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1 Abstract

A self-stabilizing algorithm cannot detect by itself that stabilization has been reached. For
overcoming this drawback Lin and Simon introduced the notion of an external observer,
i.e. a set of processes, one being located at each node, whose role is to detect stabilization.

We propose here a less expensive approach, where there is a single observing process
located at a unique node. This process is not allowed to detect false stabilization and it
must eventually detect that stabilization is reached. Moreover it must not interfere with
the observed self-stabilizing algorithm. OQOur result is that there exists such an observer
for any problem on a distinguished network having a synchronous self-stabilizing solution.
Note that our proof is constructive.

2 Introduction

The notion of self-stabilization was introduced by Dijkstra [Dij74]. He defined an algo-
rithm as self-stabilizing when “regardless of its initial state, it is guaranteed to arrive at
a legitimate state in a finite number of steps”. Such a property is very desirable for any
distributed algorithm, because after any unexpected perturbation modifying the memory
state, the algorithm eventually recovers and returns to a legitimate state, without any
outside intervention.

Dijkstra’s notion of self-stabilization, which originally had a very narrow scope of
application, is proving to encompass a formal and unified approach to fault-tolerance
under a model of transient failures for distributed algorithms (cf. books like [Dol00] or
[Tel94] for overviews).

Traditionally, self-stabilization is supposed to suffer two main drawbacks. The first is
that a self-stabilizing algorithm only eventually recovers, involving that during some time
the behavior is not correct. The second is that a process can never know whether or not
the algorithm is stabilized.

There is less that you can do against the first drawback because it is inherently bounded
to the very definition of self-stabilization. You simply have to pay for a much smaller over-
head than for the robust algorithm approach (consensus), and the price is the momentary
loss of the safety.

Surprisingly enough, there is no study dealing with the second issue, apart the impor-
tant paper by Lin and Simon [LS92]. If it is obvious that no detection of stabilization from
the inside is possible (any local variable used for that could be corrupted). Nevertheless
it is perfectly feasible to detect stabilization from the outside (for instance and although



it is just a theoretical remark, when a bound on the number of steps before stabilization
is known simply by counting). “From the outside” can be replaced by “from the inside
but using stable memory” (memory not subject to failures). By restricting their atten-
tion to ring networks, Lin and Simon propose “a new model, in which it is meaningful
to say that a processor knows that the ring is stable”. This model introduces the notion
of a distributed observer, located at each node of the network and that is responsible for
detecting stabilization and does not influence the self-stabilizing protocol. Lin and Simon
did not address the implementation issue of their observer, but it is straightforward to see
that implementing the observer involves, at each node, the presence of a stable memory.
If such an assumption can be valid on small local area networks, in which strong security
and reliability can be ensured, it is unrealistic for world wide, heterogeneous networks, in
which implementing a stable memory on each machine would be, if ever possible, extremely
costly.

In this paper we tried to solve the observation problem using much less safe memory.
In particular, we raised the question to know whether or not stabilization detection is
feasible, if only one node disposes of some stable memory.

Think of a network in which a self-stabilizing algorithm is executed. In a particular
location, there is a special process, the observer, that, as its name indicates it, observes
the behavior of the local module of the distributed algorithm. The observer disposes as
a parameter of sequences of actions (or a machine generating such sequences) and simply
tries to match one of these predetermined sequences to what the local process is executing.
As long as no matching appears the observer does not say anything, but once there is one,
it immediately announces “stabilization detected”.

Obviously, the announcement obeys some conditions. For instance the observer is not
allowed to announce false stabilization. At the opposite, if the algorithm is stabilized
the observer must eventually announce. Moreover, the observer cannot be used by the
algorithm for stabilizing : the behavior of the algorithm must be the same with or without
observer.

The observer has the following features :

1. The observer is located at one processor of the network. If the network is anonymous,
the location of the observer is arbitrary.

2. The observer is not allowed to detect stability with any information depending on
the network (for instance the size).

3. The observer cannot influence the algorithm, which means that the execution of the
algorithm is the same with or without the observer.

4. The observer is not subject to any type of corruption.

5. The observer observes the behavior of the local process (sequential sequence of in-
structions) and tries to match part of this behavior with some predefined sequences.

6. The announcement of the stabilization obeys some safety and liveness conditions.

We will prove the existence of such an observer, not only for particular network topolo-
gies like rings or trees, or for particular (local) problems, but for any problem on any
distinguished network topology, provided that, obviously, this problem has a synchronous
self-stabilizing solution.

Our main result can be stated as : if there exists a synchronous self-stabilizing dis-
tributed solution for some problem in some distinguished network, then there exists a



synchronous self-stabilizing distributed solution (not necessarily the same) for the same
problem in the same network, that can be observed by an observer like above located at a
particular node. Moreover the observable self-stabilizing solution can be effectively built
from the simply self-stabilizing solution in a canonical way (and then be possibly built in
a compiler).

As a matter of fact we offer a little bit more.

1. If the self-stabilizing algorithm is generic for a whole family of networks then the
observer is the same for all networks in the family.

2. Two different observers for two different problems only differ by their parameter (the
sequences) but their basic mechanism is the same (the matching)

Point 1 is useful for not changing the observer when network topology dynamically
evolves (maintaining the same basic structure). Point 2 makes simpler the implementation,
since only the parameters have to be changed for detecting stabilization of a new algorithm.

