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91405OrsayCedex, France.

Abstract

Thispaperaddressestheproblemof selectingfinite test
setsandautomatingthis selection.Amongthesemethods,
somearedeterministicandsomearestatistical.Thekindof
statisticaltestingweconsiderhasbeeninspiredbythework
of Thevenod-FosseandWaeselynck. There, thechoiceof the
distribution on the input domain is guidedby thestructure
of theprogramor theform of its specification.

In thepresentpaper, wedescribea new genericmethod
for performing statistical testing according to any given
graphical descriptionof the behavior of the systemunder
test. This methodcan be fully automated. Its main origi-
nality is that it exploitsrecentresultsandtoolsin combina-
torics,preciselyin theareaof randomgeneration of combi-
natorial structures.

Uniform random generation routinesare usedfor draw-
ing pathsfrom the set of executionpaths or tracesof the
systemunder test. Thena constraint resolutionstepis per-
formed,aimingto designa setof testdatathat activatethe
generatedpaths.Thisapproachappliestoanumber of clas-
sical coverage criteria. Moreover, weshowhowlinear pro-
gramming techniquesmay help to improve the quality of
test,i.e. theprobabilities for theelementsto becoveredby
thetestprocess.

Thepaperpresentsthe methodin its generality. Then,
in the last section,experimentalresultson applying it to
structural statisticalsoftware testingare reported.

1 Intr oduction

In theareaof softwaretesting,numerousmethods have
beenproposedandusedfor selectingfinite testsetsandau-
tomating this selection. Among thesemethodssomeare
deterministic andsomeareprobabilistic. Depending on the
authors,methods of this lastclassarecalledrandom testing
or statisticaltesting.

Randomtestingasin [11, 12, 28], consistsin selecting
testdatauniformly at random from theinputdomainof the

program. Whentherandom selectionis basedon someop-
erational profile, it is sometimescalledstatisticalor opera-
tional testingandcanbeusedto make reliability estimates
[26]. In this article, the kind of statisticaltestingwe con-
siderhasbeeninspiredby thework of Thévenod-Fosseand
Waeselynck[31]. There, the choiceof the distribution on
theinput domain is guided by somecoveragecriteriaof ei-
thertheprogram(structural statisticaltesting)orsomespec-
ification (functionalstatisticaltesting).

In the recentyears, the generalproblem of studying
andsimulatingrandom processeshasparticularly benefit-
ted from progressesin the areaof random generation of
combinatorial structures.The seminalworks of Wilf and
Nijenhuis in the late 70’s [35, 27] have led to efficient al-
gorithms for generating uniformly at random a variety of
combinatorial structures. In 1994, Flajolet, Zimmermann
andVanCutsem[13] have widely generalizedandsystem-
atizedthe approach. Briefly, their approachis basedon a
non-ambiguousrecursive decompositionof thecombinato-
rial structuresto be generated. Their work constitutesthe
basisof powerful tools for uniform random generation of
complex entities,asgraphs, trees,words, paths,etc. In the
presentpaper, we explore the ideaof usingsuchconcepts
andtoolsfor random softwaretesting.

Actually, thereareseveral waysto useuniform genera-
tion in theareaof testing.

As mentionedabove,a natural ideais to uniformly draw
datafrom theinput domain. This approach of random test-
ing, wasstudiedsometimeagofor numerical data[11, 12],
andturnedout to haveanunevendetectionpowerwhenap-
plied to realistic complex programs[4, 31]. This is con-
firmedby recentcomparisonsandevaluations[28].

In this paper, we follow another idea: We describea
generic method for usingthesetools assoonasthereis a
graphical description of the behavior of the systemunder
test. It may be the control graphof the program, or some
specification,either directly graphical (State-charts,Petri
nets)or indirectly via somesemanticsin termsof transi-
tion systems,automaton, statemachines,Kripke structures,
etc. Suchbehavioral graphs canbedescribedascombina-
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Figure1 : A graphwith startingandendingvertices

torial structures.Therefore,uniform generationcanbeused
for drawing pathsfrom thesetof execution pathsor traces
of thesystemunder test,or, more efficiently, among some
subsetssatisfyingsomecoverageconditions.

Our approach was sketchedin a previous paper[16],
wherewe presented a first example for structuralstatisti-
cal testing.Thispaperpresents themethodin its generality,
andavoidstheheuristicusedin [16] for theimplementation
of theall-statementsandall-branchescriteria.

The paperis organized as follows: Section2 presents
ourgeneralmethodto countanduniformly draw pathsin a
graph,basedonsometranslationinto acombinatorialstruc-
ture specification;Section3 recallssomebasicnotionsof
statisticaltesting,coveragecriteriaandtestquality; In Sec-
tion 4 we presenta pathgeneration schemeguidedby test
quality, andin Section5wediscusstheissueof deriving test
inputs, oncea setof pathshasbeengenerated.In the two
last sections,we give someexperimentalresultson apply-
ing ourmethodto structural statisticaltestingandwesketch
someperspectives.

