
L R I

A SELF-STABILIZING LINK-COLORING

PROTOCOL RESILIENT TO UNBOUNDED
BYZANTINE FAULTS IN ARBITRARY

NETWORKS

MASUZAWA T / TIXEUIL S

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

01/2005

Rapport de Recherche N° 1396

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

A Self-Stabilizing Link-Coloring Protocol Resilient to
Unbounded Byzantine Faults in Arbitrary Networks1

Toshimitsu Masuzawa∗ Sébastien Tixeuil?

∗ Osaka University, Japan, email: masuzawa@ist.osaka-u.ac.jp
? LRI-CNRS UMR 8623 & INRIA Grand Large, France, email:

tixeuil@lri.fr

1This work is supported in part by a JSPS, Grant-in-Aid for Scientific Re-
search((B)(2)15300017), and “The 21st Century Center of Excellence Program” of the Ministry
of Education, Culture, Sports, Science and Technology, Japan. This work is also supported in
part by the French Ministry of Research ACI projects FRAGILE and SR2I.

Abstract

Self-stabilizing protocols can tolerate any type and any number of transient faults.
However, in general, self-stabilizing protocols provide no guarantee about their behavior
against permanent faults. This paper proposes a self-stabilizing link-coloring protocol re-
silient to (permanent) Byzantine faults in arbitrary networks. The protocol assumes the
central daemon, and uses 2∆ − 1 colors where ∆ is the maximum degree in the network.
This protocol guarantees that any link (u, v) between nonfaulty processes u and v is as-
signed a color within 2∆ + 2 rounds and its color remains unchanged thereafter. Thus,
our protocol achieves Byzantine-fault tolerance with containment radius of one, which is
trivially optimal.

Keywords
distributed protocol, self-stabilization, link-coloring, byzantine fault, fault tolerance,

fault containment

Résumé

Les protocoles auto-stabilisants sont capables de tolérer tout type et tout nombre de
fautes transitoires. Cependant, en général, les protocoles auto-stabilisants ne proposent
aucune garantie vis à vis des défaillances permanentes. Dans cet article, nous proposons
un algorithme de coloriage des liens qui est auto-stabilisant et tolère un nombre arbitraire
de défaillances Byzantines dans des réseaux de topologie quelconque. Le protocole suppose
un démon central, et utilise 2∆ − 1 couleurs, où ∆ est le degré maximal du réseau. Ce
protocole garantit que tout lien (u, v) entre deux processus non défaillants u et v est colorié
en moins de 2∆+2 tours et que sa couleur ne change plus par la suite. Donc, notre protocole
tolère des défaillances Byzantines et cloisonne celles-ci à distance 1, ce qui est triviallement
optimal.

Mots clef
algorithme réparti, auto-stabilisation, coloriage des liens, fautes Byzantines, tolérance

aux fautes, cloisonnement des fautes.

1

Chapter 1

Introduction

Self-stabilization [4] is one of the most effective and promising paradigms for fault-tolerant
distributed computing [5]. A self-stabilizing protocol is guaranteed to achieve its desired
behavior eventually regardless of the initial network configuration (i.e., global state). This
implies that a self-stabilizing protocol is resilient to any number and any type of transient
faults since it converges to its desired behavior from any configuration resulting from
transient faults. However the convergence to the desired behavior is guaranteed only under
the assumption that no further fault occurs during convergence.

