
L R I

AuGuSTe : A TOOL FOR STATISTICAL
TESTING EXPERIMENTAL RESULTS

GOURAUD S D

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

03/2005

Rapport de Recherche N° 1400

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

AuGuSTe: a Tool for Statistical Testing
Experimental results

S.-D. Gouraud, gouraud@lri.fr
L.R.I., UMR 8623,

CNRS and Université Paris XI,
91400 Orsay, France.

Abstract

In a previous paper, we described a new generic method
for statistical testing of software procedures, according to
any given graphical description of the behavior of the sys-
tem under test (control flow graph, statecharts, etc.). Its
main originality is that it combines results and tools from
combinatorics (random generation of combinatorial struc-
tures) with symbolic constraint solving, yielding a fully au-
tomatic test generation method. Instead of drawing input
values as with classical testing methods, uniform random
generation routines are used for drawing paths from the set
of possible execution paths or traces of the system under
test. Then a constraint solver is used for finding actual val-
ues for activating the generated paths.

In this paper, we present a first application of our method
to structural statistical testing, first defined by Thevenod-
Fosse and Waeselynck (LAAS), and the tool we have devel-
oped. We also present the experiments (more than 10000 on
four functions from an industrial software) that we made in
order to assess our approach and its stability. They show
that our approach is comparable to the one of the LAAS, is
stable and has the additional advantage of being fully au-
tomated. Moreover, these first experiments show that the
method scales up well. The experiences gained from these
experiments are also described and we present some per-
spectives.

1 Introduction

Generally, software testing consists in selecting test data,
running the software and verifying that the outputs or the
observed behaviour are in conformity with what was ex-
pected. The different approaches to select test data fall in
three families: the structural (white-box) methods which se-
lect test data sets according to the code of the program, the
functional (black-box) methods which select test data sets

according to the specification of the system and the statisti-
cal methods which randomly select test data sets according
to a distribution, usually over the input domains. Classi-
cally, this distribution is uniform [2, 11, 19] but it can also
be derived from the operational profile of the environment
of the future system [18].

When the statistical testing methods can be automated,
they are used to draw large number of test data, allowing
more intensive test campaigns than structural or functional
testing methods. Unfortunately, some particular cases like
exception cases are not or poorly covered.

To improve this technique, Thévenod-Fosse and Waese-
lynck from LAAS (Toulouse, France) defined a new kind
of testing method which combines statistical methods with
structural [22] or functional methods [23]. Their method
provides a way to combine random testing and coverage re-
quirements, in such a way that no element in a given set to
be covered will be seldom or never exercised during testing.
It is based on the construction of a probability distribution
on the input domain which, given a set of elements to cover
w. r. t. some coverage criterion, maximises the weakest
probability for an element to be activated by an execution.
For instance, structural statistical testing based on the “all
statements” coverage criterion leads to the construction of
an input distribution which avoids a too weak probability
for any statement to be exercised, even if this statement is
only used for a small subset of the input domain. Similarly,
“all branches”, “all paths”, or any other structural coverage
criterion can be used as a basis for structural statistical test-
ing. Functional criteria, i.e. coverage criteria based on the
specification, can be used as well.

Inspired by their work, we proposed a new approach [16]
of structural statistical testing that we recently extended to
any statistical method [10] according to any graphical de-
scription of the behaviour of the system under test (control
flow graph, statecharts, etc.). Its main originality is that
it combines results and tools from combinatorics (random
generation of combinatorial structures) with symbolic con-
straint solving, yielding a fully automatic test generation

method. Instead of drawing input values as with classical
testing methods, uniform random generation routines are
used for drawing paths from the set of possible execution
paths or traces of the system under test. Then a constraint
solver is used for finding actual values for activating the
generated paths.

In order to validate our approach, we developed the Au-
GuSTe tool and we performed many experiments with the
following objectives:

1. evaluate the fault detection power of our approach. We
compared for a set of programs the number of faults
found by our approach and by the LAAS method.

2. evaluate the stability of the fault detection power. As
with all random methods, we need to be sure that our
results are not due to a lucky drawing but that they
stay similar from one experience to another.