2 Combinatorial preliminaries

Wepresentheresomecombinatorialconceptsandmeth-
odswhich will be usedin the sequelof the paper. Let us
considera connecteddirectedgraph � wherevertices,as
well asedges,arelabeledin sucha way that any two dis-
tinct vertices(respedges)havedistinctlabels.Furthermore,
thereexist two vertices��� (startingvertex) and ��� (ending
vertex) suchthat, for any vertex � , thereexistsa pathfrom��� to � andapathfrom � to ��� in � . Figure1 presentssuch
a graph, where verticesarelabeledwith numbersfrom 	 to


andedgesarelabeledwith lettersfrom ’a’ to ’k’; vertices	 and



arethestartingandendingverticesrespectively. If� is a positive integer, �� (resp. ���� ) denotesthe setof
pathsof length � (resp.whoselengthis � � ) in � from � �
to ��� , and � ��� denotesthewhole(possiblyinfinite) setof
pathsfrom ��� to ��� .

2.1 Uniform random generation of paths in a
graph

Our aim is, givenan integer � , to generateuniformly at
random (u.a.r.) oneor several pathsof length � � from��� to ��� . Uniformly meansthat all paths in � �� have the
sameprobability to begenerated. At first, let usfocus on a
slightly differentproblem: thegeneration of pathsof length� exactly. We will seefurther that a small change in the
graph allows to generatepathsof length � � . Remarkthat
generally thenumber of pathsof length � grows exponen-
tially with � .

Theprincipleof thegenerationprocessis simple:Start-
ing from vertex ��� , draw a pathstepby step.At eachstep,
theprocessconsistsin choosing a successorof thecurrent
vertex andgoingto it. Theproblemis to proceed in sucha
way thatonly (andall) pathsof length � canbegenerated,
andthat they areequiprobablydistributed. This is done by
choosingsuccessorswith suitableprobabilities. Givenany
vertex � , let ��������� denotethe number of pathsof length� which connect � to the endvertex � � . Supposethat, at
any stepof thegeneration,we areon vertex � which has �
successorsdenoted ��� , �! , . . . , ��" . In addition, supposethat�$#%	 edgesremainto be crossedin orderto get a path
of length � to ��� . Thenthecondition for uniformity is that
the probability of choosingvertex ��&'�)(*�,+-�%��� equals� �/. ���102(3�54!� � �6�7� . In otherwords,theprobability to goto
any successorof � mustbe proportional to the number of
pathsof suitablelengthfrom this successorto ��� .

So we needto compute the numbers � � �6+8� for any 	9�+:� � andany vertex � of thegraph. This canbedoneby
usingthefollowing recurrencerules:

�3;������=< ( if �><?���< 	 otherwise�!&5�6���@< A �CBD�FE �G&6H � �6�JIK� for +L#M	
where �ONP��I means that thereexistsanedgefrom � to �QI
(notethat ��I maybeequalto � if loopsareallowed in the
graph). Table1 presents the recurrenceruleswhich corre-
spondto thegraphof Figure1.

Now thegenerationschemeis asfollows:

R Preprocessingstage:Computeatableof the �S&5�6��� ’s for
all 	>�T+U� � andall vertices.

R Generation stage: Draw the path according to the
schemeseenabove.

Note that thepreprocessingstagemustbedoneonly once,
whatever thenumberof pathsto begenerated.Easycompu-
tationsshow thatthememory spacerequirementis �WVYX � X
integer numbers,where X � X standsfor the number of ver-
tices in the graph. The number of arithmetic operations
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� ; �6	J�Z< ���!�6	J�[<\�G ��6	��U<?	�!]��6	J�Z< �3^J�6	J�[<\�G_��6	��U<`�Ga��6	��[<\	�!b��6	J�Z< (
�G;��c�S�$< � � �c�d0M(e��f,�  �c�>0M(e� �c�O#M	��� � �c�S�$< � ] �c�d0M(e� �c�O#M	���  �c�S�$< � _ �c�d0M(e� �c�O#M	���!]��c�S�$< �3^J�c�d0M(e��f,�G_��c�>0M(e� �c�O#M	���G^��c�S�$< �Ga��c�d0M(e� �c�O#M	���!_��c�S�$< �Ga��c�d0M(e��f,� b �c�>0M(e� �c�O#M	���!a��c�S�$< ���!�c�d0M(e��f,� b �c�>0M(e� �c�O#M	��� ; �c�S�$< 	 �c�O#M	��

Table1 : Recurrencesfor the gihkj�l�m .

needed for thepreprocessingstage,aswell asfor thegen-
erationstage,is linearin � andin X � X . This ensuresa very
efficientgeneration process.

Now we address the problem of generating pathsof
length � � insteadof exactly � . Theonly changeis thefol-
lowing: Add to thegrapha new vertex �nI� which becomes
thenew startvertex, with anedgefrom �oI� to ��� anda loop
edge from �SI� to itself. Eachpathof length � fp( from �oI� to��� in thisnew graphcrosses� timestheloopedge for some� suchthat 	d�?�q� � andoncetheonefrom �oI� to ��� . With
this pathwe obviously associatea pathof length � 0M� in
theprevious graph. It is straightforward to verify that any
pathof length � � canbegeneratedin sucha way, andthe
generationis uniform.

