper prime implicates ofc w.r.t
P\{¬q∨ c}∪{q, ln, . . . , l0}, which are in the target language, and in particularm. 2

Lemma 1 Let P be a set of clauses andm be a proper prime implicate ofq w.r.t P .
Let P ′ ⊆ P saturated by resolution such that it contains clauses sharing the variable
of q. If m is a proper prime implicate ofq w.r.t P , then :

- eitherm is a proper prime implicate ofq w.r.t P ′,
- or the variable ofq is shared with clauses ofP\P ′,
- or there exists a clause¬q ∨ c of P ′ such thatc has shared variables with clauses

of P\P ′ andm is a proper prime implicate ofc w.r.t P\{¬q ∨ c} ∪ {q}.

Sketch of proof: Letm be a proper prime implicate ofq w.r.t P . If m is different from
q, there exists a clause¬q ∨ c in P such thatm is a proper prime implicate ofc w.r.t
P\{¬q ∨ c} ∪ {q}.
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- If such a clause does not exist inP ′, it exists inP\P ′ and thereforeq shares its
variable with clauses ofP\P ′.

- If there exists a clause¬q ∨ c in P ′ such thatm is a proper prime implicate ofc
w.r.t P\{¬q ∨ c} ∪ {q}, andm is not a proper primeq w.r.t P ′, then for every proof of
m there must exist a clausec′ in P\P ′ with which eitherq or¬q ∨ c must be resolved.
Therefore, eitherq or c has shared variables with clauses ofP\P ′. 2

Lemma 2 Let P be a set of clauses, and letc = l1 ∨ · · · ∨ ln be a clause. For
every proper prime implicatem of c w.r.t P , there existsm1, . . . ,mn such thatm ≡
m1 ∨ · · · ∨mn, and for everyi ∈ [1..n], mi is a proper prime implicate ofli w.r.t P .

Sketch of proof: Letm be a proper prime implicate ofc w.r.t P . For every literal
li, let Mod(li) be the set of models ofP which makeli true. If Mod(li) = ∅, that
means that2 is the only proper prime implicate ofli w.r.t P . For everyi such that
Mod(li) 6= ∅, every model inMod(li) is a model ofP ∪ {c}, and then a model of
m ; therefore,m is a proper implicate ofP ∪ {li}, and, by definition of properprime
implicates, there exists a proper prime implicatemi of li w.r.t P such thatmi |= m.
Consequently, there existsm1, . . . ,mn such thatm1 ∨ · · · ∨ mn |= m, and for ev-
ery i ∈ [1..n], mi is a proper prime implicate ofli w.r.t P (mi may be2). Since
P ∪{l1 ∨ · · · ∨ ln} |= m1 ∨ · · · ∨mn , andm is a proper implicate ofl1 ∨ · · · ∨ ln w.r.t
P , we necessarily get thatm ≡ m1 ∨ · · · ∨mn. 2

3.2 Message-based consequence finding algorithm

In this section, we exhibit the result of the transformation of the previous recursive
algorithm into a message-based distributed consequence finding algorithm. Each peer
has the algorithm implemented locally. It is composed of three procedures, each one
being triggered by the reception of a message. The procedure RECEIVEQUERYMESSAGE

is triggered by the reception of aquery messagem(Sender,Receiver, query, hist, l)
sent by the peerSender to the peerReceiver which executes the procedure: on the
demand ofSender, with which it shares the variable ofl, it processes the literall. The
procedure RECEIVEANSWERMESSAGE is triggered by the reception of ananswer
messagem(Sender, Receiver, answer, hist, r) sent by the peerSender to the peer
Receiver which executes the procedure: it processes the answerr (which is a clause
the variables of which are target variables) sent back bySender for the literall (last
added in the history) ; it may have to combine it with other answers for literals be-
ing in the same clause asl. The procedure RECEIVEFINAL MESSAGEis triggered by
the reception of afinal messagem(Sender,Receiver, final, hist, true): the peer
Sender notifies the peerReceiver that answer computation for the literall (last added
in the history) is completed. Those procedures handle two data structures stored at
each peer:ANSWER(l, hist) caches the answers resulting from the propagation ofl
within the reasoning branch corresponding tohist ; FINAL(q, hist) is set to true when
the propagation ofq within the reasoning branch of the historyhist is completed.
The reasoning is initiated by the user (denoted by a particular peerUser) sending
to a given peerP a messagem(User, P, query, ∅, q), which triggers the procedure
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RECEIVEQUERYMESSAGE(m(User, P, query, ∅, q)) that is locally executed byP .
In the description of the procedures, since they are locally executed by the peer which
receives the message, we will denote bySelf the receiver peer.