A last issue must be discussed : where to locate the observer? In the case where the
network has a distinguished node (we will here assume this property), it is natural to
locate it at this node.

The plan of the paper is the following. First, we introduce the formal definition of an
observer. Then, we prove that any problem on a distinguished network that can be solved
by a synchronous self-stabilizing solution, can also be solved by a synchronous observable
self-stabilizing solution (not necessarily the same).

3 Model of the observer

We use a classical model for distributed algorithms.

Definition 1 (Distributed algorithm) A distributed algorithm A = (C, A) is an au-
tomaton, where C is the set of all states (called configurations) of A and A is the set of
all transitions (called actions) of A.

Definition 2 (Execution) Let A be a distributed algorithm. An ezecution of A, noted
E = ciajcoaz . .. is a mazimal sequences of configurations and actions of A such as c;y1
is reached from c; by the execution of the action a;.

The sequence is maximal if it is infinite, or finite but no action of A is possible in the
last configuration.

Definition 3 (Self-stabilizing algorithm) An algorithm A is self-stabilizing for a spec-
ification P iff it exists a sub-set Cr of the set of the configurations of A such as : (i) every
execution of A with an initial configuration in Cp verifies P and Cr is closed (ii) every
ezecution of A contains at least a configuration in Cr.

We call Cr, the set of legitimate configurations of A.

Validation of the model It is difficult to describe a distributed algorithm by a global
automaton. Usually, a processor is given by a set of guarded rules. Each rule has two
parts : the guard part (condition) and the move part.

( Algorithm ) = (Rule1) | (Rule2) | ... | (Rulen)

( Rule ) = ( Guard ) — ( Move )



The guard part is defined as a boolean function of the processor’s variables and of the
variables of its neighbours. When a guard of a rule on a processor is true, this processor
may take the corresponding move which changes the processor state into a new one. The
relation between guarded rules and automaton is given by :

1. The variables of a processor and the program counter determine the states of this
processor : each state represents a possible value of the program counter and the
variables of the processor. We note State(P), the set of all possible states of a
processor P.

2. The code of the algorithm determines the transition function of the processor : each
rule of the algorithm represents a transition of the processor. We note Trans(P),
the set of all transitions of a processor P.

We assume that rules are locally atomic and we note that a processor is a sequential
machine, so it can only execute one rule at a time.

A distributed algorithm is composed by a set of processors. Let {Pi,...,P,} be a set
of processors. The relation between the processors {P,..., P,} and the automaton of the
distributed algorithm A, composed by {Pi,...,P,} is given by :

1. A configuration of A is a vector of states of all the processors of the algorithm,
formally, if ¢ is a configuration of A, then ¢ € State(P;) x ... x State(Py)

2. An action ¢ % ¢ of Ais such as ¢ and ¢ are configurations of the algorithm and a is a
composition of some rules of processors of the algorithm such as : ifa = {ry,...,7r,},
then r; € Trans(P) = the state of P and the state of all its neighbours in ¢ verify
the guard of r; and only the state of P is changed in ¢’ according to the move of r;.

We assume that algorithms are synchronous, which means that an action of an algo-
rithm is the composition of at most one rule for each processor.

The relation between the automaton of a distributed algorithm and the processors
of the same distributed algorithm allow us to talk about projection of an execution of a
distributed algorithm over a processor :

Definition 4 (Projections of an execution over a processor)
Let A be a distributed algorithm and E = cia1c2as - .. an execution of A. A projection of
E over a processor p is :

O,E =Tlyc; Hyep Mpez ... with Vi > 1,11,¢; € State(p)

Definition 5 (Projections of an execution over a set of variables of a processor)
Let A be a distributed algorithm and E = ciaicsas ... an execution of A. A projection
of E over a processor p and a set of variables v = {v1,...,vx} such as Vi € [1,k],v; is a
variable of p is : I, E = Ily,c1 Ipyeo pyes ... with Vi > 1,11,,¢; is the projection of
II,c; over the variables in v.

We adopt the general terminology of language theory, cf. for instance [Har78]. In
particular, we will use the notion of alphabet (states), word (possibly infinite sequence
of states), factor (finite sequence of states that appears in a word) and sub-word (finite
sequence of factors that appears in a word and in the same order). For instance, let us
consider the alphabet ¥ = {a,b,c}. w = ababca is a word on ¥, (ba) is a factor of w and
(ab ;ca) is a sub-word of w, but (ca ;ab) is not a sub-word of w. Moreover, we introduce
the letter '’ that represents any letter in 3. Let u be a finite word over ¥ U {_}. We say



that u is a factor of a word w over the alphabet X iff the set of factors of w represented
by w is not empty. For instance, we say that (b_.) is a factors of w and by extension, we
say that (_b;ca) is a sub-word of w, but (ca ;_b) is not. Note that a factor is also a sub-word.

We now define an observer and an observable self-stabilizing algorithm.

Definition 6 (observer)
An observer O(3, L) is a boolean function O(X, L) : * — {true,false} such as :

1. O(%,L)(e) = false
2. YweX*, O, L)(w) = true < Jv € L | v is a sub-word of w

Definition 7 (observer for a self-stabilizing algorithm at a processor)
Let A be a self-stabilizing algorithm and let P be a processor in A. We say that the observer
O(%, L) is an observer for A at P iff

1. there ezists a set of variables V. = {v1,...,v;} such as the domain of v; is D;, v; is
a variable of P and Dy X ... X Dy = 3.