3. check if the method scales up well. Many methods are
efficient on small programs but become impracticable
on real size programs.

This paper presents the experiences we performed to val-
idate our approach. In a first section, we recall briefly our
approach, applied on structural statistical testing. The sec-
ond section presents the AuGuSTe tool. Section 3 gives the
context (programs, number of tests, etc.) of our compari-
son. Then in Sections 4 and 5, we present our experimental
results. Finally, we conclude on these experiences and we
give some perspectives.

2 Our structural statistical testing method

Classically, a program is associated with its control flow
graph [1]. From the control flow graph G of the pro-
gram under test, our approach consists in generating paths
of G in order to cover a given criterion. Paths are gen-
erated by reusing tool for combinatorial structures: the
MuPAD-Combinat package. The Mupad-Combinat[25] of
MuPAD[20] includes the CS [3, 9] package which is de-
voted to counting and randomly generating combinatorial
structures, based on the general notion of “decomposable
structures” defined in [13].

Let C a structural coverage criterion, let EC a set of el-
ements of G which satisfy C and let N the desired number
of tests. In the case of statistical testing, the satisfaction of
a coverage criteria C by a testing method is characterised
by the minimal probability qC,N of covering any element of
EC when drawing N tests. In [21], qC,N is called the test
quality of the method with respect to C.

2.1 Paths generation

The first step consist in drawing a set of N paths of G

such as the test quality is maximal.

If EC denotes a finite set of paths of G, as for the crite-
rion “all paths of length less or equal than n”, the test qual-
ity is maximal if the paths of EC are uniformly randomly
generated.

Otherwise, if EC is not described as a set of paths but
as a set of elements of G (nodes, edges, circuits, etc.), we
must maximise the minimal probability of covering any el-
ement of EC when drawing N tests something that is not
guaranteed by a uniform random generation of paths. The
generation of paths becomes more complicated and is made
in two steps:

1. Randomly choose N elements e1, ..., eN of EC

according to a distribution on the elements which
maximise the test quality. In [15], we propose three
different distributions on the elements: a uniform
distribution, a distribution based on the notion of
dominator in a graph [16] and a distribution based on
the resolution of a linear programming system which
allows to maximise the minimal probability of reach
an element [10]. Since the uniform distribution was
not satisfactory in practice, it was discarded for the
experiments.

2. For each element ei drawn in 1, uniformly randomly
generate a path among all paths of G which pass
through ei.

In [24], the structural statistical method is different from
our approach, since it is based on the explicit construction
of a distribution on the input domain, either analytically,
or empirically. In our case, we draw paths before using
constraint-solving tools to produce the inputs. Of course,
this induces a distribution on the input domain. As this dis-
tribution is highly dependent on the implementation of the
constraint solver, it remains implicit. Therefore, the only
way to compare the two methods is by experimentally com-
paring their fault detection power.

2.2 From paths to input data

When a set of N paths is obtained, the next step consist
in deducing input data which allow to execute exactly these
paths when it is possible (some paths cannot correspond to
any run). For each path, the predicate characterising the
input data which cause the execution of this path, is built
and we try to solve it with constraint solving techniques.
Unfortunately, in the general case, the predicate resolution
is an undecidable problem.

3 The AuGuSTe tool

AuGuSTe is the tool we have developed for experiment-
ing the method described in Section 2. Its modular architec-
ture allows for an easy switch of the programming language

2

of the programs to test, the constraint solver and the distri-
bution on the elements to be used. Developed in Objective
Caml, it uses several extern packages in Java, Prolog or C
language.

AuGuSTe takes four input data: a program P to test,
a coverage criterion C, a number of tests N and a maxi-
mal length1 n of paths. Currently, the program P is writ-
ten in a simple imperative language inspired from C and
Pascal. The basic constructions are sequential composition,
If...Then...Else construction (Else is optional), While loop
and For loop. The data types we consider are booleans,
integers, arrays of booleans and arrays of integers. The cri-
terion C is chosen among “all paths of length ≤ n”, “all
branches” and “all statements”.

The outputs are the N paths with their corresponding test
data, a file containing the combinatorial structures and, pos-
sibly, another file containing the distribution on the nodes
(resp. edges).