Algorithm 2: Message passing procedure for processing queries
RECEIVEQUERYMESSAGE(m(Sender, Self, query, hist, q))
(1) if (q̄, _, _) ∈ hist
(2) sendm(Self, Sender, answer, [(q, Self,2)|hist],2)
(3) sendm(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else ifq ∈ Self or (q, Self, _) ∈ hist
(5) sendm(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) LOCAL(Self)← {q} ∪Resolvent(q, Self)
(8) if 2 ∈ LOCAL(Self)
(9) sendm(Self, Sender, answer, [(q, Self,2)|hist],2)
(10) sendm(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) LOCAL(Self)← {c ∈ LOCAL(Self)| L(c) ∈ T arget(Self)}
(13) if for everyc ∈ LOCAL(Self), S(c) = 2

(14) foreach c ∈ LOCAL(Self)
(15) sendm(Self, Sender, answer, [(q, Self, c)|hist], c)
(16) sendm(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ LOCAL(Self)
(19) if S(c) = 2

(20) sendm(Self, Sender, answer, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) ANSWER(l, [(q, Self, c)|hist])← {l}
(25) else
(26) ANSWER(l, [(q, Self, c)|hist])← ∅
(27) FINAL(l, [(q, Self, c)|hist])← false
(28) foreachRP ∈ ACQ(l, Self)
(29) sendm(Self, RP, query, [(q, Self, c)|hist], l)

Algorithm 3: Message passing procedure for processing answers
RECEIVEANSWERMESSAGE(m(Sender, Self, answer, hist, r))
(1)hist is of the form[(l′, Sender, c′), (q, Self, c)|hist′]
(2)ANSWER(l′, hist)← ANSWER (l′, hist) ∪ {r}
(3)RESULT← >l∈S(c)\{l′}ANSWER(l, hist) > {L(c) ∨ r}
(4)if hist′ = ∅, U ← User elseU ← the first peerP ′ of hist′

(5)foreach cs ∈ RESULT

(6) sendm(Self, U, answer, [(q, Self, c)|hist′], cs)
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Algorithm 4: Message passing procedure for notifying termination
RECEIVEFINAL MESSAGE(m(Sender, Self, final, hist, true))
(1)hist is of the form[(l′, Sender, true), (q, Self, c)|hist′]
(2)FINAL(l′, hist)← true
(3)if for everyl ∈ S(c), FINAL(l, hist) = true
(4) if hist′ = ∅ U ← User elseU ← the first peerP ′ of hist′

(5) sendm(Self, U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) ANSWER(l, [(l, Sender, _), (q, Self, c)|hist′])← ∅

The following theorem states two important results: first, the message-based dis-
tributed algorithm computes the same results as the algorithm of Section 3.1, and thus,
is complete under the same conditions as in Theorem 2 ; second the user is notified of
the termination when it occurs, which is crucial for an anytime algorithm.

Theorem 3 Letr be a result returned byRCF (q, P,Γ). If P receives from the user the
messagem(User, P, query, ∅, q), then a messagem(P,User, answer, [(q, P, _)], r)
will be produced. Ifr is the last result returned byRCF (q, P, Γ), then the user will be
notified of the termination by a messagem(P,User, final, [(q, P, true)], true).

