S PJ O ¥ >

= S

HEHOREEDOQES

L R I

EFFECTS OF CAPACITIES VARIATIONS ON
MAXIMUM FLOWS, MINIMUM CUTS AND
EDGE SATURATION

BARTH D /BERTHOME P/ DIALLO M

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud — LRI

10/2004

Rapport de Recherche N° 1395

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 490
91405 ORSAY Cedex (France)

Effects of capacities variations
on maximum flows, minimum cuts
and edge saturation

D. Barth', P. Berthomé? and M. Diallo?

! Laboratoire PRiSM, UMR 8144, CNRS, Université de Versailles, 45 Av. des
Etats-Unis, 78035 Versailles-Cedex, France, Dominique.Barth@prism.uvsq.fr
2 Laboratoire de Recherche en Informatique (LRI), UMR 8623, CNRS, Université
Paris-Sud, 91405, Orsay-Cedex, France, Pascal.Berthome@lri.fr
3 CNRS, LIMOS UMR 6158, Université Clermont 2, ISIMA, Campus des Cézeaux -
BP 10125, 63173 Aubiére CEDEX, FRANCE, diallo@isima.fr

Abstract In a recent work, we showed that the computation of the all
pairs maximum flow values, when k edge capacities are allowed to vary,
can be efficiently done with only 2* Gomory-Hu cut-tree constructions.
In this paper, we show the cut counterpart of the problem, i.e., with the
variation of k capacities, we determine for each vertex pair, a minimum
cut separating the two vertices.

Moreover, we provide two applications of the studied parametric flows
and cuts problems. We first show how to reuse information of a com-
puted cut-tree in order to construct a next one. Second, we introduce an
interesting practical problem: Given an edge in an undirected network,
it consists in determining the set of vertex pairs for which any maximum
flow saturates the chosen edge.

Keywords: Gomory-Hu cut-tree, sensitivity analysis, parametrized ca-
pacities, algorithms.

Résumé Récemment, nous avons établi que le calcul du flot maximum
multi-terminal en présence de k capacités d’arétes paramétriques peut
étre effectué de maniére efficace a laide de seulement 2* arbres dits de
Gomory-Hu. Dans cet article, nous donnons la contrepartie de ce théo-
réme pour les coupes minimum. En d’autres termes, nous déterminons en
présence de k arétes paramétriques une coupe minimum séparant toute
paire de sommets.

De plus, nous apportons deux applications a cette étude sur les flots et
coupes paramétrés. Nous montrons tout d’abord comment utiliser les in-
formations contenues dans un arbre de Gomory-Hu afin d’en calculer un
second pour un réseau proche. Dans un second temps, nous introduisons
un nouveau probléme pratique: étant donnée une aréte dans un réseau,
nous recherchons ’ensemble des paires source-puits pour lesquelles n’im-
porte quel flot maximum saturera cette aréte.

Mots-Clés: Arbres de Gomory-Hu, analyse de sensitivité, capacités pa-
ramétriques, algorithmique.

2 D. Barth, P. Berthomé and M. Diallo
1 Introduction

Given an undirected network, the multi-terminal network flows analysis consists
in determining the all pairs maximum flow values. Since its introduction, in
1961, by Gomory and Hu [9], many applications and variants of the problem were
presented in the literature. In [5], Diallo presented an exhaustive survey on the
subject. The multi-terminal network flows problem has many known applications
in the fields of transports, energy and telecommunications (see for example [4—6]
and references therein). Most of the algorithms proposed to solve this problem
use the concept of cut-trees. Given an undirected network G = (V, E) with edge
capacities, a cut-tree of GG is an edge-weighted tree with vertex set V and in
which, for any pair of vertices u and v, the minimum weight of an edge on the
path between v and v in the tree is the maximum flow value between v and v
in G. Moreover, the former edge with minimal weight between u and v in the
tree decomposes the vertex set into two subsets forming a minimal cut between
uw and v in G. The construction of such a cut-tree costs only (n — 1) maximum
flow computations.

In this paper, we focus on some sensitivity analysis aspects of the multi-
terminal flows problem, i.e., given an edge e, the impact of e on the all pairs
maximum flows and the effect of the edge capacity variation on their values (we
talk about parametric multi-terminal network flows). In 1964, Elmaghraby [6]
was the first to introduce such a sensitivity analysis. He supposes that a sin-
gle edge capacity is allowed to vary and examines the impact of this variation
on the all pairs maximum flow values. However, Elmaghraby’s method needs
to compute as many cut-trees as the number of critical capacities. A critical
capacity (or breakpoint) with respect to a given vertex pair is the value of the
parameterized capacity for which the maximum flow value between the vertices
of the pair stops or begins to vary with regard to the parametric capacity. How-
ever, Diallo [5] showed that Elmaghraby’s method does not work in all cases (a
counter-example and an improvement are there given). Note that parametric
multi-terminal network flows problem reflects an application of problems includ-
ing link breakdown, capacity increase and investments in expansion [5,6].

This paper tackles different points in the network flow theory.

— In a recent work [2], we showed a very efficient method to compute the
all-pairs maximum flow values for all possible capacities of k edges, by con-
structing 2* cut-trees. In the same context, the problem of finding, for each
vertex pair, a minimum cut separating the two vertices remained open. Re-
call that, in the constant capacity case, a cut-tree reflects at least a minimum
cut separating each two vertices of the network.

In this paper, we provide an efficient way to determine a minimum cut for
any pair of vertices, when k capacities are allowed to vary.

— Solving the above problem, it appears that two cut-trees are needed. Both
of them are related since they consider similar networks. The second aim of

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 3

this paper is to show how to compute a new cut-tree, by using the most as
possible information in other cut-trees.