There exists several researches on self-stabilizing protocols that are also resilient to
permanent faults [1, 3, 6, 8, 2, 7, 9, 11]. Most of those consider only crash faults, and
guarantee that each nonfaulty process achieves its intented behavior regardless of the initial
network configuration. Nesterenko et al. [9] provide solutions that are self-stabilizing
and tolerate unbounded Byzantine faults. The main difficulty in this setting is caused
by arbitrary and unbounded state changes of the Byzantine process: processes around
the Byzantine processes may change their states in response to the state changes of the
Byzantine processes, and processes next to the processes changing their states may also
change their states. This implies that the influence of the Byzantine processes could
expand to the whole system, preventing every process from conforming to its specification
forever. In [9], the protocols manage to contain the influence of Byzantine processes to
only processes near them, the other processes being able to eventually achieve correct
behavior. The complexity measure they introduce is the containment radius, which is the
maximum distance between a Byzantine process and a processor affected by the Byzantine
process. They also propose self-stabilizing protocols resilient to Byzantine faults for the
vertex coloring problem and the dining philosophers problem. The containment radius is
one for the vertex coloring problem and two for the dining philosophers problem. In [10],
the authors consider a self-stabilizing link-coloring protocol resilient to Byzantine faults
in oriented tree networks, achieving a containment radius of two. Link-coloring of the
distributed system is an assignment of colors to the communication links such that no
two communication links with the same color share a process in common. Link-coloring
has many applications in distributed systems, e.g., scheduling data transfer and assigning
frequency band in wireless networks. From a Byzantine containment point of view, link

2

coloring is harder than vertex coloring and dining philosophers for the following reason:
while the two latter problems require only one process to take an action to correct a single
fault, link colors result from an agreement of two neighboring nodes, and thus can result
in the update of two nodes to correct a single failure.

In this paper, we present a self-stabilizing link-coloring protocol resilient to unbounded
Byzantine faults. Unlike the protocol of [10], we consider abritrary anonymous networks,
where no pre-existing hierarchy is available. As it was proved necessary in [10] to achieve
constant containment radius, we assume the central deamon, i.e. exactly one process can
execute an action at a given time. We use 2∆− 1 colors, where ∆ is the maximum degree
in the network. Our protocol guarantees that any link (u, v) between nonfaulty processes u
and v is assigned a color within 2∆+2 rounds and its color remains unchanged thereafter.
As far as fault containment is considered, our protocol is optimal, since the influence of
Byzantine processors is limited to themselves. Thus, our protocol also trivially achieves
Byzantine-fault containment with containment radius of one.

3

Chapter 2

Preliminaries

2.1 Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes and a
set L of communication links (simply called links). A link is an unordered pair of distinct
processes. A distributed system S can be regarded as a graph whose vertex set is P and
whose link set is L, so we use some graph terminology to describe a distributed system
S. A subsystem S ′ = (P ′, L′) of a distributed system S = (P,L) is such that P ′ ⊆ P and
L′ = {(u, v) ∈ L|u ∈ P ′, v ∈ P ′}.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of a process
v is denoted by Nv, and its cardinality (the degree of v) is denoted by ∆v(= |Nv|). The
degree ∆ of a distributed system S = (P, L) is defined as ∆ = max{∆v | v ∈ P}. We do
not assume existence of a unique identifier of each process. Instead we assume each process
can distinguish its neighbors from each other by locally arranging them in some arbitrary
order: the k-th neighbor of a process v is denoted by Nv(k) (1 ≤ k ≤ ∆v).

Each process is modeled by a state machine that can communicate with its neighbors
through link registers. For each pair of neighboring processes u and v, there are two link
registers ru,v and rv,u. Message transmission from u to v is realized as follows: u writes a
message to link register ru,v and then v reads it from ru,v. The link register ru,v is called
an output register of u and is called an input register of v. The set of all output (resp.
input) registers of u is denoted by Outu (resp. Inu), i.e., Outu = {ru,v | v ∈ Nu} and
Inu = {rv,u |v ∈ Nu}.

For convenience, we use variables to denote process states and link register states, and
we assume that processor code is given as one function (or action) that is regularly executed
in an atomic manner. The execution of an action of u is called a step of u.

A global state of a distributed system is called a configuration and is specified by a
product of states of all processes and all link registers. We define C to be the set of all
possible configurations of a distributed system S. For each configuration ρ ∈ C, ρ|u and ρ|r
denote the process state of u and the state of link register r in configuration ρ respectively.
For a process u and two configurations ρ and ρ′, we denote ρ

u7→ ρ′ when ρ changes to ρ′

4

by executing an action of u. Notice that ρ and ρ′ can be different only in the states of u
and the states of output registers of u.