Note that the above developmentsarea specialcaseof
ageneral methodof generationof combinatorialstructures,
which hasbeenfirst addressedby Wilf [35] andthengen-
eralizedand systematizedby Flajolet, Zimmermann and
Van Cutsem[13]. More precisely, the problemof gener-
atingpathsof a given lengthin � is equivalentto the one
of uniform randomgeneration of wordsof so-calledregular
languages, which hasfirst beendiscussedin [17]. Indeed,
a regular languageis definedby a particular labeledgraph
calledfinite stateautomaton, andany wordof thelanguage
corresponds to a pathin theautomaton. We show in Table
2 thesetof wordswhich correspondto thepathsof length� 10of thegraph of Figure 1.

In our implementation,the generationof pathsis pro-
grammedin MuPAD, usingtheCSpackage.MuPAD [29] is
a formal andalgebraiccalculustool, developedat theUni-
versity of Paderborn. CS [8, 9], is a packagedevoted to
countingandrandomly generating combinatorialstructures,
basedon the general notion of “decomposable structures”
definedin [13]. CS is now part of the MuPAD-Combinat
package[18] which is freely availableat the following ad-
dress:
http://mupad-combinat.sourceforge.net/

length words
3 bdk
4 acfk,bdkj
5 acegj, acfhj
7 bdhicfk
8 acegicfk, acfhicfk, bdhicegj, bdhicfhj
9 acegicegj, acegicfhj, acfhicegj, acfhicfhj

Table2 : The14pathsof length r2sit fromvertex uiv[wYt to vertexuex[w2y .
2.2 Constraints on pathsand graphs transforma-

tions

As wewill seein Section4,ourmethodof statisticaltest-
ing involvescountingandrandom generation of pathssub-
ject to additional constraints.In this subsection,we show
how to change thegraphin orderto take into account such
constraints.

Let usfocusfirst onarathersimpleconstraint: weaimto
construct, givena labeledconnectedgraph � andan edge
label z , a graph { whosesetof pathsis equal to thesetof
pathsof � whichcrossedgelabeledz . Thiscanbedone by
usingthefollowing procedure:

1. Createa copy �>I of graph � , in which the edgesare
labeledexactly as the edgesof � , and in which any
vertex label � in � becomes �|I in ��I .

2. Supposethattheedgelabeledz joinsvertex } to vertex� in G. Thendeletethisedgeandreplaceit with anew
edgelabeledz betweenvertex } (in � ) andvertex �~I
(in �DI ).

3. set ��I� as the ending vertex, insteadof �|� (but �J� re-
mainsthestartvertex.)

4. Delete all the vertices (and their adjacent edges)to
whichnopathfrom �S� exists.

5. Deleteall thevertices(andtheir adjacentedges) from
whichnopathto �|I� exists.

This concludestheconstruction of { . Figure2 shows the
resultof theprocedure,giventhegraph of Figure1 andthe
edgelabeled’e’. This transformationcanbedonein linear
timeandlinearmemory requirementwith respectto thesize
of thegraph. Notethatsteps4and5arenotmandatory: they
areusedonly to ”clean” thefinal graph by deletinguseless
elements.

Like in the previous subsection,this processcan be
statedin terms of operations on regular languages: the
graph { may be seenas a finite automaton of the regu-
lar language which is theintersectionof the languageof �
andthe (regular) language of wordswhich containat least

3



c

e

f

h

j

k

0

1

2

3

6

5

b

a

i

c

f

h

d

i

g

e

1’

3’ 4’

6’

7’

5’

Figure2 : Graph which containsonly the pathsof the graph of
Figure 1 which crossedge labeled’e’.

once the letter z . This approachcanbe generalizedin or-
derto perform morecomplex transformationsof graph � as
for example,constructing a graph which containsthepaths
which crossexactly � timesa given edge,or which cross
two or moregivenedges,or which take � timesa givency-
cle in the graph. Roughly, it sufficesto be ableto express
the desiredconstraintin termsof a regular language, i.e.
to designa regularexpressionor a finite automaton which
recognizesthe whole set of wordswhich satisfy the con-
straint. Thena standardalgorithm for intersecting regular
languages(seee.g. [20]) gives { . In our specialcase,this
generalmethodconsistsexactly in theproceduredescribed
above. Very similar proceduresapply if we aregivenver-
ticesinsteadof edges.

3 Coveragecriteria and statistical testing

The idea of combining coverage criteria and random
testing aims at overcoming somedrawbacks of both ap-
proaches.

Applying coveragecriteriacorrespondsto a decomposi-
tion of theinputdomain into some(very oftennondisjoint)
sub-domains: Eachelementto be covered definesa sub-
domain that is thesubsetof theinputsthatcauseits execu-
tion. Themaindrawbackhereis thatthesesub-domainsare
generally not homogeneous, i.e. someof their inputsmay
resultin afailure,andsomeothersmayyieldcorrectresults.

Randomtestinglessensthis drawbacksinceit allows in-
tensive testcampaignswherethesameelementof thepro-

gram may be executedseveral times with different data.
However, in its pureuniform versionit inducesa badcov-
erageof casescorrespondingto small inputsub-domains.

In [31, 32, 33, 34], Thévenod-FosseandWaeselynckde-
veloped a statisticaltestingmethod wherethe input distri-
bution takes into account somecoveragecriteria in order
to avoid theexistenceof low probability cases.They have
reported several experiments,which led to the conclusion
that their approach hasa betterfault detectionpower than
uniform random testinganddeterministic testingbasedon
classicalcoveragecriteria. However, the construction of
the input distribution is difficult sinceit requires the reso-
lution of asmany equations aspathsin theprogram(or the
specification). For largeprograms,or in presenceof loops,
theconstructionis empirical, basedonpreliminaryobserva-
tionsof thebehavior of theprogram[34].