AuGuSTe proceeds in three main steps: the analysis, the
paths generation and the resolution.

3.1 The analysis step

This first step consists in building the control flow graph
G of the program P .

If C is “all paths of length ≤ n” then a representation of
all paths of G is built. This set can be easily translated into
a combinatorial structure. The restriction on the length of
paths is done with a parameter of the generation function of
MuPAD-Combinat. One of our Objective Caml package is
devoted to translating a graph to a corresponding combina-
torial structure.

If C is “all statements” (resp. “all branches”) then a dis-
tribution on the nodes (resp. edges) is built and for each
node (resp. edge), the representation of all paths of G pass-
ing through this node (resp. edge) is built. The distribution
on the nodes (resp. edges) can be calculated by the method
based on dominators or by the method based on the resolu-
tion of a linear programming system evoked in Section 2.

For the distribution based on the resolution of a linear
programming system, additional constructions are neces-
sary: we have to know for each element ei how many paths
go through ei and for each couple of elements (ei, ej) how
many paths go through both ei and ej . Finally, the linear
programming system is solved by an optimisation function
using a simplex algorithm of MuPAD.

3.2 The paths generation step

This second step consists in randomly generating paths
in one or two steps. If the criterion is “all paths of length
≤ n” then N paths of length ≤ n are uniformly randomly

1The choice of a right n will be evoked in Sections 5 and 6.

generated. If the criterion is “all statements” (resp. “all
branches”), N nodes (resp. edges) are randomly generated
according to the calculated distribution. Then for each node
(resp. edge) drawn, a path among all the paths of length
≤ n passing through this node (resp. edge) is randomly
generated.

The random generation of the elements is performed us-
ing the random function of Objective Caml. First, a parti-
tion of the interval [0; 1[is done according to the set of the
elements probabilities. Then N float numbers are drawn
and the N elements are deduced from them. For example,
suppose we have two elements e1 and e2 with probabilities
p(e1) = 1

4
and p(e2) = 3

4
, if the drawn float number is be-

tween [0; 0.25[then it is e1 that is chosen and if the drawn
float number is between [0.25; 1[then it is e2 that is chosen.

3.3 The resolution step

This third step consists in first building the predicates
corresponding to each path then trying to resolve them.

Each path predicate, which is a conjunction of boolean
expressions, is translated into logical constraints and a con-
straint solving package is used to compute a solution of the
resulting constraint system. This package is borrowed from
the GATeL tool [17] which automates test sequences gener-
ation from LUSTRE descriptions.

The constraint solver is built over finite domain libraries
and coroutining mechanisms provided by the ECLiPSe

environment [12]. Boolean variables take values inside
the boolean domain, boolean operations are handled by
symbolic simplifications and unification, integer variables
take values inside unions of integer intervals (bounded
by “minInt” and “maxInt”), and arithmetic operations and
comparisons are handled by reductions of interval domains
and unification.

When the resolution of all the predicates is completed,
the predicates are sorted in three categories according to
their results:

1. The predicate is found to be satisfiable: it is the easiest
case. Each solution is a test data for executing the
associated path.

2. The predicate is found to be unsatisfiable (the resolu-
tion fails): the associated path is proved unfeasible.

3. The other predicates: we do not know if they have or
not a solution. To provide solutions in a bounded and
reasonable time, the resolution is limited by a number
of backtracks and by the time per attempt. When these
bounds have been reached without finding a solution,
the predicate resolution is aborted. In our experiments,
this represents less than 1% of a set of 1016 paths.

The AuGuSTe tool draws a new path each time a predicate
falls in one of the last two categories, until N test data are

3

generated. For this step, two strategies are possible. For a
given path, the first one consists in going back to the step
of drawing elements while the other one consists in recov-
ering the element ei associated with the path. Then, in both
cases, we draw a path among all paths going through the
element. Both solutions are implemented in AuGuSTe but
the experiments were done with the first one.

Contrarily to classical constraint solvers, our solver uses
randomised resolution i.e. variables are randomly instan-
tiated [16]. This kind of resolution is a feature with two
advantages. First, when a same path is generated several
times, we can have different input data to execute this path,
something really important in software testing. Second,
whenever the resolution of a predicate aborts, if this pred-
icate has indeed a solution, there are more chance that this
solution will be obtained in a following attempt if the same
path is generated again.