A schedule of a distributed system is an infinite sequence of processes. Let Q =
u1, u2, . . . be a schedule. An infinite sequence of configurations e = ρ0, ρ1, . . . is called

an execution from an initial configuration ρ0 by a schedule Q, if e satisfies ρi
ui+17→ ρi+1 for

each i (i ≥ 0). The set of possible schedules in a distributed system is sometimes modeled
by a scheduler called a daemon. In this paper, we consider the central daemon where no
two processes can execute their actions at the same time.

The set of all possible executions from an initial configuration ρ0 ∈ C is denoted by
Eρ0 . The set of all possible executions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We consider

asynchronous distributed systems where we can make no assumption on schedules except
that any schedule is weakly fair : every process appears in the schedule infinitely often.

In this paper, we consider (permanent) Byzantine faults : a Byzantine process (i.e., a
Byzantine-faulty process) can arbitrarily behave independently from its actions. If v is a
Byzantine process, v can repeatedly change its variables and its output registers arbitrarily.

Let BF = {f1, f2, . . . , fc} be the set of Byzantine processes. We call a proceess v (6∈
BF) a correct process. In distributed systems with Byzantine processes, execution by a
schedule Q = u1, u2, . . . is an infinite sequence of configurations e = ρ0, ρ1, . . . satisfying
the following conditions.

• When ui+1 is a correct process, ρi
ui+17→ ρi+1 holds (possibly ρi = ρi+1).

• When ui+1 is a Byzantine process, ρi+1|ui+1 and ρi+1|r (r ∈ Outui+1) can be arbitrary
states. For any process v other than ui+1, ρi|v = ρi+1|v and ρi|r = ρi+1|r (r ∈ Outv)
hold.

In asynchronous distributed systems, time is usually measured by asynchronous rounds
(simply called rounds). Let e = ρ0, ρ1, . . . be an execution from configuration ρ0 by a
schedule Q = u1, u2, The first round of e is defined to be the minimum prefix of e,
e′ = ρ0, ρ1, . . . , ρk, such that {ui | 1 ≤ i ≤ k} = P . Round t (t ≥ 2) is defined recursively,
by applying the above definition of the first round to e′′ = ρk, ρk+1, Intuitively, every
process has a chance to update its state in every round.

2.2 Self-Stabilizing Protocol Resilient to Byzantine

Faults

In this paper, we treat only static problems, i.e., once the system reaches a desired con-
figuration, the configuration remains unchanged forever. For example, the spanning-tree
construction problem is a static problem, while the mutual exclusion problem is not [5].
Some static problems can be defined by a specification predicate, spec(v), for each process
v, which specifies the condition that v should satisfy at the desired configuration. A speci-
fication predicate spec(v) is a boolean expression consisting of the variables of Pv ⊆ P and
link registers Rv ⊆ R, where R is the set of all link registers.

5

A self-stabilizing protocol is a protocol that guarantees each process v satisfies spec(v)
eventually regardless of the initial configuration. By this property, a self-stabilizing proto-
col can tolerate any number and any type of transient faults. However, since we consider
permanent Byzantine faults, faulty processes may not satisfy spec(v). In addition, non-
faulty processes near the faulty processes can be influenced by the faulty processes and
may be unable to satisfy spec(v). Nesterenko and Arora [9] define a strictly stabilizing
protocol as a self-stabilizing protocol resilient to Byzantine faults. Informally, the protocol
requires each process v more than ` away from any Byzantine process to satisfy spec(v)
eventually, where ` is a constant called stabilization radius. A strictly stabilizing protocol
is defined as follows.

Definition 1 A configuration ρ0 is a BF-stable configuration with stabilizing radius ` if
and only if, for any execution e = ρ0, ρ1, . . . and any process v, the following condition
holds:

If the distance from v to any Byzantine process is more than `, then for any
i (i ≥ 0) (i) v satisfies spec(v) in ρi, (ii) ρi|v = ρi+1|v holds, and (iii) ρi|r =
ρi+1|r (r ∈ Outv) holds.