Here, we avoid the constructionof the distribution by
usingthetoolspresentedin Section2 for generatingpaths.
Beforepresentingourapproachin detail,wemuststatepre-
cisely what it meansfor a statisticalmethodto take into
account acoveragecriteria.

A notionof testqualityfor statisticaltestingmethodshas
beendefinedfirst in [30]. We slightly reformulateit for our
context.

Let � be somedescription of a systemundertest. �
maybeaspecificationor a program,dependingonthekind
of test we are interestedin (functionalor structural). We
assumethat � is basedon a graph (or, moregenerally, on
somekind of combinatorial structure). On thebasisof this
graph, it is possibleto definecoveragecriteria:all-vertices,
all-edges,all-paths-of a certain-kind, etc. Moreprecisely, a
coveragecriterion � characterizesfor agivendescription�
a setof elements �����6��� of theunderlying graph(noted �
in thesequelwhen � and � areobvious). In thecaseof de-
terministictesting,thecriterionis satisfiedif every element
of thesetis exercisedby at leastonetest.

In thecaseof statisticaltesting,thesatisfactionof acov-
eragecriteria � by a testingmethodfor a description� is
characterizedby theminimalprobability � �n� � �c��� of cover-
ing any elementof �����6��� whendrawing � tests.In [30],���n� �d�c��� is calledthetestqualityof themethodwith respect
to � .

Thetestquality � �n� � �c��� canbeeasilystatedif � �n� � �c���
is known. Indeed,onegets� �n� � �c���L<�(S0��)(|0D� �n� � �c���k� � ,
sincewhendrawing � tests,theprobability of reaching an
elementis oneminus the probability of not reaching it �
times.

Let uscomebackto theexample of Section2, wherethe
setof all pathsof Figure1 hasbeenexpressedasa specifi-
cationof somecombinatorialstructure, andtheCSsystem
is usedfor uniformly drawing among pathsof length � � .
Let usnote � �� thesetof suchpaths,asin Section2. Con-
sideringthe coveragecriterion “all pathsof length � � ”,
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notedbelow ��� �� , wegetthefollowing testquality:

���Q����� � � <�('0M�k('0 (X ���� X � �

In theexample, choosing � <�(�	 allows thecoverageof all
elementary paths.Sincethereare14 pathsof lengthlessor
equal to 10(seeTable2) wehave:

���Q���J�6� � � <�('0p�)('0 (X (�� X � �

Table3 givesthenumber of testsrequiredfor fourvalues
of testquality, for thecriterion“all pathsof length ��(e	 ”.

� 0.9 0.99 0.999 0.9999� 32 63 94 125

Table 3 : Numberof tests� requiredfor a testquality �
The assessmentof test quality is more complicatedin

general.Let usconsidermorepracticable coveragecriteria,
suchas“all-vertices” or “all-edges”,andsomegiven statis-
tical testingmethod. Theelementsto becoveredgenerally
havedifferentprobabilitiesto bereachedby atest.Someof
themarecoveredby all thetests,for instancetheinitial and
terminal vertices�J� and��� mentionedin Section2. Someof
themmayhaveaveryweakprobability, dueto thestructure
of thebehavioral graphor to somespecificityof thetesting
method. For instance,in ourexample edges� and � appear
in 5 pathsof length ��(e	 only. Edges � and � appearin
9 suchpaths. It meansthat drawing uniformly from � �Q� ;
leadsto a probability of _�)^ to reachedge� , and  �8^ to reach
edge � .

Let � � �c���L<¢¡e£ �e¤ £  �¤�¥¦¥§¥¦¤ £3¨ª© andfor any +L«9�)( ¥§¥ �7� ¤6¬ &
theprobability for theelement£�& to beexercisedduring the
execution of a test generatedby the considered statistical
testingmethod. Then

� �n� � �c���L<�('0M�k('0 ¬ ¨&  � � (1)

where ¬ ¨®& ¯<°�q+ � ¡ ¬ & X +W«±�k( ¥¦¥ ���i© . Consequently, the
number � of testsrequired to reacha givenquality �S���c���
is

�³²µ´6¶e· �)(®0*� � �6�q�k�
´c¶e· �k('0 ¬ ¨®& ��

By definition of the test quality, ¬ ¨&  is just ���n� �G�6�q� .
Thus,fromtheformulaaboveoneimmediatelydeducesthat
for any given � , for any given � , maximizingthequality
of a statisticaltestingmethod with respectto a coverage
criteria � reducesto maximizing � �o� � �6��� , i. e. ¬ ¨®&  .

4 Generation of pathsguided by the QoT

4.1 General scheme.

Now let us considera given coveragecriterion � . As
a preliminary remark, notethat thesetof elements� � �c���
mustbefinite, otherwise thequality of testwould bezero.
This implies, in particular, that the coveragecriterion “all
paths”is irrelevant assoonasthereis acyclein thedescrip-
tion, like in our example (figure 1). Thus,this criterion has
to be bounded by additional conditions, for example “all
pathsof length � � ”, “all pathsof lengthbetweengiven � �
and �  ”, or “all pathswhich take at most � timeseachcy-
cle in thegraph”. For thesake of simplicity, we consider in
the following that paths aregeneratedwithin � �� , the set
of pathsof length � � thatgofrom ��� to ��� .