— Finally, we study the All pairs Saturating Flows, called ASF problem [5]:

given an undirected network and an edge e of the network, the problem is
to determine the set ASFe] of vertex pairs for which any maximum flow
computed between the two vertices saturates e.
As for the ASF problem, we may cite interesting applications such as adding
or removing edge problems [14] and the building evacuation problem [8,11,12]
that is a particular case of the dynamic flow problem: Given the minimum
evacuation time, the problem consists in detecting all the bottlenecks that
may cause delay. Such bottlenecks correspond exactly to edges (saturated
by maximum flows) belonging to minimum cuts.

The remainder of this paper is organized as follows. In Section 2, we give the
basic definitions and briefly describe the results of our previous work. Section 3
is devoted to the computation of minimum cuts when capacities are varying in
the network. In Section 4, we address the problem of constructing cut-trees by
reusing information of previous constructed cut-trees. In Section 5, we introduce
the ASF problem. We close the paper with a conclusion and some perspectives.

2 Previous work on parametric multi-terminal network
flows

In this section, we provide some basic definitions and briefly describe the main
results of our previous work [2]. Throughout this paper, we assume that the
reader is familiar with general concepts of graph theory and network flows. For
example, we refer to [1,7,13]. In the remaining of the paper, unless specified
“network” stands for “undirected network”.

2.1 Definitions

Let G = (V, E) be an undirected connected network with vertex set V' and edge

set E. Throughout this paper, we denote n as |V| and m as |E|. To each edge

e € E is associated a positive capacity c(e). Let us consider the symmetric

digraph G* = (V, A) obtained from G by replacing each edge e by two opposite

arcs with the same capacity c(e). A flow between two vertices s and t in G is a

flow from s to ¢t (or the opposite one from ¢ to s) in G* as defined by Ford and
—

Fulkerson [7]. Thus, we denote by f, a maximum flow between s and ¢ in G,

and by fs: = fis the value of ?S’t. Vertices s and ¢ are called the sinks of the
flow.

We consider here a multi-terminal network, i.e., we consider all the possible
pairs of sinks in G, but we do not consider simultaneous flows between different
pairs (we do not deal with a multi-commodity flow problem).

4 D. Barth, P. Berthomé and M. Diallo

A proper subset X of V () C X C V) is called a cut separating two vertices
uand v ifu € X and v € V \ X. The capacity of a cut X is defined as

e(X) = > [z, y]. Such an edge [z,y] belongs to the cut X.
reX,yeV\X,[zyleE
A minimum cut separating vertices v and v, denoted hereafter C, ,, is a cut
with minimal capacity among all the cuts separating u and v.

Definition 1 (Cut-tree). Given a network G = (V, E) with a capacity func-
tion ¢, a (Gomory-Hu) cut-tree T = (V, F) obtained from G is a tree having the
same set of vertices V and an edge set F with a capacity function ¢’ verifying
the two following properties:

a) Equivalent flow tree: for any pair of vertices s and t, fs; in G is equal to
fse inT, i.e., the smallest capacity (with ¢') of the edges on the path between
sandt inT;

b) Cut property: a minimum cut Cs; in T is also a minimum cut in G.

As shown in [9], (n—1) minimum cut computations are sufficient to construct
a cut-tree. We notice that cut-trees are generally not unique. This fact will be
used in our work. Two different ways of computing a cut-tree are provided in [9]
and in [10]. An experimental study of minimum cut algorithms and a comparison
of algorithms producing cut-trees are provided in [3].

Parametric multi-terminal flow problems: Given a network in which some
capacities are allowed to vary, the parametric multi-terminal network flows prob-
lem consists in obtaining the all pairs maximum flow values with regard to the
capacities variations.

Throughout this paper, when one capacity c(e) is allowed to vary (c(e) = A),
we will note f2, (resp. C2,) the maximum flow value (resp. a minimum cut).

When k capacities are allowed to vary, fs)‘i)‘z (resp. CS)";’M"“) will denote the

maximum flow value (resp. a minimum cut) with c(e;) = A;, 1 <i < k.

2.2 Previous results

Effects of a single varying capacity: Let G be a network in which only a

single edge e = [i, j] possesses a capacity A > 0. Note that, when {s,t} # {1, j},

)\lim f2; is finite; this value is denoted hereafter . We can then consider that
—o0 ?

the capacity c(e) can be set to infinity. In practice, ¢(e) = oo can be obtained
by setting c(e) to the sum of the capacities of th edges adjacent to e.

In [2], we showed that the maximum flow value fli‘j between the extremities of
e is continuously increasing with A, and for the maximum flow value fp)" , between
any two vertices {p,q} # {i,j}, there are two possibilities, either f;:q is always
constant or it is a piecewise-linear function of \: it increases until A = * | and

p,q’

then becomes constant as follows. The value A} is, called critical capacity for

the pair {p, ¢}, {p,q} # {i,j}, is given by f5, — fJ,. We have:

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 5

(1)

Thus, for any vertex pair {p, ¢} and any value of A, follows the general form

A
of e

0 H *
p)‘q:{ %g+>\ 1f>\<.>\p’q
: Iy otherwise

A

P min (Syq +A ;31)‘ (2)

Let GH? denote a cut-tree when c(e) = A, 0 < A < oo.

Theorem 1. [2]/ Let G be a network with e = [i,j| € G and c(e) = X. Then,
given GH® and GH™, the mazimum flow value f;‘,t between any s and t for any
value of A € [0,00] can be computed in O(n) time.

The above theorem states that solving the sensitivity analysis of the multi-
terminal network flows (the all pairs network flows) needs only two cut-tree
constructions and some arithmetic computations. What improves considerably
the Elmaghraby’s method [6] that computes a cut-tree for each critical value.
Considering the time complexity, the computation of the critical capacities can
be performed in time O(n?), i.e., O(n) time per pair once both cut-trees are
known.

Effects of multiple varying capacities: A generalization of the previous
theorem is the following.

Theorem 2. [2] Let G = (V,E) be a network with k different edges ey, es,

.., er with respective capacities A1, Aa, ..., X\p. The all pairs mazimum flow
values, with regard to all parameters values, can be obtained by constructing only
2k cut-trees.