2. for any left factor v of an execution w of A, O(X, L)(lpyv) = true = v reaches a
legitimate configuration of A (safety).

3. for any left factor v of an execution w of A, v reaches a legitimate configuration of
A = Ju aleft factor of w such as v is a left factor of u and O(2, L)(Ilpyu) = true
(liveness).

In this case, O(X2, L) is noted O(V, L).

Remark 1 For an execution w of A, a boolean value is associated by the observer to
each left factor of w. Initially, for the empty sequence, the observer returns false. The
first time it returns true, we will say that the observer “announces” the stabilization. Note
that the condition in the definition above involves that an observer never announces false
stabilization (safety) and eventually announces stabilization (liveness).

Definition 8 (observable self-stabilizing algorithm)

Let A be a self-stabilizing algorithm. We say that A is observable iff exists an observer
O(V, L) such as :

if A is anonymous, then VP in A, O(V, L) is an observer for A at P and

if A is distinguished, then for P the leader of A, O(V, L) is an observer for A at P .

Remark 2 (Non interference) In our model, the observer cannot influence the algo-
rithm, which means that the execution of the algorithm is the same with or without the
observer.

4 Result

In this section, we use the fair composition of self-stabilizing algorithms, described for
instance in [Dol00].

Theorem 1 All problem on a distinguished communication graph that can be solved by
a synchronous self-stabilizing solution, can also be solved by a synchronous observable
self-stabilizing solution (not necessarily the same).



First, we explain the idea of the proof which is constructive.

Let P be a problem that can be solved by a self-stabilizing solution on a distinguished net-
work. Let A be a self-stabilizing algorithm solving P and G a distinguished communication
graph. We construct an observer for A in five steps :

1

. We give a synchronous algorithm B, that constructs a spanning tree over G and we
prove that B is self-stabilizing.

We give a synchronous algorithm C, that computes the size of a tree and we prove
that C is self-stabilizing.

We consider the result R of the fair composition of B and C. R = BoC.

R constructs a spanning tree over G and computes the size of the constructed tree.
B and C are synchronous and self-stabilizing, thus R is synchronous and self-stabilizing.
We prove that R can be observed (by constructing an observer).

Every round, we construct a global snapshot of the execution of an algorithm at the
root of the tree. We give a synchronous algorithm S that computes this task and we
prove that S is self-stabilizing. Moreover, we prove that if n is the size of the tree,
then § converges in n rounds.

We considere the result F of the fair composition of R and S. F =R o S.

R and S are synchronous and self-stabilizing, thus F is synchronous and self-
stabilizing. We prove that F can be observe.

R can be observed. When R is stabilized, the variable size of the distinguished
processor, called sizerqot, contains the size of the network. Let n be this size.

S converges in 2n — 1 rounds, then 2 * size,oo¢ — 1 rounds after the stabilization of

R, S is stabilized. Thus F can be observed.

Note : n is not known at the beginning of the algorithm, but is computed in the
variable size,qo¢ during an execution.

We considere the result H of the fair composition of A and F. H = Ao F.

F and A are synchronous and self-stabilizing, thus # is synchronous and self-
stabilizing. We prove that 7 can be observed.

A self-stabilizing algorithm is related to the set of all its legitimate configurations. F
can be observed. So once F is stabilized, when we observe a legitimate configuration
of A in the distinguished processor, the observer announces the algorithm has being
stable. We obtain an observer of H and especially an observer of A.

Notations We present several self-stabilizing algorithms over a distinguished commu-
nication graph G(V, E). We always use the same model : each node v; € V represents
the processor P;, and each edge (v;,v;) € E indicates that P; and P; are neighbours ; i.e.
they can communicate with each other. We use the shared memory model. A processor
P; communicates with its neighbours P; by reading variables of P; and by writing its own
variables. Moreover, the system consists of n processors P;, Ps,...,P,, where P,,..., P,

run

similar programs while P, is a special processor that possibly runs a different program,

P is called the root processor of the graph. Finally, we assume that rules are locally atomic.

We now develop this proof step by step.



4.1 Step 1 : spanning tree

We present the algorithm B, which builds a spanning tree over a distinguished commu-
nication graph. Then, we prove that B is self-stabilizing. This algorithm is described in
[Dol00]. In order to determine precisely what the observer will observe, we describe here
this algorithm.

Presentation We present a self-stabilizing algorithm B for marking a breadth-first
search (BFS) spanning tree over a distinguished communication graph G(V, E). The pro-
gram has an input parameter § which is the number of adjacent links of the processor,
each processor P; numbers its links between 1 and §;.

Essentially the algorithm is a distributed BFS algorithm. Each processor is continu-
ously trying to compute its distance from the root and to report this distance to all its
neighbours by writing it in its variable. At the beginning of an arbitrary execution, the
only processor guaranteed to compute the right distance is the root itself. Once this dis-
tance is written in the root’s variable, the value stored in this variable will never change.
Once processors at distance z from the root have completed computing their distance
from the root correctly, and have written their variables, these variables remain constant
throughout the execution, and processors at distance z + 1 from the root are ready to
compute their own distance from the root, and so forth.

The output tree is encoded by means of the variables as follow : each variable dist; and
parent; in which P; writes and from which all neighbours of P; reads, contains respectively
the distance from the root to P; and the number of the link of P; that reaches the parent
of P; in the BFS tree (parent; € [1...0;]). There is no parent variable at the root.