Definition 1 states that, once the system reaches a stable configuration, a process v more
than ` away from any Byzantine process satisfies spec(v) and never changes the states of
v and r (r ∈ Outv) forever.

Definition 2 ([9]) A protocol A is a strictly stabilizing protocol with stabilizing radius
` if and only if, for any execution e = ρ0, ρ1, . . . of A starting from any configuration ρ0,
there exists ρi that is a BF-stable configuration with radius `. We say that the stabilizing
time of A is k for the minimum k such that the last configuration of the k-th round is a
BF-stable configuration in any execution of A.

Definition 3 A protocol A is Byzantine insensitive if and only if every process eventually
satisfies its specification in S ′ = (P ′, L′), the subsystem of all correct processes.

Notice that if a protocol is Byzantine insensitive, it is also strictly stabilizing with
stabilizing radius of 1, but the converse is not necessarily true. So, the former property is
strictly stronger than the latter.

2.3 Link-Coloring Problem

The link-coloring problem consists in assigning a color to every link so that no two links
with the same color are adjacent to the same processor. In the following, let CSET be a
given set of colors, and let Color(u, v) ∈ CSET be the color of link (u, v).

Definition 4 In the link-coloring problem, the specification predicate spec(v) for a process
v is given as follows:

∀x, y ∈ Nv : x 6= y =⇒ Color(v, x) 6= Color(v, y)

6

In the following, we denote a link-coloring protocol with b colors as a b-link-coloring
protocol.

7

Chapter 3

Link-Coloring Protocol

3.1 Link-Coloring Protocol on arbitrary networks

Our protocol is presented as Algorithm 3.1.1. It is informally described as follows: each
process maintains a list of colors assigned to its incident links and periodically exchanges
the list with each neighboring process. From the list received from its neighbor v, a
processor u can propose a color for the link (u, v). Since the set of colors is of size 2∆− 1,
u can choose a color that is not used at u or v. If both u and v are correct, once they settle
on a color c for link (u, v), this color is never changed. In case of a Byzantine process,
it may happen however, that a Byzantine process keeps proposing colors conflicting with
other neighbors proposals. To ensure that this behavior may not occur infinitely often, we
use a priority list so that neighbors of a particular node u get round robin priority when
proposing conflicting colors.

3.2 Correctness Proof

Let u and v be neighboring processes, and let v be the k-th neighbor of u. We say that
register ru,v is consistent if PCu,v = outColu(k) and USETu,v = {outColu(m) | 1 ≤ m ≤
∆u,m 6= k} hold.

Lemma 1 Once a correct process executes an action, its output registers becomes consis-
tent and remain so thereafter.

Proof By the code of the algorithm. 2

Corollary 1 In the second round and later, all output registers of correct processes are
consistent.

The following lemma also holds clearly.

8

Algorithm 3.1.1 The SS link-coloring protocol
constants

∆ = the maximum degree of the network

∆v = the degree of v
Nv(k) (1 ≤ k ≤ ∆v) = the k-th neighbor of v
CSET = {1, 2, . . . , 2∆− 1} // set of all colors

local variables of node v
outColv(x) (1 ≤ x ≤ ∆v); // color proposed by v for the x-th incident link

// We assume outColv(x) takes a value from CSET ∪ {⊥}
// The value ⊥ is used temporarily only during execution of an atomic step

Decidedv : subset of {1, 2, . . . , ∆v}; // the set of neighbor u such that the color of (u, v) is accepted (or finally decided)
UnDecidedv : ordered subset of {1, 2, . . . , ∆v}; // the ordered set of neighbor u such that the color of (u, v) is not accepted