Sketch of proof: We prove by induction on the number of recursive calls ofRCFH(q, SP, Γ, hist)
that:

(1) for any resultr returned byRCFH(q, SP, Γ, hist), there existsP ∈ SP such
thatP is bound to send a messagem(P, S, answer, [(q, P, _)|hist], r) after receiving
the messagem(S, P, query, hist, q),

(2) if r is the last result returned byRCFH(q, SP, Γ, hist), all the peersP ∈ SP
are bound to send the messagem(P, S, final, [(q, P, true)|hist], true), whereS is
the first peer in the history.
• rc = 0: either one of the conditions of Lines (1), (2), (4) or (6) of the algorithm

RCFH(q, SP, Γ, hist) is satisfied. We have shown in the proof of Theorem 2 that if
the conditions of Lines (1) and (4) are satisfied,2 is the only result returned by the algo-
rithm. The condition of Line (1) of the algorithmRCFH(q, SP, Γ, hist) corresponds
to the condition of Line (1) of the algorithm RECEIVEQUERYMESSAGE(m(S, P, query,
hist, q)) for anyP of SP , which triggers the sending of a messagem(P, S, answer, [(q, P,2)|hist],2)
(Line (2)) and of a messagem(P, S, final, [(q, P, true)|hist], true) (Line(3)). If the
condition of Line (4) of the algorithmRCFH(q, SP, Γ, hist) is satisfied, sinceLOCAL

is
⋃

P∈SP LOCAL(P ), there existsP ∈ SP such that2 ∈ P . That condition corre-
sponds to the condition of Line (8) of the algorithm for RECEIVEQUERYMESSAGE(m(S, P, query, hist, q)),
which triggers the sending of a messagem(P, S, answer, [(q, P, 2)|hist],2) (Line
(9) and of a messagem(P, S, final, [(q, P, true)|hist], true) (Line (10)). The con-
dition (2) of the algorithmRCFH(q, SP, Γ, hist), in which no result is returned
(see proof of Theorem 2), corresponds to the condition of Line (4) of the algorithm
RECEIVEQUERYMESSAGE(m(S, P, query, hist, q)), for everyP ∈ SP , which only
triggers the sending of a final message (Line (5)). Finally, if the condition of Line
(6) of the algorithmRCFH(q, SP, Γ, hist) is satisfied,r is necessarily an element of
LOCAL, i.e., there existsP ∈ SP such thatr ∈ LOCAL(P ). The condition of Line
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(6) of the algorithmRCFH(q, SP, Γ, hist) corresponds to the condition of Line (13)
in RECEIVEQUERYMESSAGE(m(S, P, query, hist, q)), which triggers the sending of
all the messagesm(P, S, answer, [(q, P, c)|hist], c), wherec is a clause ofLOCAL(P )
(Line (15)), and in particular the messagem(P, S, answer, [(q, P, r)|hist], r). It trig-
gers too the sending of a final message (Line (16)) forP . If r is the last result returned
by RCFH(q, SP, Γ, hist), such final messages has been sent by everyP ∈ SP .
• Suppose the induction hypothesis true forrc ≤ p, and letΓ = (P, ACQ) a P2PIS

such thatRCFH(q, SP, Γ, hist) requiresp + 1 recursive calls to terminate.
- If r ∈ LOCAL (r is not the last result returned by the algorithm) there existsP ∈

SP such thatr ∈ LOCAL(P ), andr is one of the clausesc involved in the iteration of
the loop of Line (18) of the algorithm RECEIVEQUERYMESSAGE(m(S, P, query, hist, q)),
and verifying the condition of Line (19), which triggers the sending of the message
m(P, S, answer, [(q, P, r)|hist], r) (Line (20)).

-If r 6∈ LOCAL, there existsP ∈ SP and a clausec : l1 ∨ · · · ∨ lk ∨ L(c) of
LOCAL(P ) such thatc is involved in the iteration of the loop of Line (8) of the algo-
rithmRCFH(q, P, Γ, hist), andr is an elementr1∨· · ·∨rk∨L(c) of (>l∈S(c)ANSWER(l))>
{L(c)} computed at Line (12), where eachANSWER(l) is obtained as the result of
RCFH(l, ACQ(l, P ),Γ′, [(q, P, c)|hist]) (Line (13)), which requires less thanp recur-
sive calls. By induction, for each literalli ∈ S(c), there existsRPi ∈ ACQ(li, P ) such
thatRPi sends a messagem(RPi, P, answer, [(li, RPi, _), (q, P, c)|hist], ri) if it has
received the messagem(P,RPi, query, [(q, P, c)|hist], li). The loop of Line (11) of
the algorithmRCFH(q, SP, Γ, hist) corresponds to the loop of Line (22) of the algo-
rithm RECEIVEQUERYMESSAGE(m(S, P, query,hist,q)), which triggers the sending
of the messagesm(P, RPi , query, [(q, P, c)|hist], li) for each literalli ∈ S(c) (Line
(29)). Therefore, according to the induction hypothesis, for everyli ∈ S(c), RPi