4 Our experiments

In this section, we recall the principles of mutation test-
ing. Then, we present the context (programs, mutants, cov-
erage criteria, number of tests) of our experiments.

4.1 Mutation testing

Classically, mutation testing is used as a selection
method [8], but it can be also used to evaluate the efficiency
of dynamic testing generation methods [14]. It is a method
of fault injection which consists in creating mutants of the
program under test, i.e. clones of the program in which only
one elementary error is introduced [7]. Given a test data set,
each mutant is executed on the test data set and there are two
possible cases:

1. On at least one test data the program and the mutant
have different outputs. The mutant is said to be killed
by the test data set.

2. For each test data, the program and the mutant have
exactly the same outputs. The test data set is said to
fail to kill the mutant.

In the last case, we need to determine if the mutant is an
equivalent mutant or not. An equivalent mutant is a mutant
for which no test data can distinguish the mutant from the
original program. The equivalence of two programs being
an undecidable problem, the determination of the equiva-
lence is made by hand.

In some cases, the equivalence of some mutants can de-
pend on the environment (operating system, compiler or
versions of a compiler). Their equivalence can change be-
tween two different execution environments or even be-
tween two executions in a same environment. A particu-
lar case is when the program uses non-initialised variables

or produces bad memory references, whose handling differ
widely between environments. This will be the case in our
experiments.

The second weakness of mutation testing is the high
number of mutants. Indeed, we need to build a mutant for
each operation, each variable, each type, etc. Rapidly, we
obtain an impracticable number of mutants for a program.
Mutants must be chosen in an intelligent way. Some tools
like Mothra [6] or SESAME [4] automatically generate a
mutants set of a program.

A test data set, and by extension the method which cre-
ated this set, is evaluated by measuring the proportion of
non equivalent mutants which are killed. This proportion is
called the mutation score [26, 5]. It is a number between 0
and 1: a high mutation score indicates that the test data set
is very efficient.

4.2 Programs and mutants

The experiments were performed to validate our ap-
proach: evaluate its fault detection power, its stability and
check if it scales up well. As we wrote in Section 2, the only
way to compare our approach and the method of the LAAS
is by experiments on their fault detection power: we have to
perform the same experiments as in [26]. We exploited the
mutants and programs, Thévenod-Fosse, Waeselynck and
Crouzet used to evaluate structural statistical testing method
[24]. Thanks to them, it was possible to reuse the same sets
of mutants and to replay almost the same set of experiments.
For more details, we refer to [26, 24].

The experiments were performed on four C functions
(FCT1, FCT2, FCT3 and FCT4) from an industrial soft-
ware. Table 1 presents the profile of each function i.e. its
number of code lines, and the number of paths, of blocs, of
edges and of choice points (While, IfThen, IfThenElse) in its
control flow graph.

]lines]paths]blocs]edges]choice pts
FCT1 30 17 14 24 5
FCT2 43 9 12 20 4
FCT3 135 33 19 41 12
FCT4 77 ∞ 19 41 10

Table 1 : The four functions under test

For FCT1, FCT2 et FCT3, the strongest structural crite-
rion, i.e. “all paths”, was performed because all these func-
tions have a finite number of paths. Since FCT4 contains a
loop, the weaker criterion “all branches” was chosen.

The number of tests needed for each function was calcu-
lated in order to obtain a test quality of 0.9999. Only one set
of tests was performed on the simple functions FCT1 and
FCT2. More sets were done for FCT3 and FCT4 because

4

FCT3 is strongly dependent of the environment (some vari-
ables in the program are not initialised) and FCT4 contains
a loop. This challenges the stability of the methods.

Table 2 summarises the number of runs performed for
each function.

criterion]sequence]tests N per sequence
FCT1 all paths 1 170
FCT2 all paths 1 80
FCT3 all paths 5 405
FCT4 all branches 5 850

Table 2 : Number of tests

The experiments were performed on 2914 mutants ob-
tained with SESAME. For each function, the number of
mutants is different according to the code complexity and
the length: there are 279 mutants of FCT1, 563 of FCT2,
1467 of FCT3 and 605 of FCT4. There are three kinds of
mutation: constant mutation, operator mutation and symbol
mutation.