For the particular case of k = 2, as regard to the maximum flow value for a
single vertex pair {s,t}, we have shown the following.

Theorem 3. [2] Let G = (V,E) be a network, e; and ey edges of E with
respective capacities A1 and X\o. Consider s and t two vertices of V. Then, the

mazimum flow value (fs)‘i)‘z) can be directly obtained from the four mazimum

0,0 £0 0 : ALA
flow values f3, foi°, for and fo7™. The mazimum flow value (fi1"°) can
be computed as follows:

o = min(feY 4+ A+ A o7+ AL S K, £757). 3)

In this section, we briefly recalled, based on cut-trees, how to compute the

all pairs maximum flow values with regard to capacities varying in an undirected

network. One can notice that in the presented results, we do not show how one

could, in such a situation, obtain a minimum cut for each of the @ vertex

pairs of GG in at most the same complexity as the one used for the maximum

flow values. In the next section, we show how to determine for each vertex pair
a minimum cut.

6 D. Barth, P. Berthomé and M. Diallo

3 Computing minimum cuts with regard to varying
capacities

This section is devoted to the computation of minimum cuts in the presence of
varying capacities. We highlight a minimum cut for each vertex pair.

3.1 Single parametric capacity in the network

Extending the previous results Let e € E be the single edge having a
parametric capacity c(e) = A € [0,00] in the network G. Given two distinct
values a and 8 of ¢(e), a < 3. Equation 2 that gives, for an arbitrary vertex
pair {s,t}, the maximum flow value fg:t can be extended as follows.

VA€ [, 8] f2, =min(fS, +X—a,). (4)

Consequently, Theorem 1 receives the following extension.

Theorem 4. Let G be a network with e = [i,j] € E and C(e) = X. Given two
distinct positive values o and 3, a < B, and cut-trees GH® and GH®, O(n)
arithmetic computations are sufficient in order to determine th, where s and t
vertices and X € [a, f].

As far as the computation of minimum cuts is concerned, follows the first
result.

Lemma 1. Let G = (V, E) be a network with e = [i,j] € E and c(e) = \. Let
s and t be two vertices of G, and a, B two values such that 0 < a < A5, < f3.
Then the following holds:

1. Any minimum cut C2, remains o minimum cut when X € [0, \},];
; ;

*

2. Any minimum cut Cﬁt remains a minimum cut when X € [X; ;, 0o].

Proof. Let us prove the second case first. Assume that c(e) = A > A} ;. Consid-
ering, Equation 1, we have:

A - 0
s,t = mln(fs,t + >‘7 ;.3) = ;.3

Since 8 > A ;, we also have:

flo=clCl) = f35 = f

Thus, by the Max Flow/Min Cut Theorem, C’fi ¢ is also a minimum cut when
cle) > A5 ;.

Let consider now the first case, i.e., A < A7;. From Equation 1, we have
s>\,t = g,t + A

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 7

In this case, e belongs to Cg;. If not, when A\ > «a, C¢; remains a cut (not
necessarily minimum) separating s and ¢, thus

C(Cg,t) > D

s,t

By Equation 1, we have:
f;ft > f;ft +A—a

leading to a contradiction. Thus e belongs to Cg;.
Consequently, if c(e) = A, the capacity of X = C¢, is given by

c(C5e) = > co(z,y) | +A

reX,yeV\X, [z,y]eE\{e}

From Equation 4, this shows that C'¢'; is a minimum cut for A = 0 (where e does

not exist) and
ot = > vl
reX,yeV\X,[z,y]€E\{e}

Thus, by the Max Flow/Min Cut Theorem, C¢; is a minimum cut in [0, A§ ;].
a
This lemma implies the following corollary.

Corollary 1. Let G = (V, E) be a network with e = [i,j] € E and c(e) = A.
Given two distinct positive values o and B, 0 < a < 8 < o0, let s and t be two
arbitrary vertices of G and Cg; (resp. C’gt) be minimum cuts separating s and
t when A\ = « (resp. f3).

For any A € [a,f], at least one of C¢; and Cf,t is a minimum cut that
separates s and t.

Proof. This is a direct consequence of Lemma 1. Three cases are to be considered
based on the position of the critical capacity A;,; compared to o and j.

1. Lemma 1 deals with the case A}, € [a, f].
2. If @ > A{,; Lemma 1 implies that both C¢; and Cﬁ . have the same capacity,

87
thus both remain minimum cuts in the whole interval.
3. The case where 3 < Aj, is obtained similarly.

a

Theorem 5. Let G = (V,E) be a network with e = [i,j] € E and c(e) = A
Let GH® and GHP? be two cut-trees for two distinct values of the parameter,
0 <a< f <o Lets andt be two vertices of G and X\ € [a,3]. Then a
minimum cut between s and t can be determined in linear time O(n).

Proof. This is direct application of Theorem 4 and Corollary 1. One can note
that the exploration of the cut trees is linear in their size. O

8 D. Barth, P. Berthomé and M. Diallo

3.2 Multiple parametric capacities

In this section, we generalize the previous result to more than one parametric
capacity. This generalization follows the same idea as in the maximum flows
setting.

Theorem 6. Let G = (V, E) be a network and e, es two edges of G with respec-
tive parametric capacities A1, Ao. The construction of 4 cut-trees is sufficient to
determine, for any two vertices and any parameter value, a minimum cut that
separates them in linear time.

Sketch of Proof. The key is to extend Lemma 1 to the two dimensional
case. Let s, t and A1, Ay fixed. From Lemma 1, we know that a minimum cut
between s and ¢ can be obtained by considering one of the two minimum cuts
Cs)"lt’o and Cs)‘é’oo (obtained when ey is removed and when its capacity is set
to 00). The choice depends on the position of Ay considering the critical value
A5 = :‘;O" — ;‘7%’0 as follows:

1. A2 < A3: use C:ﬁ’o. It corresponds to the case where the minimum in

Equation 2 is obtained by the term in As;

2. Ay > A5: use S)‘}too

Now, these two minimum cuts can be obtained by applying Lemma 1 twice.
Consider first that we are in the first case in the above enumeration. Then,
by applying the same paradigm, C’gf will be the desired cut when the term in
A1 + A2 minimizes Equation 3.