The code of the algorithm B, for the root and for the other processors is :

1 Root (P) : do forever

2 true — dist; := 0

3 od

4 Other (P;,i# 1) : do forever

5 true — dist; := 1+ min{ disty, | k€ [1...6] }

6 parent; :=min{ k | k€ [1...6;] N disty =dist; —1}
7 od

The state of a processor consists of the value of the program counter and the value of
the internal variables : dist; and parent;. A configuration of the system is a vector of the
processor states.

The set S of legitimate sequences is defined as the set of all configuration sequences
in which every configuration encodes a BFS tree of the communication graph. In fact,
a particular BFS tree called the first BFS tree is encoded. Let a = (a1, a9,...,ay) be
the arbitrary ordering of the edges incident to each node v; € V. The first BFS tree of
a communication graph G is uniquely defined by the choice of the root v; and . When
a node v; of distance x + 1 from v; has more than a single neighbour at distance z from
v1, v; is connected to its first neighbour according to «;, whose distance from vy is z. In
the lemma below, we use the definition of the first BFS tree to characterize the set of
legitimate configurations for the algorithm.



The algorithm B is self-stabilizing

This proof is presented in [Dol00]. We only give the following results. In this paper,
we change the read/write atomicity by the rule locally atomicity, thus the lemma 1 is little
different than in [Dol00].

The lemma below shows that, in every execution, a legitimate configuration is reached.
We use the following definitions of floating distances and smallest floating distance in our
proof.

Definition 9 A floating distance in some configuration c is a value in a variable dist;
that is smaller than the distance of P; from the root. The smallest floating distance in
some configuration c is the smallest value among floating distance.

Lemma 1 For every k > 0 and for every configuration that follows k rounds, it holds that

1. if there exists a floating distance, then the value of the smallest floating distance is
at least k (i.e. > k)

2. the value of the variable dist of every processor that is within distance k from the
root (i.e. < k) is equal to its distance from the root.

Corollary 1 The algorithm B presented above is self-stabilizing for Sp.

Let us consider the two following corollary. Assumes that the depth of the root is 1

and notes all BFS spanning trees over a same communication graph G, have the same
depth.

Corollary 2 Let G be a communication graph and p the depth of BFS spanning tree over
G. Once p rounds, the algorithm B is stabilized for Sp.

PROOF :

Let G be a communication graph. All BFS spanning trees over G have the same depth, let
p be this depth. The longest distance between a processor and the root in a BFS spanning
tree over G is p — 1.

According to lemma 1.2, for every k£ > 0 and for every configuration that follows k
rounds, it holds that the value of the variable dist of every processor that is within distance
k from the root (i.e. < k) is equal to its distance from the root.

Thus, the configuration ¢, reached following the round p is such as the value of the
variable dist of every processor that is within distance p from the root (i.e. < p) is equal
to its distance from the root.

Every processor in a BFS spanning tree over GG is within distance p from the root of
this BF'S spanning tree, so the configuration ¢, is such as the value of the variable dist of
every processor is equal to its distance from the root. O

Corollary 3 Let G be a communication graph and n the size of G. Once n rounds, the
algorithm B is stabilized for Sg.

PROOF : If n is the size of G, then the depthest of G is n. O



4.2 Step 2 : size of a tree

We present the algorithm C, which computes the size of a tree. Then, we will prove that C
is self-stabilizing. This algorithm is described in [Dol00]. In order to determine precisely
what the observer will observe, we describe here this algorithm.

Presentation We present a self-stabilizing algorithm C for computing the size of a tree
T(V, E). We associate each node v; € V' to a set Child(v;) which is the set of numbers of
the links of v; that reaches a child processor of v; in T'.

Each processor has a variable size that contains the size of its sub-tree (which means
the sub-tree in which it is the root) and each processor is continuously trying to compute
the size of its sub-tree, and to report this size to its father in the tree by writing it in its
variable. At the beginning of an arbitrary execution, the only processors guaranteed to
compute the right size of their sub-tree are the leafs of the tree. Once this size is written
in the leafs’s variables, the value stored in these variables will never change. Once all
processors at distance x from a leaf have completed computing the size of there sub-tree
correctly and have written it in their variables, their variables remain constant throughout
execution, and processors at distance z + 1 from a leaf are ready to compute their own
size of their sub-tree, and so forth.

The code of the algorithm C is :

1 (F): do forever
true — size; := 1+ { size; | j € Child(F;) }
3 od

The state of a processor consists of the value of the program counter and the value of
its variable size. A configuration of the system is a vector of the processors states.

The set S¢ of legitimate sequences is defined as the set of all configurations sequences
in which each variable size in processors of every configurations contains the size of the
sub-tree of this processor.

The algorithm C is self-stabilizing
We assume that the depth of the root is 1.

Lemma 2 Let T be a tree and p be the depth of T. Once p rounds, all variables size of
processors contain the size of the sub-tree of these processors.

PROOF : Note that every round, each processor reads the variable size of all its children
and writes to its variable. We prove the lemma by induction over p.

Base case : (proof for p = 1) If the depth of T is 1, then T contains only one pro-
cessor : the root. As the root has no child and according to the line 2 of the algorithm, the
configuration reached following the first round is such as the variable size of the root is 1. O

Induction step : (assumes correctness for p > 1 and proves for p + 1)

Let T be a tree such as its depth is p+ 1 > 2 and r the root of T'. r has at least one child.
Let {r1,...,7¢ | K > 1} be the children of r and {T1,...,T} | K > 1} the sub-trees of T
such as Vi € [1, k], r; is the root of T;.