5 Experiments on FCT1, FCT2 and FCT3

Our tool needs to determine an upper bound of the paths
length. As FCT1, FCT2 and FCT3 have a finite paths set,
this bound correspond to the longest path length of the con-
trol flow graph. Hence, for FCT1 and FCT3 we consider
“all paths of length ≤ 16” and for FCT2 we consider “all
paths of length ≤ 14”.

Table 3 gives the results for these three functions by the
reference method [26] and by our tool.

mutation score
[26] AuGuSTe
min=1 min=1

FCT1 ave=1 ave=1
max=1 max=1
min=1 min=1

FCT2 ave=1 ave=1
max=1 max=1
min=1 min=0.9951

FCT3 ave=1 ave=0.9989
max=1 max=1

Table 3 : Experimental results for FCT1, FCT2 and FCT3

For FCT1 and FCT2, which are simple functions, we ob-
tain exactly the same perfect mutation score as the reference
method: all non equivalent mutants are killed.

For FCT3, the presence of non initialised variables are
accountable for the great environmental dependence of the

runs and particularly of the order in which the tests are ex-
ecuted. Whatever the testing method, to find all errors in a
program, which is strongly “environment dependent”, is not
an easy task because the exact behaviour of the program is
not defined. Indeed, its behaviour is not predictable for each
test data set, and worse, we cannot guarantee that this be-
haviour stays stable if the program is executed several times
on the same test data set. Note that this kind of problem can
be detected before any dynamic test by a static data flow
analysis.

That is why all test data sets have neither the perfect mu-
tation score nor the same mutation score. As we do not
have the same environment as the LAAS, it is impossible to
know if they would obtain again perfect mutation scores in
our environment.

Note that if all variables are initialised, then all our test
data sets have a perfect mutation score.

6 The particular case of FCT4

FCT4 is the most interesting function. Indeed, it is the
only one which has a loop and therefore an infinity of paths.
It brings some problems that lead to several experiments and
improvements of AuGuSTe.

First, we present the properties of this function, then
we present the different experiments and the results we ob-
tained.

6.1 Properties of FCT4

The code of FCT4 is divided in two parts:

• A conditional instruction which sets the variable
NB VOIES at the value 18 or 19;

• A loop with NUM VOIES<NB VOIES as loop condi-
tion. The variable NUM VOIES is initialised to 0 and
incremented by 1 at each iteration.

A path which does not exactly perform 18 or 19 iterations
is unfeasible.

Moreover, the loop has another particularity: it
contains a IfThenElse instruction with the condition
SE VOIE EN TEST=TRUE, where SE VOIE EN TEST is
an input variable that never changes during an execution.
This conditional instruction is a source of many unfeasible
paths too.

Note that all these characteristics can be found again
with a suitable static code analysis.

As previously, we must determine an upper bound for the
length of paths that allows to randomly generate all elemen-
tary paths without covering unnecessarily too many paths.

5

EXIT

I
N

I
T

SE_VOIE_EN_TEST=TRUE

NUM_VOIE

NB_VOIES=19

NB_VOIES=18

< NB_VOIES

ELSE

THEN

e26

e10

Figure 1 : Control flow graph of FCT4

6.2 Selection of n

First, we have to select the upper bound for the length of
paths of the control flow graph of FCT4 (see Figure 1). A
constraint on this length is that we have to be able to draw
all paths performing 18 or 19 iterations. To calculate the
upper bound, we need three values:

• l1 = 5: length of the longest elementary2 path from
INIT (the root of the control flow graph) to the loop;

• l2 = 12: length of the longest elementary paths inside
the loop;

• l3 = 1: length of the longest elementary path from the
loop to EXIT.

The upper bound for the length of paths is 5 + 12× 19 + 1
i.e. n = 234. Our aim is therefore to find five sets of 850
test data that cover “all branches” in randomly generating
paths of length less or equal to 234.