The same work can be done considering the other values of A\; and As.

To summarize, a minimum cut between s and t can be obtained only by
considering the minimum cuts and maximum flow values, for the extremal values
of the parameters.

In order to conclude this proof, the 4 extremal Gomory-Hu cut trees deter-
mine all the maximum flow values and all the minimum cuts (at least one per s
and t). a

In Fig. 1, we show the typical behavior of minimum cuts influence zones. In
each zone, a minimum cut is determined by the extremal one given in one of the
Gomory-Hu cut trees. At the intersection lines, both cuts can be used.

Corollary 2. Let G = (V,E) be a network and ey, ez, ..., e be edges of G
with respective parametric capacities i, X2, ..., A,. The construction of 2%
cut-trees is sufficient to determine, for any two vertices, a minimum cut that
separates them in O(2%n) time.

Proof. We follow the same framework as for Theorem 2, i.e., an induction on
the number of parametric capacities. The basic cases are given by Theorems 5
and 6. The proof of Theorem 6 provides the way to derive the result. ad

For the sake of simplicity, in the multiple parametric settings, we consider
that the parameters vary from 0 to co. The extension to other bounds is straight-
forward but complicates a lot the notations.

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 9

A2
0,00
Cs,’t
00,00
s,t
0,0
Cs:t
00,0
C1s,t7

At

Figure 1. Influence zone of each extremal minimum cut

4 Efficiently recovering other Gomory-Hu cut trees

In this section, we show an application of Theorem 5. The problem studied
here is divided into two parts. First, we want to construct as efficiently as
possible a new cut-tree GH* from two extremal ones, i.e., GH® and GH?,
where 0 < a < A < f < 00. Second, we study the information of GH® that can
be efficiently used to compute GH*, X € [a, od].

This second part is important since it leads to average improvement on the
construction of the sequence of cut-trees needed for the sensitivity analysis in
Theorem 6 and Corollary 2. It also introduces concepts that will be developed
in Section 5.

4.1 Computing a cut-tree from two initial cut-trees

In this section, we assume that two cut-trees have already been constructed
for two different values of the parametric capacity. The goal is to efficiently
construct a new cut-tree for another value of the parametric capacity.
To do so, we need to recall the guidelines of Gusfield algorithm to compute
a cut-tree. The details and correctness of this algorithm can be found in [10].
Here, we call a star tree with n vertices the tree having n — 1 leaves and a single
root labeled 1.
Algorithm 1.1: Gusfield(G)
> G is a network having n vertices.
> Returns a cut-tree T of G.
1 Compute a star tree T with n vertices, labeled from 1 to n
2 for s=2ton
3 Let ¢ be the neighbor of s in the current tree T
4 Compute a minimum cut Cs,; between s and ¢ in G.
5 Change the tree by labeling the edge [s,t] with ¢(Cs,:), and rearrange the ver-
tices such that this new tree reflects the newly computed minimum cut, while
maintaining the validity of the previously computed ones.

10 D. Barth, P. Berthomé and M. Diallo

6 end for
Considering the time complexity of this algorithm, all the steps, but Step 4, are
linear in the number of vertices of G. This imply the classical (n—1)M F(n) time
complexity for the cut-tree construction, where M F(n) is the time complexity
of the maximum flow (minimum cut) computation.

Enlightened with the results of the previous section, we can state the follow-
ing lemma.

Lemma 2. Let G be a network having n vertices and e a single edge of G having
a parametric capacity c(e) = X. Let o and B be two numbers such that 0 < a <
B < o0o. Given GH® and GH?, we can compute GH™ in O(n?) time complexity,
for any X €]a, B

Proof. In order to obtain this time complexity, we slightly modify Gusfield al-
gorithm. The main difference resides in the way a minimum cut in Step 4 is
obtained. By applying Theorem 5, any minimum cut required by the algorithm
can be computed in linear time. Since the skeleton of the algorithm remains
the same as in the original Gusfield algorithm, the resulting time complexity is
O(n?). |

4.2 Computing a cut-tree from one initial cut-tree

In this subsection, we assume that only one cut-tree is known. The goal is the
same as before, i.e., compute a new cut-tree for a different value of the edge
capacity.

For a network having only one varying edge capacity, the variation of this ca-
pacity may have no influence on the maximum flow value (thus on the minimum
cuts) for many pairs of vertices. The remaining of this section tries to localize
such pairs, and the consequences on the construction of a new cut-tree.

Lemma 3. Let G be a network having n vertices and e = [i,j] a single edge
of G having a parametric capacity c(e) = X. Let s and t be two vertices of G.
If the path Ps; in GH™ has no common edge with P; ;, then fs:(X) = fsi(a),
VA >a>0.

Proof. By using the cut property of the cut-tree, there exists a minimum cut
C¢, separating s and ¢ such that both vertices i and j (e = [7, j]) are in the same
side of the minimum cut. Consequently, it does not contain e for A > «a, and is

insensitive to the variation of A. Assume that there exists another minimum cut
st sensitive to A. Thus, using Equation 4:

AN>a c(C;)‘t) = c(C;C;) +A—a.
Note that both C;Dg and Cf, are min cuts. Thus, we have:

N>« c(C;ﬁ) =c(Cg) + A —a.

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 11

As noted before, C'¢';, remains a cut whenever A > «, thus

!