According to the line 2 of the algorithm, each round, the root writes 1 + X{size; | j €
Child(root)} to its variable size. Thus, during the round p + 1, the root writes

1+ X{sizej | j € {r1,...,rx}} to its variable size.

Vi € [1, k], the depth of T; is at most p. Moreover, according to the induction assumption,
once p rounds, all variables size of processors in {T1,...,T} | kK > 1} contains the size of
their sub-tree. Thus, during the round p + 1, the root writes the size of its sub-tree in its
variable size. Therefore, once p + 1 rounds, all variables size of processors in T' contains
the size of the sub-tree of these ones. O

Corollary 4 The algorithm C is self-stabilizing for Sc.

Corollary 5 Let T be a tree and n the size of this tree. Once n rounds, the algorithm C
is stabilized for Sc.

PROOF : If n is the size of T' and p the depth of T', then p < n. O

4.3 Step 3 : spanning tree and size of this tree

We compose the algorithms B and C. Let R be the resulting algorithm of this composition.
B and C are self-stabilizing (by Corollaries 1 and 4), thus R is self-stabilizing.
We prove that R can be observed.

Lemma 3 Let G be a distinguished communication graph and p the depth of a BF'S span-
ning tree over G. Vd € [0,p—1] , if ng is the number of processors at distance less or equal
than d from the root of G, then once the round 2(d + 1), the value of the variable size of
the root is greater or equal than ng.

PRrOOF : We prove this lemma by induction over d.

Base case : (d = 0) We must prove once the round 2, the value of the variable size
of the root is greater or equal than 1. According to the line 2 of the algorithm C, once the
round 1, the variable size of the root is greater or equal than 1.0

Induction step : (Assumes correctness for d > 0 and proves for d + 1.)
Let G be a distinguished communication graph and p the depth of a BFS spanning tree
over G. Let P be a processor at distance d € [0,p — 1] from the root of G.

According to lemma 1, once the round d + 1, P is connected to the legitimate tree.
Thus, Vd € [0,p— 1] , once d + 1 rounds, the algorithm B has at least construct a partially
BFS spanning tree over G, let T be this tree. T is such as the set of processors in T is
equal to the set of processors in G at distance less or equal than d from the root of G.
Thus the depth of T" is d + 1.

According to lemma 2, Vd € [0,p — 1], once the round 2(d + 1), the variable size of the
root at least contains the size of T', which is the number of processors at distance less or
equal than d from the root of G. O

Theorem 2 We define L as Lr = { (v¥¥TD) | v € Nt } and Vi = {size}.
Or(Vr, LR) is an observer of R.

PROOF : We must prove that Ox(Vg,Lr) never announces false stabilization (safety)
and eventually announces stabilization (liveness).
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Let G be a distinguished communication graph, P the root of G and E an execution of R
over G.

e Safety : for any left factor E' of E, Or(Vg, Lr)(IIpy, E') = true = E’ reaches a
legitimate configuration of R.

Let E' a left factor of F, we assume that 3 e € Lz | e is a sub-word of IIpy, E' <
Or(Vr, Lr)(MIpy, E') = true (the variable size of P during E' has consecutively taken
the same value v, 2(v + 1) times).

Let sizep be the variable size of P. We prove that R is stabilized after the execution of
this sequence over the variable sizep. This proof is going to be done by refutation. We
assume that after the execution of e over sizep, the algorithm R is not stabilized. Let n
be the size of G. We have three cases :

1)v>n Q)v<n 3) v =n and R is not stabilized.

Case 1 :v>mn
According to the corollary 3, the algorithm B, constructing a spanning tree over a com-
munication graph, is stabilized once n rounds.
According to the corollary 5, the algorithm C, computing the size of a tree, is stabilized
once n rounds.
Thus, once 2n rounds, R is stabilized, so once 2n rounds, the value of the variable sizep
is equal to n.
We have, 0 < n < v, s00 < 2n < 2(v + 1), thus we cannot observe the same value v,
2(v + 1) times in sizep if v > n.
Case 2 : v <m
We assume that the depth of the root is 1. Let p be the depth of a BFS spanning tree
over G and n the size of G. Let d € [0,p — 1] and ng be the number of all processors at
distance less or equal than d from the root of G.
According to lemma 3, once the round 2(d + 1), sizep > ng.

If v < p < m, then it exists at least (v + 1) processors at distance less or equal than v
from the root of G. Thus, once 2(v + 1) rounds, sizep > v+ 1, i.e. sizep # v.

If p < v < n, then once the round 2p, sizep =n. 0 < p < v = 2p < 2(v + 1), thus
once the round 2(v + 1), sizep = n # v.
Case 3 : v =n and R 1is not stabilized
According to the corollary 3, the algorithm B, constructing a spanning tree over a com-
munication graph, is stabilized once n rounds.
According to the corollary 5, the algorithm C, computing the size of a tree, is stabilized
once n rounds.
Thus, once 2n rounds, R is stabilized, so once 2(n + 1) rounds, R is stabilized. O

e Liveness : for any left factor E' of E, E' reaches a legitimate configuration of R
= 3 E" aleft factor of E such as E’ is a left factor of E” and O (Vg, Lz)(Ilpy E") =
true.