6.3 Experiments and results

When building the combinatorial structure associated
with the control flow graph, we can either ignore the charac-
teristics of the program, or try to reflect them in the combi-
natorial structure. First, we chose to ignore them but as we
will see that was not a good choice in this example. Indeed,
that represents more than 1030 paths of length ≤ 234 with
more than 99,98% of unfeasible paths. As we soon learned,
it was unrealistic.

6.3.1 Specifying the number of loop iterations to
the combinatorial structures To reduce the number of
paths, we added the knowledge about the number of loop it-
erations to the combinatorial structure. Then only the paths

2An elementary path is a path which pass at most one time by an edge.

of length ≤ 234 which pass 18 or 19 times through the loop
could be randomly generated. That represents 1020 paths.

For the two distributions evoked in Section 2.1, the mini-
mal probability to reach an edge is 1

2
. Unfortunately, all test

data sets which were generated did not cover the criterion
“all branches”.

The number of unfeasible paths and their distribution are
the cause. Over the 4 232 437 paths drawn during an experi-
ence, 4 231 587 were unfeasible: that represents still around
99,98% unfeasible paths. Moreover, the probability to draw
a feasible path reaching edge e10 is much greater than the
probability to draw a feasible path reaching edge e26. This
high proportion of unfeasible paths is a major problem for
this case. One of the sources of these unfeasible paths is
identifiable by static analysis: it is the condition instruction
with the predicate constant value.

6.3.2 Optimisation of the combinatorial structure
To reduce still further the number of unfeasible paths, we
have virtually transformed the control flow graph into an-
other one when translating FCT4 into a combinatorial struc-
ture. This transformation is similar to moving constant
computation out of loop in compiler optimisation[1].

Figure 2 shows the associated graphical description.
Note that we changed the translation into a combinatorial
structure, not the program itself!

EXIT

I
N

I
T

e38

e45

e42

e39

e27

e25

e22

e19e14

e11

e2

e4

NB_VOIES=18

SE_VOIE_EN_TEST=TRUE

NUM_VOIE
< NB_VOIES

NUM_VOIE
< NB_VOIES

NB_VOIES=19

ELSE

THEN

Figure 2 : The new virtual control flow graph of FCT4

The experiments prove this modification to be very in-
teresting: both the number of paths and the number of un-
feasible paths decrease. There remains 1016 paths of length
≤ 234 with now only 50% unfeasible paths.

For AuGuSTe with the distribution based on dominators,
AuGuSTe(1), the minimal probability to reach an edge is
0.3324 and the distribution on the edges was:

πe2 = πe4 = πe11 = πe14 = πe17 = πe22 = 0.8333
πe25 = πe27 = πe38 = πe39 = πe42 = πe45 = 0.8333
and πx = 0 for all other edges

6

As the criterion “all branches” was not always covered, we
analysed the generated paths. We discovered that 4 test data
sets do not contain any feasible path passing through the
Else branch of the instruction IfThenElse with the predicate
SE VOIE EN TEST=TRUE. The fifth test data set has only
one such path.

In fact, the numbers of paths passing through the Else
branch and the Then branch are still too much dissymmetri-
cal:

• 687 × 109 paths pass through the branch where the
predicate SE VOIE EN TEST=TRUE is false

• 1015 paths pass through the branch where the predicate
SE VOIE EN TEST=TRUE is true

The distribution on the edges does not restore the balance.
For AuGuSTe with the distribution based on the linear

programming system, AuGuSTe(2), the minimal probabil-
ity to reach a edge is 0.4923 and the distribution on the
edges was:

πe11 = πe14 = πe17 = πe22 = πe25 = πe27 = 0.0844
πe38 = πe39 = πe42 = πe45 = 0.1235
and πx = 0 for all edges

The results are better than with AuGuSTe(1) and this time,
the criterion “all branches” is always covered. By giv-
ing higher probabilities to the edges of the small loop (i.e.
where there are less paths), the balance is restored.

mutation score
[26] AuGuSTe (1) AuGuSTe (2)
min=0.9898 min=0.9726 min=0.9854

FCT4 ave=0.9901 ave=0.9773 ave=0.9854
max=0.9915 max=0.9854 max=0.9854

Table 4 : Experimental results for FCT4

Table 4 presents the results obtained with AuGuSTe and
with the reference method of the LAAS. We can see that all
results are comparable to the ones of the LAAS up to the
slight difference in mutants equivalence. But AuGuSTe(1)
and AuGuSTe(2) are automatically obtained.