(C3)

IN>acCy) >c
>c
Consequently, this is only possible for A = a. Summarizing, the only possibility
for e to belong to a minimum cut is for A = a. In this case, a must be strictly
positive and there exists an alternate minimum cut that does not contain edge
e. Thus, the maximum flow value is constant for A > a. O

Let G be a network with an edge e = [¢, j] having parametric capacity \. Let
GH® be a cut-tree when c(e) = a. Let P;; be the path in GH® connecting i
and j such that P, ; = (zo = 4,21,...,2 = j). Let P/ be the forest obtained
from GH® by removing the edges of P; ;. Let T, be the tree of P, ; containing
x,- Fig. 2 illustrates all these definitions. Using these definitions, Lemma 3 says
that the maximum flow value between s and ¢ within the same subtree T, is
insensitive to the variation of the capacity of e for A > a.

To =1 Tq Ty =7

To Ta T

Figure 2. Identifying subtrees in a cut-tree

Lemma 4. Using the above definitions, given GH®, for each a, the construction
of GH*, X > a can be performed in n — n, minimum cut computations, where
ng is the number of vertices of Ty, .

Proof. Consider Gusfield Algorithm, and especially Step 5 in which the interme-
diate tree is rebuilt in order to take into account the newly discovered minimum
cut. Using Lemma 3, all the minimum cuts defined in GH? (in T,) remain valid
in G whatever the value of A\ > « is, when the sources and sinks of the maximum
flows are taken within 7,.

We must note that the correctness of Gusfield algorithm does not require a
specific labeling of the vertices. Two different permutations of the labels may
lead to two different cut trees. However, both trees will preserve the fundamental
properties of the cut-tree, given in Definition 1.

The idea now is to find an order for examining all the vertices such that
the structure of T}, is maintained. Let 7 be a permutation of [1..n] such that
7 1(1),...m (n,) is a DFS exploration of T,.

Then, using Gusfield algorithm will start by reconstructing exactly Ty, since
all the minimum cuts computed in the first n, — 1 steps are given by GH®. Thus,

12 D. Barth, P. Berthomé and M. Diallo

all these computations can be replaced by the assignment of T,,. Afterwards, the
usual Gusfield algorithm can proceed. O
Using this paradigm, we can go further in preserving maximum flow compu-
tations. Consider now a step in Gusfield algorithm in which a vertex x; in the
path P;; has in its neighborhood in the intermediate tree all the vertices of its
pending subtree T3 in GH®. Using the same argument as before, we can replace
all these vertices by the whole subtree T}, avoiding again n, — 1 minimum cut
computations. The trick here is to define the permutation of the vertices at
running time in such a way that after having examined z;, we will consider all
the vertices in T} in a DFS order.
From these remarks, we can derive a new algorithm that efficiently computes
a second cut-tree from an initial one.
Algorithm 1.2: Recovering-Gusfield(G, e, GH?*, \)
> G is a network with n vertices, with an edge e = [i, j| having parametric capacity.
> GH® is a cut-tree of G when A\ = «; P;; is the path in GH* from i to j.
> X is the value of the parameter for which we want to compute GH*, X > a.
1 Let X ={zo=1i,z1...,z1 =7} and Y ={1,2,...,n}
2 For each z, € X, compute T,, and let a be such that T, has the greatest size.
3 Compute T a rooted tree in x, having n vertices such that T, is a subtree and all
the other vertices are leaves connected to z,.
4 X« X\{z.}and Y « Y\ V(Tw)
5 while the whole cut-tree is not constructed (¥ # @) do

6 if there exists a vertex x, € P;; such that all the vertices in T} are connected
to xp then

7 Replace in T all these vertices by Tj

8 Y« Y\ V(Ty)

9 else

10 if X # () then let s € X else let s € Y end if

11 Let ¢t be the neighbor of s in the current tree T

12 Compute a minimum cut Cs ¢ between s and ¢ in G.

13 Update the tree by labeling the edge (s,t) with ¢(Cs,), and rearrange the

vertices such that this new tree reflects the newly computed minimum cut
as in Gusfield initial algorithm (Algorithm 1.1).
14 X~ X\ {s}and Y <+ Y\ {s}
15 end if
16 end while
The correctness of this new algorithm is a direct consequence of Lemma 4
and its extension. It is obtained by computing an equivalent ordering of the
vertices that will be used by Gusfield algorithm.

Lemma 5. Algorithm 1.2 constructs a cut-tree using at least |P; ;| — 1 compu-
tations of minimum cuts in G and at most n — n, such computations, where n,
is the size of the largest subtree in the forest P ;.

Proof. The upper bound is given by Lemma 4. For the lower bound, we should
note that for any s and ¢ in P; j, the cut s+ contains e for 0 < A < A7 ;. Thus,
since the final cut does not contain e anymore (especially, when A = o0), all
these cuts should be recomputed. This gives a core of the cut tree computation

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 13

concerning |P; ;| elements, inducing |P; ;| — 1 minimum cut computations in the
final graph. O

This lemma shows the impact of the first cut-tree in the construction of the
second one. The drawback of this method is to give only a lower bound, since
there is no guaranty that all the subtrees of the form T, can be taken into
account in Step 7. In the following subsection, we fill this gap by considering
the other well-known algorithm for computing cut-trees, the procedure given by
Gomory and Hu themselves [9].

4.3 Complexity of the recovering process

Using the structure of the algorithm due to Gomory and Hu to compute a cut-
tree [9], we show that the lower bound given in Lemma 5 is also the upper bound,
reducing the average time complexity of the problem discussed in this section.

Let first recall the framework of Gomory and Hu algorithm. For this, we
use the notion of supernode. A supernode is simply a group of vertices. In the
following algorithm, we will consider graphs in which supernodes are contracted
in a single vertex.