sends a messagem(RPi, P, answer, [(li, RPi, _), (q, P, c)|hist], ri). When the last
of those messages (let us saym(RPj , P, answer, [(lj , RPj , _), (q, P, c)|hist], rj))
is processed,r is produced by Line (3) of RECEIVEANSWERMESSAGE(m(RPj , P ,
answer, [(lj , RPj , _), (q, P, c)|hist], rj)), and there exists a peerU such thatP is
bound to send to it the messagem(P,U, answer, [(q, P, c)|hist], r) (Line (6)).

- If r is the last result returned by the algorithmRCFH(q, SP , Γ,hist), for ev-
ery P ∈ SP , for everyc ∈ LOCAL(P ), for everyl ∈ S(c), RCFH(l, ACQ(l, P ), Γ′,
[(q, P, c)|hist]) has finished, and, by induction, every peerRP of ACQ(l, P ) has sent a
messagem(RP,P, final, [(l, RP, true), (q, P, c)|hist], true). Therefore, the condi-
tion of Line (3) of the algorithm RECEIVEFINAL MESSAGE(m(RP,P, final, [(l, RP, _),
(q, P, c)|hist], true)) is satisfied, which triggers the sending of a messagem(P,U, final, [(q, P, true)|hist], true)
(Line (5)). 2

For sake of simplicity, both recursive and distributed algorithms have been pre-
sented as applying to literals. It does not mean that the queries that we consider are
limited to literals. Clausal queries can be handled by splitting them into literals and
then using the> operator to recompose the results obtained for each literal.
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4 Experiments

A P2PIS architecture has been developped in Java and deployed on a cluster of 28
Athlon 1800+ Linux machines with 1GB memory. Local implicates computation is
ensured by a local version of the distributed algorithm we presented; we optimized
its whole behavior by filtering as many subsumed clauses as possible (because of the
distributed and anytime properties of our algorithm, not all subsumed clauses can be
detected).

Benchmark generation: Evaluating distributed systems performances is not an
easy task. We chose to focus on random theories because they have been extensively
studied in previous (centralized) work [SC96] and represent real challenges for compi-
lation: it is well known that very small theories can easily produce very large compiled
theories. Our benchmark generator takes the characteristics of the acquaintance graph
as an input (d nodes ande edges), and fill its nodes with uniform-random 3CNF theo-
ries, all having the same (fixed) numberm of clauses and variables (n). All edges of the
connected graph are labelled with a given numberq of variables that both peers con-
nected by the edge do share. In order to simply encode shared variables while ensuring
that theorem 2 applies, we add two clauses in both peers to enforce the equivalence
between a local and a remote variable. Thus, we have a global theory ofd.m random
clauses of length 3,d.n variables, and4.q.e clauses of length 2 that encodes equiva-
lences of shared variables. Another parameter,p, is the number of target variables of
each peer.

In our experiments, we fixedq = 1 ande = 1.3 ∗ d (to obtain not too constrained
graphs), withd ∈ {5, 10, 28}. We also limited our tests to small peers (less than
30 clauses). Such theories may already contains an important number of implicates
[SC96]. State of the art algorithms [SdV01] can solve only up to 150 clauses and 50
variables at random, wich already corresponds to 5 peers of 30 clauses.

Experimental analysis: The first observations we made while running our exper-
iments was that short clauses usually came first and that produced clauses did contain
target variables from a number of distant peers. We also observed large differences in
the algorithm behavior for different queries on the same P2PIS.

We report on each line of Table 1 average values over ten P2PIS benchmarks. Each
benchmark consists itself of a synthesis over a number#Q of different queries on the
same P2PIS. Column#Q gives the number of asked queries, the number of queries
that finished before the timeout and their computation time. The column #Imp gives
the number of found implicates and its median. The last column gives the time to
produce respectively the first 2, 10, 100 and 1000 answers (when applicable). Those
values give clues on production speed of the algorithm. We considered a timeout of
30s for each queries, which represents a reasonable waiting time for a human asking
queries to the P2PIS.