Let E' be a left factor of E such as E' reaches a legitimate configuration of R. Let E” be
a left factor of E such as |E"| = |E'| + 2(n + 1). We have E' is a left factor of E".
Once R is stabilized, the value of the variable sizep will always equal to n, the size of the

communication graph G, thus after E' is executed, sizep = n.
Thus OR(VR,ER)(Hva”) = true. O.
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4.4 Step 4 : global snapshots

We present the algorithm S, which computes global snapshot of a distributed algorithm
in the root of a tree. Then, we prove that S is self-stabilizing.

Presentation We present a synchronous self-stabilizing algorithm &S for constructing
global snapshots of a distributed algorithm A in a tree T'(V, E). We use the same model
as previously and we associate each node v; € V' to a set Child(v;) which is the set of
numbers of the links of v; that reaches a child processor of v; in T'.

Each processor P has a variable snap that contains one couple for each processor )
in its sub-tree, this couple is composed by a local snapshot of () and the distance between
P and @ in T. Each processor is continuously computing its local snapshot and reading
the variable snap of all its children in the tree. Then, it reports these ones, called the
snapshot of its sub-tree, to its father, by writing it in its variable snap. At the beginning of
an arbitrary execution, the only processors guaranteed to compute real snapshot of their
sub-tree are the leafs of the tree. Once this snapshot is written in the leafs’s variables,
the value stored in these variables will always be correct. Once all processors at distance
z from a leaf have completed computing the snapshot of there sub-tree correctly and
have written it in their variables, their variables remain correct throughout execution, and
processors at distance  + 1 from a leaf are ready to compute their own snapshot of their
sub-tree, and so forth.

We must pay attention, because the snapshot of a sub-tree is composed by local snap-
shots of all processors in the sub-tree, but these local snapshots are not necessary for the
same round.

The root has a variable queue_snap which is a queue and contains, in each line, the
value of its variable snap : every round, the root write at the beginning of its variable
queue_snap the value of its variable snap during this round. Moreover, the root has a
variable snap_global which contains a global snapshot of the algorithm A : each round,
the root constructs a global snapshot of A, with datas in queue_snap.

The code of the algorithm &, for the root and for the other processors is :

1 Root (P;) : do forever

2 true — S := { snap; | j € Child(Py) }

3 snapy := (my_local_snapshot,0) U

4 { (local_snapshot,dist + 1) | (local_snapshot,dist) € S }
5 queue_snap := add_begin(snap,, queue_snap)

6 dmaz = Maz{ d | (e,d) € line 0 of queue_snap }

7 snap_global := { e | (e,d) € line dy,;q5 — d of queue_snap }

8

9

od
Other (P;,i# 1) :
10 do forever
11 true = S := { snap; | j € Child(P;) }
12 snap; := (my_local_snapshot,0) U
13 { (local_snapshot,dist + 1) | (local_snapshot,dist) € S }
14 od

The state of a processor consists of the value of the program counter and the value
of its variable snap, S and if the processor is the root, the state also contains the value

12



of queue_snap, dmqe and snap_global. A configuration of the system is a vector of the
processors states.

S makes global snapshots of the algorithm A, over a tree T'. Let p be the depth of T
(we assume that the depth of the root is 1). The set Ss of legitimate sequences is defined
as the set of all configurations sequences in which Vi > 0 during a round 2p — 1 + 4, the
variable snap_global of the root exactly contains the global snapshot of A, for the round
p + 1.

The algorithm S is self-stabilizing

Lemma 4 Let T be a tree and P a processor at distance d from the farest leaf of its sub-
tree in T. Vi > 0, during the round d + 1 + 1, the value of the variable snap of P ezactly
contains one couple (eq,dq) for every processor Q in the sub-tree of P such as :

dg s the distance between P and Q).

eq is the local snapshot of QQ during the round d + 141 —dg

PROOF : We prove this lemma by induction over d.

Base case : (d = 0) Let P be a processor at distance 0 from a leaf : P is a leaf. Ev-
ery round k > 1, P reads the value of the variables snap of its children and writes them
in S (line 11 or 2 if P is also the root). Child(P) =0, so S = . Then P writes (local-
snapshot-of- P-during-the-round-% , 0) in its variable snap (line 12 or 3 if P is also the
root). Thus, Vk > 1, during the round k, the variable snap of P exactly contains one
couple (local-snapshot-of- P-during-the-round-k , 0). Thus, Vi > 0, during the round i + 1,
the variable snap of P exactly contains (local-snapshot-of- P-during-the-round-(i + 1) , 0).

Induction step : (assumes correctness for d > 0 and proves for d + 1.) Let P be a
processor at distance d+ 1 from the farest leaf of its sub-tree. Every round k > 1, P reads
the value of the variables snap of its children (line 11 or 2 if P is also the root). Every
children of P are at distance less or equal than d from the farest leaf of their sub-tree, so
by induction assumption, for all F' € Child(P), we have :
Vi > 0, during the round d 4 1 + i, the value of the variable snap of F' exactly contains
one couple (eq,dq) for every processor @) in the sub-tree of F' such as :

dg is the distance between F' and Q).

eq is the local snapshot of () during the round d + 144 —dg
Vi > 0, during the round (d + 1 + i) + 1, P writes in S the value of variables snap of all
its children. Thus, Vi > 0, during the round (d 4+ 1+1i) + 1, S exactly contains one couple
(eq,dq) for every processor @ in the sub-tree of P (without P) such as :

dg + 1 is the distance between P and Q).