Algorithm 1.3: Gomory-Hu(G)
> G is a network having n vertices.
> Returns a cut-tree T of G
Create one supernode with all the vertices.
while there exists one supernode SN with more than one vertex do
Choose s and t in SN
Consider the network G’ composed by all the supernodes except SN that has
been expanded.
5 Compute a minimum cut C} ; in G'.
6 Separate SN into two supernodes SN; and SN» connected by the capacity of
the previous cut, such that the vertices in SIN; are in one part one the cut and
SN, is in the other part. Connect the other supernodes to either SN; or SN
depending on their position in Cf ;.
7 end while
Note that this algorithm maintains during each loop a tree, called intermedi-
ate cut-tree, composed by supernodes. This implies that the resulting graph is
always a tree. As in Gusfield’s algorithm, choices can be performed in order to
obtain different, cut trees. These choices can be made at Step 3 at two different
levels. First, the two vertices involved with the Max Flow/Min Cut computation
are arbitrary within a same supernode. Second, it may exists different minimum
cuts, that may lead to different cut-trees. Finally, in order to prove the correct-
ness of this algorithm, Gomory and Hu stated that a minimum cut obtained in
the condensed graph G’ in Step 5 between vertices s and ¢ represents a mini-
mum cut between s and ¢ in the original graph. It implies that this algorithm
computes a sequence of non-crossing cuts. From all these remarks and based on
Lemma 3, many information for the final Gomory-Hu computation can be taken
from GH®. This can be summarized in the following lemma.

=W N =

14 D. Barth, P. Berthomé and M. Diallo

Lemma 6. Let G be a network having a parametric edge e = [i,j]. Let GH* be
a cut-tree when c(e) = a. Let P;; be the path connecting i and j in GH®. Let
zq be a vertex in P ;. Assume that there exists yz a vertexr connected to x, not
in P, ;. Let T? be the mazimal subtree of GH® rooted at y° mnot containing z,.
Then, there exists a cut-tree of G with c(e) = X\ > « that contains T® as subtree.

Proof. Fig. 3 illustrates the subtree decomposition of GH®. Let us consider a
DFS exploration of T? rooted in y, i.e., the index of y; is 1. We then perform
Gomory-Hu algorithm in the following order. First, let s; = z, and t; = y°,
belonging to the same supernode. We can compute a minimum cut between s;
and ;. Using Lemma 3, this minimum cut can be taken in GH®. From these
choices, the resulting supernodes are (1) SN;: all the elements of 7 and (2)
SNs: the other elements of the network.

Ty =1 T =7

Figure 3. Two-level decomposition of a Gomory-Hu cut tree

Now, for the other steps, we consider s, as the k-th vertex in the DFS order
and tj, as its parent in T, As previously, we can see that they belong at step k to
the same supernode. Thus, we can perform a step in Gomory-Hu algorithm by
seeking for a minimum cut between s and ¢;. Using Lemma 3, such a minimum
cut is given by GH®. From Step 6, we obtain an edge between two supernodes,
exactly corresponding to the edge between s and tj in T?. Thus, step by step,
we reconstruct all the structure of T°.

Once all the elements of T have been considered, the whole supernode SN;
has been transformed into a single tree. The Gomory-Hu algorithm can continue
by considering SN>. In this latter phase, no vertex of SN; will be affected by
the choices made for s and ¢ and the structure of the subtree T will be preserved
through the algorithm. O

Note that this proof can be performed whenever all the vertices of T remain
in the same supernode as x,. This remark is the basis of the proof of the following
theorem.

Theorem 7. Let G be a network having an edge e = [i, j] with parametric ca-
pacity c(e) = X\. Let GH® be a cut-tree obtained when c(e) = . Let P;; be the
path if GH® between i and j. For X\ > « it is sufficient to compute |P; ;| — 1
minimum cuts in order to obtain a cut-tree GH?.

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 15

Proof. This proof is based on Gomory and Hu initial algorithm. The main point
again is to find an order for exploring the graph in such a way that the interesting
structures, i.e., parts of GH®, are created first in the construction of the cut-
tree. Since we show that these structures are created, we can start the algorithm
in this new step, avoiding many computations.

Let us go into details and define the order in which the vertices of G must
be explored. Based on Lemma 6, we can begin the Gomory Hu algorithm by
exploring all the subtrees of the form 7. The final order would follow a DFS
numbering of the successive subtrees.

Figure 4. State of the intermediate tree before the second phase of the algorithm

This leads to the following state of intermediate tree: one supernode SN
composed by all the elements of P; ; and all the subtrees of the form T? connected
to SN by y° as shown in Fig. 4. Thus, we can start Gomory-Hu algorithm at this
step. Since it remains |P; ;| element in the supernode, we only need to compute
|P; ;| — 1 minimum cuts. This new bound matches the lower bound found in
Lemma 5. a

This theorem provides a great improvement on the average time complexity
of computing two cut-trees of two networks that only differs in one single edge
capacity. Using the original Gomory and Hu algorithm, we note that the maxi-
mum flow computations are made on smaller graphs than the original one. This
would imply further improvement on the time complexity.

5 The ASF Problem

In some practical problems, determining bottlenecks is relevant. For instance,
the evacuation problem introduced in Section 1 is one of them. When a flow
goes from its source to its sink, the saturated edges are bottlenecks for this
flow. In this section, we are interested in a particular application. Given an
edge in an undirected network, we seek the set of all vertex pairs for which any
maximum flow saturates the edge. Such a set may help decision makers to know,

16 D. Barth, P. Berthomé and M. Diallo

for instance, in telecommunications, the communications that would take benefit
of a Quality of Service improvement on the edge. Another relevant information
is that the set gives exactly the vertex pairs that would suffer from the edge
removal. For more applications, we refer to [5].

Definition 2. ASF Let G = (V, E) be network and e an edge of G. The set
of the all pairs Always Saturating Flows for e is the set of vertex pairs {s,t}
—

for which any mazimum flow f, saturates e. By denoting such a set ASF|[e],
formally,

ASFle] = {{s,t} € V2|V Fopy Furle) = c(e)}.

The objective in this section is to show that cut-trees can be used to solve
the problem. Let G = (V, E) be a network with constant edge capacities, and e
an edge of G with capacity c(e) = ¢g. In the following, we show that computing
a cut-tree with respect to G does not allow to determine exactly the set ASF[e].
But, if the capacity c(e) of e is slightly decreased, assume c(e) = g < co,
where 119 is fixed, and let G, be the new network, then, computing cut-tree for
G, and making a pairwise comparison of the maximum flow values, determines
ASFle]. The set of vertex pairs for which the maximum flow value decreases
with respect to the decrease on c(e) is ASF.