The first lines (d = 5) shows that reducing the size of the target language does
not necessarily lead to performance enhancements. On one hand, each peer may ask
less queries and may quickly find all results (19 queries finished in 5s) but on the other
hand, the larger the target language is, the faster the first answers will come.

For the experiments with 10 peers, large differences in mean and median values
for #Imp may be explained by a very disparate distribution, which emphasizes that the
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d m n p #Q (#Ended) #Imp Time

5 22 11 2 55 (19, 5s) 14 (7) 2,8,–,–
5 22 11 5 55 (3, 1s) 7799(1431) 1,3,5,8
10 22 11 5 40 (4, 1s) 23132(1651) 1,2,5,9
10 30 15 5 40 (4, 2s) 7099(648) 3,7,13,17
28 22 11 5 112 (20, 2s) 8120(513) 2,3,6,10
28 30 15 5 112 (7, 4s) 1132(54) 8,13,20,24

Table 1: Results for multiple queries over different P2PIS

same P2PIS behaves in very different ways depending on the query. We can see that
even if only 10% of the queries end, the production speed of the algorithm is good
(1000 production clauses in less that 10s form = 22). When the complexity of local
theories grows (m = 30), the effect is a slow-down of the production speed.

At last, we tested the scalability of our approach by deploying the architecture over
the 28 nodes of the cluster, with different theory sizes. Even if only few queries end
within the timeout, our algorithm scales up well, and quickly produces a large number
of target clauses. We see that when local theories are harder, first results still come in
a reasonable amount of time. Note thatzres [SdV01] could not process within one
hour the global theories (988 clauses, 420 variables) corresponding to the union of the
local theories of these benchmarks.

5 Related work

The message passing distributed algorithm that we have described in Section 3 may be
viewed as a distributed version of an Ordered Linear deduction [CL73] to produce new
target clauses, which was extended by [Sie87] in order to produce all implicates of a
given clause belonging to some target language, and further extended to the first order
case by Inoue in [Ino92]. New derived clauses (the “proper implicates” in section
2) computation has already been extensively studied (see [Mar99] for a survey). In
particular, this problem, also known asΦ-implicates computation has been addressed
in [Sie87, Ino92] and in [KT90].

We have already pointed out the differences between our work and [AM00]. In
a peer-to-peer setting, using tree-decomposition of the acquaintance graph is not pos-
sible, but we can apply our algorithm to partitioned theories in place of the one of
[AM00]. It may benefit from the theory tree-decomposition to speed-up results. As we
have shown in the introducing example, the algorithm of [AM00] requires to be com-
plete that the global target language is the union of the local target languages. [GR03]
relies on that observation in order to encode a P2PIS with peer/super-peers topology
into a partitioned propositional theory and to use the consequence finding algorithm of
[AM00]. The global knowledge on the target variables of the whole P2PIS must be
known and is distributed among the super-peers. The model-based diagnosis frame-
work for distributed embedded systems [Pro02] is based on [AM00]. We think it can
benefit from our approach to apply to a real peer-to-peer setting in which no global
knowledge has to be shared.
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In distributed ATMS [MJ89], agents exchange nogood sets in order to converge to
a globally consistent set of justifications. In contrast with a peer-to-peer vision, such a
distributed vision of ATMS relies on a global knowledge shared by all the agents and
aims at getting a unique global solution.

6 Conclusion

The contributions of this paper are both theoretical and practical. We have provided the
first distributed consequence finding algorithm in a peer-to-peer setting, and we have
exhibited a sufficient condition for its completeness. We have developped a P2PIS
architecture that implements this algorithm and for which the first experimental results
look promising. This architecture is used in a joint project with France Télécom, which
aims at enriching peer-to-peer web applications with reasoning services (e.g., Someone
[PBAvdV03]).

So far, we have restricted our algorithm to deal with a vocabulary-based target
language. However, it can be adapted to more sophisticated target languages (e.g., im-
plicates of a given, maximal, length, language based on literals and not only variables).
This can be done by adding a simple tag over all messages to encode the desired tar-
get language. Another possible extension of our algorithm is to allow more compact
representation of implicates, as it is done in [SdV01]. That work relies on an efficient
clause-distribution operator. It can be adapted by extending messages in our algorithm
in order to sendcompressedsets of clauses instead of one clause as it is the case right
now, without changing the deep architecture of our algorithm.
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