// We assume Decidev ∪ UnDecidedv = {1, 2, . . . , ∆v} holds in the initial configuration

variables in shared register rv,u

PCv,u; // color proposed by v for the link (v, u)
USETv,u; // colors of links incident to v other than (v, u)
// in-register ru,v has PCu,v and USETu,v

function LINKCOLORING {
// check the conflict on the accepted color
// This is against that a Byzantine process changes the accepted color.
// Also, this is against the initial illegitimate configuration (meaningful only in the first two round)
for each k ∈ Decidedv{

if (PCNv(k),v 6= outColv(k)) or (outColv(k) = outColv(k′) for some k′(6= k))
then { // something strange happens

outColv(k) := ⊥;
remove k from Decidedv ;
append k to UnDecidedv as the last element;

// if this occurs in the third round or later, Nv(k) is a Byzantine process
}

}
// check whether v’s previous proposals were accepted by neighbors
for each k ∈ UnDecidedv{

if PCNv(k),v = outColv(k)
then { // v’s previous proposed was accepted by Nv(k)

remove k from UnDecidedv ;
append k to Decidedv;

}
else // v’s previous proposed was rejected by Nv(k)

outColv(k) := ⊥;
}
// check whether v can accept the proposal made by neighbors
for each k ∈ UnDecidedv in the order in UnDecidedv {

// the order in UnDecidedv is important to avoid infinite obstruction of Byzantine processes
if PCNv(k),v 6∈ {outColv(m) | 1 ≤ m ≤ ∆v}

then { // accept the color proposed by Nv(k)
outColv(k) := PCNv(k),v ;
remove k from UnDecidedv ;
append k to Decidedv;

}
else // make proposal of a color for undecided links

outColv(k) := min(CSET − (({outColv(m) | 1 ≤ m ≤ ∆v} − {⊥}) ∪ USETNv(k),v))
// at least one color is available (remark that outColv(k) = ⊥ holds)

}
for k := 1 to ∆v { // write to its own link registers

PCv,Nv(k) := outColv(k);
USETv,Nv(k) := {outColv(m) | 1 ≤ m ≤ ∆v , m 6= k};

}
}

9

Lemma 2 Once a correct process v executes an action, outColv(k) 6= outColv(k
′) holds

for any k and k′ (1 ≤ k < k′ ≤ ∆v) at any time (except that outColv(k) = outColv(k
′) = ⊥

holds temporarily during execution of an action).

Proof The lemma clearly holds from the following facts:

• When outColv(k) = outColv(k
′) and {k, k′} ⊆ Decidedv hold, then either outColv(k)

or outColv(k
′) is reset to ⊥. (outColv(k) = outColv(k

′) and {k, k′} ⊆ Decidedv may
hold in the initial configuration.)

• v assigns a color c to outColv(k) only when outColv(k
′) 6= c holds for any k′ (k′ 6= k).

2

Let u and v be any neighboring processes, and let v be the k-th neighbor of u. In the
followings, we say that process u accepts a color c for a link (u, v) if k ∈ Decidedu and
outColu(k) = c holds.

Lemma 3 Let u and v be any correct neighboring processes, and let v be the k-th neighbor
of u and u be the k′-th neighbor of v.

Once v accepts a color of (u, v) in the second round or later, outColu(k) and outColv(k
′)

never change afterwards. Moreover, u accepts the color of (u, v) in the next round or earlier.

Proof When process v completes its action at which v accepts a color c of (u, v),

outColu(k) = PCu,v = outColv(k
′) = PCv,u = c

∧ outColu(k) 6∈ {outColu(m) | 1 ≤ m ≤ ∆u,m 6= k}
∧ outColv(k

′) 6∈ {outColv(m) | 1 ≤ m ≤ ∆v,m 6= k′}

holds.
Process u or v never accepts a proposal c for any other incident link, and never makes

a proposal c for any other incident link, as long as outColu(k) = outColv(k
′) = c holds.

This implies that outColu(m) 6= c (m 6= k) ∧ outColv(m) 6= c (m 6= k′) holds as long as
outColu(k) = outColv(k

′) = c holds.
Now we show that outColu(k) = outColv(k

′) = c remains holding. We assume for
contradiction that either outColu(k) or outColv(k

′) changes. Without loss of generality,
we can assume that outColu(k) changes first. This change of the color occurs only when
outColu(m) = c holds for some m such that m 6= k. This contradicts the fact that
outColu(m) 6= c (m 6= k) remains holding as long as outColu(k) = c holds.