5.1 Towards ASF[e] approximations

Let us consider e = [i, j] € E as the investigated edge in the network G = (V, E).
With respect to the extremities of e, define P;; as the unique path with end
points ¢ and j in a cut-tree 7" of G. Recall that from the cut property of a
cut-tree, any edge belonging to P; ; reflects a minimum cut in G that contains
e, since any edge removal in P; ; separates ¢ and j in 7" and thus in G.

Lemma 7 stands for the relationship between P; ; and ASF[e].

Lemma 7. Let G = (V, E) be a network and e = [i,j] € E. Consider a cut-tree
T of G and the path P; ;.

Pi,j X PiJ C ASF[C]

Proof. Let P;; = (vo = i,v1,...,v; = j) as shown in Fig. 5. Consider two
arbitrary vertices s and ¢ in P;;, thus s = v, and ¢t = v, for some a and b
between 0 and k.

Let [z, y] be an edge labeled with the minimum weight in Ps ;. By definition
of the cut-tree, [z, %] reflects a minimum cut (X, X) in G that separates s and t,
with s € X. The removal of [z,y] from T defines X as the set of all the vertices
that are on the same connected component as x in 7'. Thus, ¢ belongs to X and
jto X.

Consequently, the edge [i,7] is in a minimum cut that separates s and t.
From the Max-Flow/Min-Cut theorem [7], the edge [i,j] is saturated by any
maximum flow between s and ¢. Then, [s,t] is € ASF[e]. a

Lemma 8 extends the results of Lemma 7 to a larger subset of ASFe].

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 17

Figure 5. A cut-tree T of G and Lemma 7.

Lemma 8. Let e = [i,j] € E be an edge of G = (V,E), T a cut-tree of G and
P; ; as before. For any two vertices s and t in G, if an edge labeled with the
minimal weight in the unique path P, between s and t in T' belongs also to the
path P; ;, then [s,t] is in ASFe].

Proof. This proof is based on the same idea as the previous one. By hypothesis,
suppose that an edge [z,y] with the minimum weight on P;; lies on Ps; N P; ;
as shown in Fig. 6.

Then, using the definition and properties of a cut tree, the edge [z, y] reflects
a minimum cut (X) in G that separates s and ¢. Thus, this minimum cut clearly
separates i and j with i € X and j € X =V \ X.

Consequently, using the Max-Flow/Min-Cut theorem [7], any maximum flow
between s and ¢ in G saturates e = [i, 7], what implies [s,t] € ASF[e]. a

Figure 6. A cut tree and Lemma 8.

Using only the information provided by the Lemma does not always allow to
explicit the set ASF'e]. For instance, let in Fig. 7, the top simple path of length
3, with capacities equal to 2, be an arbitrary cut-tree. Such a cut-tree may
be constructed from the two networks pointed by the former path: one is the
network (7) being the path itself and the other is the network (S) represented
by the undirected cycle of length four with all capacities equal to 1.

18 D. Barth, P. Berthomé and M. Diallo

In both networks S and T, let e = [3,4] be the investigated edge. It is clear
from the definition of ASF]e] that:

1.in T, ASFe]
2.in S, ASFle] =

{(1,4),(2,4),(3,4)}
{(1,2),(1,3),(1,4),(2,3),(2,4), (3,4)}.

But, if we use only the information provided by Lemma 8, we would get the
following sets:

— in T, the set is {{1,4}, {2,4}, {3,4}}, what would correspond exactly to the
set ASFe] described in Point 1,

— in S, the set is {{1,4},{2,4},{3,4}}, what does not correspond to the set
ASFe] described in Point 2.

In seeking to determine the exact set ASF[e] with respect to the network S,
we arise to Lemma 9.

Lemma 9. Let G = (V, E) be a network, e = [i, j] an edge in E and T a cut-tree
of G. Define w as the minimum edge weight on the unique path P;; between i
and j in T. Let K be the subtree of T containing i and j, and resulting from the
removal of all edges of T labeled with a weight strictly less than w. Then,

ASFle] CV(K) x V(K),
where, V(K) is the set of all vertex of V' that are in K.

Proof. Assume that there exists a pair s,t in ASF[e] that does not belong to
V(K) x V(K). Then, a minimum cut that separates s and ¢ will be such that
1 and j belongs to its same component. Thus, edge e does not belong to any
minimum cut separating s and ¢. What implies the existence of a maximum flow

— —
f s such that | f ,(e)| < c(e). But, this is a contradiction with our hypothesis
and also with the definition of ASF. O

With Lemma 8 and 9, we bound the set ASF. Given any network G and its
edge e, we showed above that using only the information provided by Lemma 8
is not sufficient to determine ASF[e]. As for Lemma 9, we show that using
only the information provided by the Lemma is also not sufficient to determine
ASFle].

For instance, consider the same networks S and 7" of Fig. 7 and let in both
networks, the edge e = [3,4] be the investigated one. Using only the information
provided by Lemma 9, the sets described by the Lemma are:

—in T, the set is {{1,2},{1,3},{(1,4},{(2,3},{2,4}, {3,4}, what clearly does
not correspond to the set ASF[e] described in Point 1.

—in S, theset is {{1,2},{1,3}, {(1,4},{(2,3},{2,4},{3,4},{1,4},{2,4}, {3,4}},
what corresponds to the set ASF[e] described in Point 2.