We considertwo cases,according to thenatureof theel-
ementsof �¸���c��� . If �����6��� denotesa setof pathsin the
graph, we immediatelystatethat thequality of testis opti-
mal if thepathsof �:���c��� aregenerated uniformly, i.e. any
pathhasthe sameprobability (34 X �ª���6��� X to be generated.
Indeed,if theprobability of oneor several pathswasgreater
than (G4 X � � �c��� X , then therewould exist at leastonepath
with probability lessthan (G4 X � � �6�q� X , thereforethequality
of testwould belower. We saw in Section2.1how to gen-
erateuniformly random pathsof givenlength � in a graph,
andhow to modify the graph in orderto fit with thecrite-
rion “all pathsof length � � ”. Themethodeasilyapplies
to othercriteriathatinvolvepaths,asthosegivenabove,by
wayssimilar to theonesseenin Section2.2.

Now, weconsiderthecasewheretheelementsof �d���c���
arenot paths,but areconstitutive elementsof thegraph as,
for example, vertices, edges,or cycles. Clearly, uniform
generationof pathsdoesnot ensureoptimalquality of test
in this case. Ideally, the distribution on pathsshoulden-
surethat the minimal probability to reachany elementof� � �c��� is maximal. Unfortunately, computing this distri-
butionwouldrequire theresolutionasasmany equationsas
paths.This is generally impracticable.Thus we proposeto
generateapathin two steps:

1. pick at random oneelement£ of � � �c��� , according to
a suitableprobability distribution (which will be dis-
cussedin Section4.2);

2. generateuniformly at random onepathof length � �
thatgoesthrough £ . (Thisensuresabalanced coverage
of thesetof pathswhichcross£ .)

Algorithms for achieving the secondstepare detailedin
Section2. Thenext subsectiondealswith thefirst step.
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4.2 Probability distrib ution for anoptimal quality
of test.

Theproblemconsistsin choosingthesuitableprobability
distribution over � � �c��� in order to maximizethequalityof
test. Given � � �6�q�d<±¡e£ �3¤ £  �¤�¥�¥�¥C¤ £e¨ª© , with �¹#1	 , the
probability ¬ & for a the element £ & (for any + in �)( ¥§¥ ��� ) to
bereachedby a pathis

¬ &~<?º�&|f »¼C½�¾ �i¿À¿ ¨®ÁÂHoÃk&KÄ º
¼|Å & � ¼
Å ¼ ¤

where

R Å & is thenumber of pathsof �d�� which takeselement£3& ;
R Å & � ¼ is the numberof pathswhich take bothelements£3& and £ ¼ ; (note that Å & � & = Å & and Å & � ¼ = Å ¼ � & );R º|& is theprobability of choosingelement£S& duringstep

1 of theabove process.

Indeed,theprobability of choosingelement£ & in step1 isº|& ; andtheprobability of reaching£�& by drawing a random
pathwhich goesthrough anotherelement £ ¼ is Æ .KÇ ÈÆ È . The
aboveequationsimplifiesin

¬ & <
¨
»¼5É � º

¼ Å & � ¼
Å ¼ (2)

sinceÅ & � &Ê< Å & . Notethatcoefficients Å ¼ andÅ & � ¼ areeasily
computedby waysgivenin Section2.

Now we have to determine probabilities¡�º�� ¤ º� ¥�¥�¥�¤ º ¨ © with A±º & < ( , which maximize¬ ¨®& O<�Ë>Ì¦ÍQ¡ ¬ & ¤ +®«ÏÎÐ( ¥§¥ �qÑc© . This canbestatedasa linear
programming problem:

Maximize ¬ ¨®&  undertheconstraints:ÒÔÓ +Õ�M� ¤�¬ ¨&  � ¬ &ÕÖº��[f2º| f?×�×�×ef2º ¨ <�(�Ö
wherethe ¬ & ’s arecomputedas in Equation (2). Standard
methodsleadto a solutionin time polynomial according to� .

Let us illustratethis with our example. Given the cov-
erage criterion “all the edges”andgiven � <Ø(�	 , Table4
presents the coefficients Å & � ¼ , where + and Ù denote letters
from ’a’ to ’k’. For example, the value’9’ in row ’f ’ and
column ’c’ meansthat Å[Ú � Û°<ÝÜ , i.e. thereareexactly 9
pathsof length lower or equal to 10 from � � to � � which
crossbothedges� and � in thegraphof Figure1.