It is clear that u accepts the color c for the link (u, v) when u is activated and
outColu(k) = PCv,u = c holds. Thus, the lemma holds. 2

Lemma 4 Let u and v be any correct neighboring processes. Process u accepts a color for
the link (u, v) within 2∆u + 2 rounds.

10

Proof Let v be the kth neighbor of u. Let t1, t2 and t3 (t1 < t2 < t3) be the steps (i.e., global
discrete times) when u, v and u are activated respectively, and u is never activated between
t1 and t3. We consider the following three cases of the configuration immediately before u
executes an action at t3. In what follows, let c be the color such that outColu(k) = c holds
immediately before u executes an action at t3.

1. If PCv,u = c(= outColu(k)) holds: Process u accepts the color c for (u, v) in the
action at t3.

2. If PCv,u(= c′) 6= c(= outColu(k)) holds and v is the first process among processes
w such that PCw,u = c′ in UnDecidedu: Process u accepts the color c′ of PCv,u for
(u, v) in the action at t3.

3. If PCv,u(= c′) 6= c(= outColu(k)) holds and v is not the first process among processes
w such that PCw,u = c in UnDecidedu: Process u cannot accept color c′ for (u, v) in
the action at t3. Process u accepts the color c′ for the link (u,w) such that w is the
first process among processes x such that PCx,u = c′ in UnDecidedu.

In the third case, Process w is removed from UnDecidedu. From Lemma 3, w is never
appended to UnDecidedu again when w is a correct process. When w is a Byzantine
process, w may be appended to UnDecidedu again but its position is after the position of
u. This observation implies that the third case occurs at most ∆− 1 times for the pair of
u and v before u accepts a color for (u, v).

Now we analyze the number of rounds sufficient for u to accept a color of the link (u, v).
Consider three consecutive rounds. Let t be the time when u is activated last in the first
round of the three consecutive rounds, and let t′ be the time when u is activated first in
the last round of the three consecutive rounds. It is clear that v is activated between t
and t′. This implies that we have at least one occurrence of the t1, t2 and t3 described
above between t and t′. We repeat this argument by regarding the last round of the three
consecutive rounds as the first round of the three consecutive rounds we consider next.
Thus, u accepts a color of (u, v) within 2∆v + 2 rounds. 2

From Lemma 4, we can obtain the following theorem.

Theorem 1 The protocol is a Byzantine insensitive link-coloring protocol for arbitrary
networks. The stabilization time of the protocol is 2∆ + 2 rounds.

11

Bibliography

[1] E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. Lec-
tures Notes in Computer Science, Vol 725 (Springer-Verlag), pages 174–188, 1993.

[2] J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: impossi-
bility results and solutions using self-stabiling failure detectors. International Journal
of Systems Science, 28(11):1177–1187, 1997.

[3] J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems. In Pro-
ceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,
page 290, 1997.

[4] E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17:643–644, 1974.

[5] S. Dolev. Self-Stabilization. MIT Press, 2000.

[6] A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Pro-
ceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing,
pages 195–206, 1993.

[7] T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology problem.
In Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pages 1.1–1.15, 1995.

[8] H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-stabilizing
protocols using an unreliable failure detector. IEICE Transactions on Information and
Systems, E83-D(10):1831–1840, 2000.

[9] M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Proceedings
of 21st IEEE Symposium on Reliable Distributed Systems, pages 22–29, 2002.

[10] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-stabilizing link-
coloring protocol resilient to byzantine faults in tree networks. In Proceedings of the
2004 International Conference on Principles of Distributed Systems (OPODIS’2004),
Lecture Notes in Computer Science. Springer-Verlag, December 2004.

12

[11] S. Ukena, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-stabilizing spanning
tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction, J85-
D-I(11):1007–1014, 2002.

13

	RR1396entête.pdf
	RR1396rapp.pdf