7 Conclusion and Perspectives

This paper presents the AuGuSTe tool which implements
an application to structural statistical testing of the generic
statistical testing method proposed in [10] and our first ex-
periments results.

The originality of this tool is based on random generation
of combinatorial structure techniques to draw paths, on ran-
domised constraint solver to solve the predicate, but also on
its modularity. Indeed, the AuGuSTe tool can be adapted

to any constraint solver (compatible with the semantic of
the graph), to any paths generator and to any static analysis
package which translates a program into a graph. Moreover,
to our knowledge, it is the first tool for structural statistical
testing.

The experiments show that our approach is comparable
to the one of LAAS, is stable and has the additional advan-
tage of being completely automated. The functions used for
these experiments are characteristic of realistic unit func-
tions: if we unfold the code of FCT4 according the loop
iteration property, we obtain a function of 290 code lines.
Contrarily to classical approaches, based on a distribution
on the input domain, which have no problem with unfea-
sible paths but have problems of coverage, the hard point
of our approach is the unfeasible paths. The ratio of un-
feasible paths probably matters more than the length of the
code or other structural complexity measures. FCT4 with
its 99,98% of unfeasible paths was rather challenging in that
respect. This lets us think that the method scales up well.

More generally, this approach could provide a basis for
a new class of tools in the domain of software testing, com-
bining random generation of combinatorial structures, lin-
ear programming techniques, and constraint solvers.

Different perspectives are open: some are directly linked
to the approach but we do not discuss about them here (see
[10]). The others are optimisation and extension of the tool.

The analysis step (construction of the combinatorial
structure and counting the number of paths) is very costly,
particularly for calculating the distribution based on a lin-
ear programming system. Currently, it takes 15 minutes for
FCT4. It can be improved by avoiding unnecessary con-
structions and optimising combinatorial structures. We are
working in this direction.

The test generation time (drawing paths and solving
predicates) takes two hours for generating 850 feasible
paths of FCT4 among 1016 paths with 50% unfeasible
paths. Solving predicates is more expensive than drawing
paths. But the presence of unfeasible paths is still expen-
sive because we loose time to try solving unfeasible paths
and to repeat paths generation step and resolution step.

Unfeasible paths have also effects on the distribution[10]
as we saw in Section 6. To limit their number, a static
analysis could be done when it is necessary (many paths,
presence of loops) or/and it could take into account some
annotations of the programmer in order to obtain an elabo-
rated combinatorial structure closed to the semantic or op-
erational profile of the program.

We might also use grammatical inference to learn from a
set of generated paths, that we know to be feasible, unfeasi-
ble or indeterminate, some properties like “all paths passing
three times in the loop are unfeasible” then use that infor-
mation to improve again the combinatorial structure.

Some works are also going towards an human interaction

7

where the user will directly select a set of nodes or edges
and describe his own criterion, or adjust the translation into
a combinatorial structure as we have shown with FCT4 by
unfolding some part.

Acknowledgments

We wish to acknowledge : the testing group in LAAS
for providing us the library of mutants, Sylvie Corteel
and Nicolas Thiery for the combinatorial structures library,
Bruno Marre for his help in extending and using the con-
straint solver and Frédéric Voisin for all his highly useful
comments on this paper. This work was partially funded by
the European community (IST Project 1999-11585: DSoS).

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1988. ISBN 0-
201-10088-6.

[2] D. Bird and C. Munoz. Automatic generation of random
self-checking test cases. IBM Systems Journal, 22(2):229–
245, 1983.

[3] S. Corteel, A. Denise, I. Dutour, F. Sarron, and P. Zimmer-
mann. CS web page.
http://dept-info.labri.u-bordeaux.fr/∼dutour/CS/.