The corresponding linear program is shown in Table5.
Eachline, but the last one, is an inequation which corre-
spondsto a row in Table4. Thefirst termof theinequation
is ¬ ¨®&  , thevalueto bemaximized.Thesecondtermis one

a b c d e f g h i j k
a 9 0 9 0 5 7 5 5 6 6 3
b 0 5 3 5 1 2 1 4 3 3 2
c 9 3 12 3 6 9 6 8 9 8 4
d 0 5 3 5 1 2 1 4 3 3 2
e 5 1 6 1 6 3 6 3 5 5 1
f 7 2 9 2 3 9 3 7 7 5 4
g 5 1 6 1 6 3 6 3 5 5 1
h 5 4 8 4 3 7 3 9 7 7 2
i 6 3 9 3 5 7 5 7 9 6 3
j 6 3 8 3 5 5 5 7 6 9 0
k 3 2 4 2 1 4 1 2 3 0 5

Table4 : Tableof the Þ�h ß .

of the ¬ & ’s, computedaccording to Formula 2. For exam-
ple, thefirst line meansthat ¬ ¨®&  mustbeloweror equalto¬Sà , theprobability of reaching edge’a’ with a randompath.
By maximizing ¬ ¨®&  , onemaximizesthelowest ¬ & , sothat
thequality of testis optimal. Thelast line ensuresthat the
probabilities º & thatwearesearchingfor sumto 1.

Solving this linear program leadsto º à <áº Ú <%ºSâ9<º Û <ØºSãÏ<ØºSäM<Øº|å�<Øº�æq<�	 , while º|çM<Øº|è2< _�ka
and º�éd< a�ka . This gives ¬ ¨®&  < � , therefore theoptimal
qualityof testequals('0 � iê , according to Formula1.

5 From paths to input data

Sofarwehavepresentedageneric methodfor generating
execution pathsin a way thatmaximizestestquality. This
method relieson existing algorithms andtools andcanbe
fully automated. A last stepis to generate,for every path,
input valuesthatwill causeits execution.

5.1 The tri vial case of finite models

First let usconsider thecasewherethegraphical descrip-
tion correspondsto a finite model of thesystemunder test
(FiniteStateAutomaton,FiniteStateMachine,etc)[7]. Ev-
ery edgeof the description is labeledby somesymbol of
a finite alphabet that representssomeinput or event. This
symbol maybecoupledwith someothersymbol indicating
someexpectedreaction(output, action). Coveragecriteria
typically usedin suchcasesarevariants of transitioncover-
age,themainproblembeingstateidentificationbefore and
aftera testedtransition.Themethoddescribedin Section4
canbeusedto draw pathsfor suchcoveragecriteria. Then,
given a path, the test datafor executing it is just the se-
quence of inputs labeling its edges,possiblyfollowed by
someadditional inputs in order to observe that the system
under testis in theexpectedstate[21, 6].
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¬ ¨®&  � º�ë f ]^ º�ì f _a º��íf b  º�î f _a º|ïðf _  º�ñ f  ] º|&òf  ] º ¼ f ]_ º "¬ ¨®&  � º�ó f �^ º�ì f¸º�ô f �a º��íf    º�î f �a º|ïðf ^  º�ñ f �] º|&òf �] º ¼ f  _ º "¬ ¨®&  � º�ë f ]_ º�ó f¸º�ì f ]_ º�ô f¸º�� f¸º�î f¸ºSï fOõ  º�ñ f¸º�& fOõ  º ¼ f ^ _ º "¬ ¨®&  � º�ó f �^ º�ì f¸º�ô f �a º��íf    º�î f �a º|ïðf ^  º�ñ f �] º|&òf �] º ¼ f  _ º "¬ ¨®&  � _  º�ëöf �_ º�ó÷f � º�ì÷f �_ º�ô f¸º�� f �] º�î f¸ºSï f �] º�ñ f _  º|&òf _  º ¼ f �_ º "¬ ¨®&  � b  º�ëöf  _ º�ó÷f ]^ º�ì÷f  _ º�ôðf � º�� f¸º�î f � º|ïðf b  º�ñ f b  º|&òf _  º ¼ f ^ _ º "¬ ¨®&  � _  º�ëöf �_ º�ó÷f � º�ì÷f �_ º�ô f¸º�� f �] º�î f¸ºSï f �] º�ñ f _  º|&òf _  º ¼ f �_ º "¬ ¨®&  � _  º�ëöf ^_ º�ó÷f  ] º�ì÷f ^_ º�ôðf � º��íf b  º�î f � º|ï f¸º�ñ f b  º|&òf b  º ¼ f  _ º "¬ ¨®&  �  ] º�ëöf ]_ º�ó÷f ]^ º�ì÷f ]_ º�ôðf _a º��íf b  º�î f _a º|ïðf b  º�ñ f¸º�& f  ] º ¼ f ]_ º "¬ ¨®&  �  ] º�ëöf ]_ º�ó÷f  ] º�ì÷f ]_ º�ôðf _a º��íf _  º�î f _a º|ïðf b  º�ñ f  ] º|& f¸º ¼¬ ¨®&  � �] º�ëöf  _ º�ó÷f �] º�ì÷f  _ º�ôðf �a º��íf ^  º�î f �a º|ïðf    º�ñ f �] º|& f¸º "(¸< º�ë f¸º�ó f¸º�ì f¸º�ô f¸º�� f¸º�î f¸ºSï f¸º�ñ f¸º�& f¸º ¼ f¸º "
Table 5 : Thelinear program.

5.2 The general caseof infinite models

Theproblemis moredifficult assoonasthe model un-
derlying the descriptionis not finite [21]. It is the case
for various sortsof Extended Finite StateMachines[19],
State-charts [5], or thecontrol graphof piecesof code[16],
namely any description including non-trivial datatypesand
guards.