eq is the local snapshot of () during the round d + 144 —dg
Then P writes (local-snapshot-of- P-during-the-round-(d + 1 +4) + 1, 0) U
{ (eg,dg +1) | (eg,dg) € S } in its variable snap (line 12 or 3 if P is also the root).
Thus, Vi > 0, during the round (d+ 1+ ) + 1, the value of the variable snap of P exactly
contains one couple (eg,dg) for each processor R in the sub-tree of P such as :

dpr is the distance between P and R.

eg is such as

if R # P, then eg is the local snapshot of R during the round d +1 + 14 —dg =
d+1+i—(dr—1)=(d+1+i—dgr)+1

if R = P, then ep is the local snapshot of R during the round (d+1+i)+1, with dp = 0.
Thus ep is the local snapshot of R during the round (d+1+% —dg)+1. O
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Corollary 6 Let T be a tree and p its depth. ¥i > 0, during the round p + ¢, the value of
the variable snap of the root ezactly contains one couple (eq,dq) for each processor Q in
T such as :

dg s the distance between Q and the root.

eq 1s the local snapshot of Q) during the round p +i —dg.

PROOF : The root of T is at distance d = (p — 1) from the farest leaf of T'. O

We note queue_snap(l), the value of the variable queue_snap of the root at the line .

Lemma 5 Let T = (V, E) be a tree and p its depth.

Vi >0 and VI € [0,1] , during the round p + i, queue_snap(l) = { (eq,dq) | VQ €V,
dg s the distance between ) and the root,
eq 1is the local snapshot of Q for the round p+1i—dg —1 }.

PROOF : This is due to the behavior of a queue :

Let T be a tree and p its depth. Let snap; be the variable snap of the root.

(¢=0) ;round p ;[ € [0,0] —
queue_snap(0) = snap; for the round p
= one couple (eqg,dg) for each processor () in T such as
dg is the distance between () and the root,
eq is the local snapshot of () for the round p — dg
=p+i—dg — I, because (I =1).
(t=1);round p+1;1€][0,1] —

queue_snap(1) = snap; for the round p
= one couple (eq,dg) for each processor @) in T such as

dg is the distance between @) and the root,
eq is the local snapshot of ) for the round p — dg
=p+i—dg — 1, because (I =1i).
snapy for the round p + 1

queue_snap(0)

= one couple (eg,dg) for each processor @) in T such as
dg is the distance between ) and the root,

eq is the local snapshot of @ for the round (p + 1) —dg
=p+i—dg—1, because (Il =1 —1).

(2) ;round p+i ;1 €0,1] —
queue_snap(s) snap; for the round p
one couple (eq, dg) for each processor @) in T' such as
dg is the distance between ) and the root,
eq is the local snapshot of () for the round p — dg
=p+i—dg — 1, because (I =1).
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queue_snap(i — 1) = snap; for the round p + 1

= one couple (e, dg) for each processor ) in T' such as
dg is the distance between ) and the root,

eq is the local snapshot of @ for the round (p + 1) —dg
=p+i—dg—1, because (Il =17 —1).

queue_snap(0) = snap; for the round p + 4
= one couple (eqg,dg) for each processor @) in T such as
dg is the distance between () and the root,
eq is the local snapshot of @ for the round (p + i) — dg
=p+i—dg — 1, because (I =0).

Theorem 3 Let T be a tree and p its depth. Vi > 0, during the round 2p — 1 + 14, the
variable snap_global of the root exactly contains a global snapshot of A for the round p+1.

PROOF :
Let T = (V, E) be a tree and p its depth.
Vi > 0, during the round 2p— 141, the variable snap_global of the root exactly contains
a global snapshot of A for the round p + 3.
is equivalent to :
Vi > 0, during the round 2p — 1 + 1,
snap_global = {eq | VQ € V, eq is the local snapshot of P for the round p + i}.
According to lemma 5, Vi > 0, during the round p+ (p — 1) + 4,
VI € [0,(p — 1) + 1], queue_snap(l) = {(eq,dg) | VQ €V,
dg is the distance between () and the root,
eq is the local snapshot of @ for the round (2p — 1) + ¢ —dg — [}.
Thus, Vi > 0, during the round p + (p — 1) + 1,
{(eq,dq) € queue_snap(l) | I = (p —1) —do} = {(eq,dq) |
dg is the distance between () and the root,
e is the local snapshot of @ for the round (2p — 1) +i—dg —1 =
2p—-1)+i—dog—(p—1—dg)=p+i}.
O

Corollary 7 The algorithm S is self-stabilizing for Ss.

Corollary 8 Let T be a tree and p its depth, once 2p — 1 rounds, the algorithm S is
stabilized for Ss.

Corollary 9 LetT be a tree and n its size, once 2n—1 rounds, the algorithm S is stabilized

for Ss.

4.5 Step 5 and 6 : A can be observed

Let P be a problem that can be solved by a synchronous self-stabilizing solution. P as-
sumes a distinguished network.

Let A be a synchronous self-stabilizing algorithm solving P and G a distinguished com-
munication graph.

We construct an observer of A.
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1. Let B be the self-stabilizing algorithm previously presented. B builds a spanning
tree T' = (V, Er) over a distinguished network G = (V, Eg).

2. Let C be the self-stabilizing algorithm previously presented. C computes the size n
of atree T = (V,Er), n=1|V|.

3. Let R = B o be the self-stabilizing algorithm over a distinguished network G =
(V,Eg). Or({size},{(v*@+t1)) | v € Nt}) is an observer of R.