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 19

Thus, these two lemmas describe the set ASF[e] for some cases and for other
not. Consequently, we showed that, given a network G and its edge e, a single
cut-tree T' of G does not provide on its own enough information for the problem
addressed here. In the next section, we show that one needs to make a slight
perturbation on the capacity of e and compute a cut-tree of the new network
with perturbed capacity. Comparing the pairwise maximum flow values provided
by the two cut-trees would explicit the vertex pairs for which their maximum
flow value changed.

r O @ - O—D

Figure 7. Approximations of ASFe]

5.2 Characterization of ASF[e]

Given a network GG, an edge e of G that is saturated by a maximum flow remains
saturated even if the capacity of the edge is slightly decreased. Furthermore,
consider the vertex pair {s,t}, if e is belongs to a minimum cut induced by a

5
maximum flow f, ;, then the maximum flow value f;; will also decrease by the
same quantity [2].

Theorem 8. Let G = (V, E) be a network, e = [i, j] € E with capacity c(e) = co,
and T a cut-tree of G. Consider, a fized slight decrease 0y > 0 on the capacity
c(e), i.e., c(e) =co—0dp > 0. Let G, be the new network and let Ts, be a cut-tree
Of G50 .

For any two vertices s and t, {s,t} € ASF[e] if and only if fs; in T is
different (by do) from fsy in Ts,.

Proof. Let G = (V,E) be a network and e € E. Suppose that an arbitrary
—

{s,t} is in ASFTe], then any maximum flow f, saturates e. In other terms, e
belongs to a minimum cut that separates s and ¢. Thus, any decrease on c(e)
would affect the value f;; since such a decrease does not avoid e to belong to a
minimum cut separating s and t.

20 D. Barth, P. Berthomé and M. Diallo

Reversely, if fs; changes from a value of c(e) to another, then e belongs to
—

a minimum cut separating s and ¢, thus any maximum flow f st saturates e
implying that {s,t} € ASFle]. a

If one uses the Ford and Fulkerson [7] maximum flow algorithm, one could
gain in complexity by using a capacity increase technique instead of decreasing
the capacity of ¢(e). In fact, if the capacity of ¢(e) is increased the complexity
may be improved by reusing some augmenting paths.

In Fig. 8, we illustrate how the example of Fig. 7 derives in two different
cases. Let us consider the same networks S and T' and e = [3,4] as before. In
both networks, we decrease c¢(e) by dp = 0.5 and construct a cut-tree Ty, .

r D@0

1
T@2@2 @ 2@ 1 S 1

1

@ 2 @ 2 @1.5 @ @ 1.5 @ 1.5 @ 1.5 @ 15,

Figure 8. Characterization of ASF[e]
The application of Theorem 8 to each of the networks provides the respective
sets ASF[3,4]. In the network (7),
ASF[3,4] = {{1,4},{2,4},{3,4}}.
As for network (.5),

ASF[3,4] = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} }.

6 Concluding remarks

In this paper, we have focused on two aspects of the sensitivity analysis of
multi-terminal network flows problem. Theses two aspects deal with the use of
cut-trees and parametric capacities. Some open questions could be investigated.

RR LRI-1395, October 2004 — Effects of Capacities Variations. . . 21

First, we have seen that the computation time of iterative Gomory-Hu cut
trees when capacities vary can be improved in many cases. What could be the
impact of this improvement on the average computation time? Is there some
other possible improvements using properties of the initial cut-tree?

Secondly, a pair of node s,t is in ASF[e] for a given edge e of an undirected
network iff all the maximum flows between s and ¢ sautrate e (i.e., e is critical for
s,t). One could also focus on the pairs s, ¢ such that at least one maximum flow
between s and t saturates e. All the edges verifying this property are globaly
critical for s, .

References

1. C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.

2. P. Berthomé, M. Diallo, and A. Ferreira. Generalized parametric multi-terminal
flows problem. In H.L. Bodlaender, editor, Graph Theoretical Concepts in Com-
puter Science (WG)2003, volume 2880 of Lecture Notes in Computer Science, pages
71-80, October 2003.

3. C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, and C. Stein. Experimen-
tal study of minimum cut algorithms. In ACM Symposium On Discrete Algorithms,
pages 324-333, New Orleans, Louisiana, 5-7 January 1997.

4. J. Cohen and E.P. Duarte Jr. Fault-tolerant routing of TCP/IP PDU’s on general
topology backbones. In Design of Reliable Communication Networks, Budapest,
Hungary, October 2001.

5. M. Diallo. Réseauzr de Flots: Flots Paramétrés et Tarification. PhD the-
sis, Université de Versailles, France, December 2003. In French. Available at
http://www.prism.uvsq.fr/"diallo.

6. S.E. Elmaghraby. Sensitivity analysis of multi-terminal network flows. J. ORSA,
12:680-688, 1964.

7. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, Prince-
ton, NJ, 1973.

8. R. L. Francis and P. B. Saunders. EVACNET: Prototype network optimization
models for building evacuation. Technical Report NBSIR, 79-1738, National Bureau
of Standards, Washington, DC, 1979.

9. R. E. Gomory and T. C. Hu. Multi-terminal network flows. STAM Journal of
Computing, 9(4):551-570, December 1961.

10. D. Gusfield. Very simple methods for all pairs network flow analysis. STAM Journal
of Computing, 19:143-155, 1990.

11. H. W. Hamacher and S. Tjandra. Earliest arrival flow with time dependent capacity
for solving evacuation problems. In M. Schreckenberg and S. D. Sharma, editors,
Pedestrian and Evacuation Dynamics, pages 267-276. Springer, 2002.

12. H. W. Hamacher and S. Tjandra. Mathematical modelling of evacuation prob-
lems. In M Schreckenberg and S. D. Sharma, editors, Pedestrian and Evacuation
Dynamics, pages 227-266. Springer, 2002.

13. T.C. Hu and M.T. Shing. Combinatorial Algorithms, Enlarged 2nd Ed. Dover
Publications, INC, Mineola, New York, 2002.

14. D. M. Topkis. Monotone minimum node-cuts in capacitated networks. Technical
Report ORC 70-39, University of Carlifornia, Berkley, CA, 1970.

	RR1395entête.pdf
	RR1395.ps