An example is given in Figure 3, using a notation
close to UML state charts. It is presentedin details
in [22]. In this example, the ø variable is of a given
type ø�£Gù3ùe� · £ ; every messagehas a priority. The ú
variable is of type �:û3+ ¶ ûe+Âü8ý�ú:}�£e}�£ . The · £eü opera-
tion returns the oldest messageof the queue with the
best priority. The boxes labeled by þª}��Q��£eû��cúD� and� ´ +8£ � ü)ÿ�£3����ý�� úD� denote infinite classesof states, (as
many states as possible values for the ú variable).
A possible trace (or more exactly class of traces) is:4�ú ¥ + � +ÂüC� �FÖ � ø`4�ú ¥ ���J�|� ø¢�FÖ � ûG£3����ýQÎ �Õú ¥ +8ùe��� ¬ ü8ýQ� �ÂÑ64 Ö� ú ¥ · £�üC� �54�ú ¥ ûG£e� ¶ �J£��c�

Buffer(Q)

!Q.get()/Q.remove()

?ready[not Q.isEmpty()]/_?M/Q.add(M)

actionguardevent

_/Q.init()

?M/Q.add(M)

ClientReady(Q)

Figure3 : A state-chart specificationof a buffer with priorities

Given somepath or sometrace madeof conditioned
statementsor guardedcommands,how to find someinputs
triggering its execution? It is a classicalissuein struc-
tural testing, or in functional testing basedon specifica-
tions with datatypes. Constructing, via symbolic evalua-
tion techniques,the predicatecharacterizingthe input do-
main of the path, cansolve it: This predicateis the con-
junction of the guards (or conditions) encounteredon the
path, adequately updated in function of the variables as-
signments (seefor instance[16]). Then the problem re-
ducesto a constraint-solving problem. Any datasatisfy-
ing the above predicateis an input executing the path. At
this stage,the tool to be usedis highly dependenton the
kind of guardsanddatatypesallowed in the description:
Thereexist a lot of specializedconstraint solvers for var-
ious typesof variablesand constraints, which ensureter-
mination and completeness. However, in full generality
the problem is only semi-decidableanda general-purpose
solver may not terminatewhen searching for a solution.
Lately, significantadvanceshavebeenachievedwith thein-
troduction of powerful heuristicsandrandomizationtech-
niques,suchasthoseusedin the LOFT andGATEL tools
[23, 24] or the BZ-tools in [2]. Other usesof constraint
solvers for test generation are reported in [3, 14, 25]. A
classicaldifficulty at this stageis thatunfeasiblepathsmay
arise. For instance,in the example of Figure3, all paths
beginningby 4!ú ¥ + � +ÂüC�c�CÖ � ûG£e����ýQÎ �Õú ¥ +)ùe��� ¬ ü8ýQ�c�ÂÑ64 Ö ¥¦¥¦¥ are
unfeasiblesincethe + � +Âü methodassignsanemptystateto
theQueue.In thenext sectionwe show how we copewith
this problem in the prototype that we have developed for
structural statisticaltesting.
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6 The AuGuSTe prototype

In order to validate the applicability of our approach,
Sandrine Gouraudhasdevelopeda tool for statisticalstruc-
tural testing[15]. The programsunder testarewritten in
a small programminglanguageinspiredfrom C. The data
types are booleans, integers, and arrays. The constraint
solver is theoneof GATEL [24], extendedto arrays.

Whenanunfeasiblepathis detected(orsuspected)by the
constraintsolver, it is rejectedandanother path is drawn.
This strategy doesnot affect the uniform distribution on
paths: any feasiblepath is still drawn with uniform prob-
ability. This ensuresthat,if thecoveragecriterioninvolves
pathsonly (like e.g. ”all pathsof length � � ”), thequality
of teststaysoptimal. However, in other cases,it may de-
creasewith regard to its theoreticalvalue,dependingonthe
distribution of unfeasiblepathsin thegraph.

Actually, ourfirst experimentswith AuGuSTeshow that
thedifferencemaybesignificantin presenceof bignumbers
of unfeasiblepaths.We arecurrently investigatingmethods
for improving this experimentalquality of test. For exam-
ple, in somecasesa number of unfeasiblepathscanbede-
tectedby static analysis of the description of the system.
Then the combinatorial specificationof the graphcan be
modified in order to avoid thesepaths.

�
lines

�
paths coverage cardinality

criterion � of �
FCT1 30 17 all paths 17
FCT2 43 9 all paths 9
FCT3 135 33 all paths 33
FCT4 77 � all branches 41

Table 6 : Thefour testedprograms

Our tool hasbeenusedfor testingthe samesetof four
C programs as in [33] (seealso table 6), where Pascale
Thévenod-Fosse, Hélène Waeselynckand Yves Crouzet
presented thefirst experimentalevaluationof thedetection
power of statisticalstructural testing. Thanks to them, it
waspossibleto reusethesamesetsof mutantsandto replay
almostthesamesetof experiments. In [33], thestatistical
method is different from here, sinceit is basedon the ex-
plicit construction of a distributionon theinput domain, ei-
theranalytically, or empirically(whenthereis someloop).
In our case,we draw pathsandthenuseconstraint-solving
tools to produceinputs. Of course, this inducesa distri-
bution on the input domain. As this distribution is highly
dependenton the implementation of the constraintsolver,
it remainsimplicit. Theonly way to comparethedetection
power of the two methods is by experiments. Despitethe
differencebetweenthe two approaches,the resultsof the

experimentsarequitesimilar (seeTable8), with theadvan-
tagethatournew approachis fully automated.