4. Let S be the synchronous self-stabilizing algorithm previously presented. S computes
global snapshots of A over a tree T' = (V, ET).

5. let F = R o S be the synchronous self-stabilizing algorithm over a distinguished
network G = (V, Eg).

Theorem 4 We define L5 as Ly = { (0*+tD) ; 2=1) | v € Nt } and Vp = {size}.
Ox(Vp,LF) is an observer of F.

PROOF : We must prove that Ox(Vg, Lx) never announces false stabilization (safety) and
eventually announces stabilization (liveness).

Let G = (V,Eg) be a distinguished communication graph, P the root of G and E an
execution of F over G.

Safety :
Let E' a left factor of F, we assume that:
Jec Lr={ @@D; 21y |y € Nt } such as e is a sub-word of I py, E’
< Of(Vr, LF) (HPVFE,) = true.
Let sizep be the variable size of P. We prove that F is stabilized after the execution of
the sequence e on the variable sizep.

According to theorem 2, Og is an observer of R thus : the value of sizep is v, dur-
ing 2(v + 1) rounds implies that the algorithm R is stabilized. Moreover,the algorithm
R is stabilized implies that the algorithm B is stabilized (so sizep = n = |V|) and the
algorithm C is stabilized, i.e. exists a spanning tree T' = (V, ET) over G.

S is a synchronous self-stabilizing algorithm which computes global snapshots of A
over a tree T = (V, E7). According to corollary 9, if n is the size of T', then once 2n — 1
rounds, the algorithm § is stabilized.

After the execution of { (v>®*T1)) | v € Nt } in sizep, sizep = v = n. Thus, after the
execution of { (v2*+1) ; 2=1) | y € Nt } in sizep, R is stabilized and sizep = v = n
and S is stabilized. Thus, after the execution of { (v2®+) ; 2=1) |y € Nt } in sizep,
F =R oS is stabilized.

Liveness :

Let n be the size of G. Let E’ be a left factor of E such as E’ reaches a legitimate config-
uration of F. Let E” be a left factor of E such as |E"| = |E'| + 2(n + 1). According to
theorem 2, Or(Vg, Lr)(IIpy E") = true.

We have Vi = {size} = Vp and Lr = { (0®*®tD) |v € Nt }and L = { (020D ; 2=1) v €
Nt }.

Let E" be a left factor of E such as |[E"| = |E'| +2(n + 1) + (2n — 1). We have E' is a
left factor of E" and Oz (Vp, L£)(IIpy E™) = true. O.
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6. Let = A o F be the synchronous self-stabilizing algorithm over a distinguished
network G = (V, Eg). Let S 4 be the set of all legitimate configurations of A.

Theorem 5 We define Vi = {size, snap_global} and Ly as
Ly ={ ((v, )2 ; (L)1 (Le) | c€SaAv €N }. Oy(Vy, Ly) is an observer
of H.

PROOF : We must prove that Oy (Vig, L) never announces false stabilization (safety)
and eventually announces stabilization (liveness).

Safety :
Let G = (V, Eg) be a distinguished communication graph, P the root of G and E an
execution of H over G.
Let E' be a left factor of E, we assume that :
Je € Ly = { (v, )2 (L, )21 (Le)) | ¢ € S4Av € NT } such as e is a sub-word
of HPVHE, = O'H(VH, ﬁy)(HPVHEI) = true.
We prove that # is stabilized after the execution of e on the variables sizep and snap_globalp.

According to theorem 4, Ox(Vr, LF) is an observer of F.

Let L7 = { ((v, )2+t ; ([, )?*71) | v € Nt }. We have : O#'(Vg, L#') is an observer
of F. Thus, if 3 e € L#' € such as e is a sub-word of IIpy,, E' then F is stabilized after
the execution of e on the variables sizep and snap_globalp.

Moreover, after the execution of ¢ | ¢ € S4 in the variable snap_globalp, A is stabilized.
Thus, if 3 e € { ((v, )2 5 (L, )15 (L)) | c€ S4Av € N } such as e is a sub-word
of py, E' then F and A are stabilized after the execution of e on the variables sizep and
snap_globalp.

Liveness :

Let n be the size of G. Let E’ be a left factor of E such as E’ reaches a legitimate
configuration of #.

Let E” be a left factor of E such as |E"| = |E'| + 2(n + 1) + 2n — 1. According to
theorem 4, Ox(Vy, Lx)(Ilpy E") = true.

We have Vi = {size}, Viy = {size, snap_global} and Ly = { (1) ; 2=y |y e Nt }
and Ly = { (v, 5 ()15 (Lo) | e€SanveNt L.

Let E" be a left factor of E such as |[E"| = |E'| +2(n+ 1) + (2n — 1) + 1. We have
E' is a left factor of E" and Oy (Vy, Ly)(Ipy E™) = true. O.

Thus H can be observed, and especially, A can be observed.

5 Conclusion

In this paper, we introduce the notion of a local observer for self-stabilizing algorithms
on synchronous networks. The observer was defined in an abstract way and we did not
consider implementation details.

Our result is that, provided the network has a distinguished node, any problem having
a self-stabilizing solution has also a self-stabilizing solution that can be observed by an
observer located at the distinguished node.

The next step will be to consider uniform networks in which the observer has no reason
to be placed at some node rather than at some other.
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