[4] Y. Crouzet, P. Th évenod-Fosse, and H. Waeselynck. Val-
idation du test du logiciel par injection de fautes : l’outil
SESAME. In 11ème Colloque National de Fiabilité & Main-
tenabilité, pages 551–559, 1998.

[5] R. DeMillo. Mutation analysis as a tool for software quality
assurance. In Proceedings COMPSAC’80, pages 390–393,
1980.

[6] R. DeMillo, D. Guindi, K. King, W. McCracken, and A. J.
Offutt. An extended overview of the Mothra software test-
ing environment. In Proceedings of the 2nd Workshop on
Software Testing, Verification, and Analysis, 1988.

[7] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data se-
lection: help for the praticing programmer. IEEE Computer
Magazine, 11(4):34–41, avril 1978.

[8] R. DeMillo and A. Offut. Constraint-based automatic test
data generation. IEEE Transaction on Software Engineer-
ing, 17(9):900–910, septembre 1991.

[9] A. Denise, I. Dutour, and P. Zimmermann. CS:
a package for counting and generating combina-
torial structures. mathPAD, 8(1):22–29, 1998.
http://www.mupad.de/mathpad.shtml.

[10] A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic
method for statistical testing. In Proceedings of the 15th.
IEEE International Symposium on Software Reliability En-
gineering (ISSRE), 2004 (to appear).

[11] J. Duran and S. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, SE-10:438–
444, July 1984.

[12] Website of the ECLiPSe Constraint Logic Programming Sys-
tem. http://www.icparc.ic.ac.uk/eclipse/.

[13] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus
for the random generation of labelled combinatorial struc-
tures. Theoretical Computer Science, 132:1–35, 1994.

[14] M.-C. Gaudel, B. Marre, F. Schlienger, and G. Bernot.
Précis de génie logiciel. Masson, 1996. ISBN 2-225-85189-
1.

[15] S.-D. Gouraud. Utilisation des Structures Combinatoires
pour le Test Statistique. PhD thesis, Universit é Paris XI,
Orsay, june 2004.

[16] S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre. A
new way of automating statistical testing methods. In IEEE
International Conference on Automated Software Engineer-
ing, pages 5–12, 2001.

[17] B. Marre and A. Arnould. Test sequences generation
from LUSTRE descriptions : GATEL. In IEEE Inter-
national Conference on Automated Software Engineering,
pages 229–237, 2000.

[18] J. Musa, A. Iannino, and K. Okumoto. Software reliability:
Measurement, prediction, application McGraw-Hill, 1987.

[19] S. C. Ntafos. On comparisons of random, partition, and pro-
portional partition testing. IEEE Transactions on Software
Engineering, 27(10):949–960, october 2001.

[20] The MuPAD Group (Benno Fuchssteiner et al.). Mu-
PAD User’s Manual - MuPAD Version 1.2.2 Multi Pro-
cessing Algebra Data Tool. John Wiley and sons, 1996.
http://www.mupad.de/.

[21] P. Th évenod-Fosse. Software validation by means of statisti-
cal testing: Retrospect and future direction. In International
Working Conference on Dependable Computing for Critical
Applications, pages 15–22, 1989.

[22] P. Th évenod-Fosse and H. Waeselynck. An investigation of
software statistical testing. The Journal of Software Test-
ing, Verification and Reliability, 1(2):5–26, july-september
1991.

[23] P. Th évenod-Fosse and H. Waeselynck. Statemate applied to
statistical software testing. ACM International Symposium
on Software Testing and Analysis (ISSTA), pages 99–109,
june 1993.

[24] P. Th évenod-Fosse, H. Waeselynck, and Y. Crouzet. An
experimental study on software structural testing: deter-
ministic versus random input generation. 21st IEEE An-
nual International Symposium on Fault-Tolerant Computing
(FTCS’21), pages 410–417, 1991.

[25] N. M. Thi éry. Mupad-combinat – algebraic combinatorics
package for mupad.
http://mupad-combinat.sourceforge.net/.

[26] H. Waeselynck. Vérification De Logiciels Critiques Par Le
Test Statistique. PhD thesis, Institut National Polytechnique,
Toulouse, 1993.

8

	RR1400entête.pdf
	RR1400rapp.pdf