More than10000 experimentswereperformedon 2914
mutants (seeTable7). Testdataweregeneratedin orderto
obtainaqualityof testof ����<`	 ¥ Ü�Ü�Ü�Ü . Thetestgeneration
timefor theprogramsFCT1,FCT2andFCT3wasfew min-
utes.Thedifferencesbetweenthemutationscoresobtained
for FCT3(seeTable8) aremainly dueto a problem of non
independence of the testexperimentsbecausesomeglobal
variablesarenot initialized in this program.

�
tests� �

mutants
FCT1 170 279
FCT2 80 563
FCT3 � V �J	�� 1467
FCT4 � V	� �!	 605

Table 7 : Numberof mutantsandtestsfor each program

Mutationscores
LAAS LRI

FCT1 1 1
FCT2 1 1

min=1 min=0.9951
FCT3 exp=1 exp=0.9989

max=1 max=1
min=0.9898 min=0.9854

FCT4(1) exp=0.9901 exp=0.9854
max=0.9915 max=0.9854
min=0.9898 min=0.9634

FCT4(2) exp=0.9901 exp=0.9762
max=0.9915 max=0.9854

Table 8 : Mutationscores

The fourth program, FCT4, was the most difficult and
the most interesting. It contains both a loop and a huge
numberof unfeasiblepaths.Thecoveragecriterion was“all
theedgeswith maximal pathlengthof 234”, in numberof
edgesof the control graph(thusmuchmore in number of
statements).The length 234 waschosenaccording to the
characteristicsof the loop. Consequently, thepredicatesto
besolvedwereratherlong too: At leastoneoutof two ver-
tices on a pathcorrespondsto a decisionpoint, thus to a
condition to beadded to thepredicate.

In order to reducethe number of unfeasible paths,we
have adapted the combinatorial structure according to the
characteristicsof the program. This modificationcan be
done by somesimple static analysis,without altering the
program. This manipulation reduces the test generation
time (drawing pathsandsolving predicates)from a week
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to two hours.Thepreprocessingstage(construction of the
combinatorialstructureandcounting thenumber of paths)
lastedtwo days: it means constructing the Å & ¼ table for
41 edges.This preprocessingstagecould be improved by
avoiding unnecessaryintersections, using dominator tree
[1] for determining equivalencesbetweenÅ & ¼ , andoptimiz-
ing combinatorial structures.We arecurrently working in
thisdirection.

The obtainedmutationscoresarepresentedin Table8,
line FCT4(1). The line FCT4(2) correspondto mutation
scoresobtained by usingfor the º & a distribution basedon
theheuristic presentedin [16]. Theresultsareslightly lower
but thepreprocessingstagelastsonehouronly.

Thesefirst experimentslet think that the method scales
upwell.

7 Conclusionand perspectives

We have shown how uniform generation of combina-
torial structurescanbe usedfor statisticaltestingassoon
assomegraphical descriptionof theprogramundertest is
available.If thedescriptionis at theprogramlevel (control
flow graph), ourmethod appliesto structuralstatisticaltest-
ing. If thedescriptionis at thespecificationlevel, it applies
to functionalstatisticaltesting.

Thispaperbrings two mainnoveltieswith respectto our
previouspaper[16], wherewe presenteda first application
of combinatorialmethods to the maincriteriaof structural
testing:First,wegiveageneralizationof themethodto any
graphical descriptionandto any coveragecriteria ; More-
over, in Section4,weshow how tobuild aprobability distri-
butionon theelementsto becoveredfor any givencriteria.
This distribution ensuresan optimal quality of test when
associatedwith the methods of Section2.2 for randomly
generatingpathsconstrained to crosstheseelements. This
replacestheheuristic usedin [16] for theimplementationof
theall-statementsandall-branchescriteria.

As reported in Section6, this approach hasbeenvali-
datedonrealisticexamples.

It exhibits a similar detectionpower asThévenod-Fosse
andWaeselynck’smethod, whichis betterthanpurerandom
testingor deterministic testing.

More generally, we think that this approachprovidesa
basisfor anew classof toolsin thedomainof testing,com-
bining random generation of combinatorial structures, lin-
earprogramming techniques,andconstraint solvers.

Someinterestingperspectivesarestill open.TheCStool
can deal with languagesmore complex than regular lan-
guages (for instance,with cardinality constraintssuchas
pathswith thesamenumberof iterations in loop1 andloop
2). Practically, it meansthat it could be possibleto com-
pile behavioral graphs into moreelaboratedcombinatorial
structures,takinginto account someknowledgeon thesys-

temunder test,or someresultsof staticanalysis.Thiscould
improve significantlythe efficiency of the tools, by elimi-
natingsomemajorsourcesof unfeasiblepaths.

Anotherpossibilityworthto exploreis theuseof thenew
approachproposedrecentlyby Flajolet& al. [10] for ran-
domgenerationof combinatorialstructures: It is basedon
Boltzmannmodels andcould avoid the introduction on a
boundon thelengthof theconsideredpaths.
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