Non-approximability of the fall achromatic
number optimization problem

Dominique Barth!, Johanne Cohen?, and Taoufik Faik!

! PRiSM - CNRS, UMR 8144, Université de Versailles,
45 Bld des Etats-Unis, F-78035 Versailles Cedex FRANCE
2 LORIA - CNRS, UMR 7503, Campus Scientifique
BP 239, F-54506 Vandoeuvre-Les-Nancy, FRANCE
8 Université de Paris-Sud, LRI, Batiment 490,
F-91405 Orsay Cedex, FRANCE

Abstract. We focus on fall colorings of graphs, i.e., proper colorings in
which each vertex of any color sees each other color in its neighborhood.
Such fall colorings are particular cases of b-colorings. If a fall coloring
exists in a n vertices graph G, we denote respectively the minimum and
maximum cardinality of a fall coloring in G by x¢(G) and 9£(G). We
mainly show that the problem of determining 1¢(G) is NP-complete and
can not be approximated within # for any € > 1 unless P = NP.
This result is related to the existence of graphs in which for some k,
Xf(G) < k < 9¥¢(G) there is no fall coloring with cardinality k (such a
graph is not f-continuous). Moreover, answering two open questions of
Dunbar et al., we show that for any integer set S, there exists a graph
G which set of cardinalities of fall colorings is S and that the problem of
knowing if a given graph is f-continuous is NP-complete.

Résumé. Nous nous intéressons aux fall colorations de graphes. Une fall col-
oration est une coloration propre ou chaque sommet d’une couleur quelconque
voit toutes les autres couleur dans son voisinage. Une telle coloration est un
cas particulier de la b-coloration. Si un graphe G admet au moins une fall col-
oration, nous notons la cardinalité respectivement minimum et maximum d’une
fall coloration de G par x7(G) et ¥;(G). Nous prouvons principalement que le
probléme de déterminer 17 (G) est NP-complet et ne peut pas étre approché avec
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un facteur "— pour tout € > 1 & moins que P = NP . Ce résultat est li¢ a

I’existence de graphes qui n’admettent pas certaines fall coloration de cardinalité
k, xf(G) < k < (Q) (de tel graphes sont dits non f-continus ). De plus, nous
prouvons que pour n’importe quel ensemble S de nombres entiers, il existe un
graphe G qui posséde une fall coloration avec k couleurs si et seulement si k € S.
Nous montrons enfin que le probléme de savoir si un graphe est f-continu est un
probléme NP-complet.



1 Introduction

We investigate relations between some interpolation properties and various com-
plexity and non-approximability aspects of some graph colorings. Consider a
(k)-coloring (i.e., a proper coloring with cardinality k) in a graph G [2]. A way
to obtain from it a (k — 1)-coloring consists in changing the color of each vertex
of a same chosen color. Such changing is not possible if for any used color in the
(k)-coloring there is at least one vertex (called colorful vertex) with this color
having each other color in its neighborhood. A (k)-coloring with this property
is called a (k)-b-coloring of G [6]. It is clear that any (x(G))-coloring of G is
a b-coloring. Thus, mainly studies focus on the maximal cardinality b(G) of a
b-coloring of G. A particular case of b-colorings called fall colorings have also
been studied [7]. Such colorings are b-colorings in which each vertex is colorful.
We call fall chromatic number and fall achromatic number and we denote re-
spectively the minimum and maximum cardinalities of a fall coloring of G' by
X7(G) and ¢¢(G). Note that fall colorings do not exist in any graph and Dunbar
et al. have shown that the problem of knowing if a given graph admits a fall
coloring is NP-complete [7].

An interesting property of b-colorings and fall colorings concerns interpola-
tion [4]. Indeed, there exist graphs G such that for some integers k, x(G) < k <
b(G), there is no (k)-b-coloring. We say that such a graph G is not b-continuous.
In fact, we have shown in [3] that for any integer set, there exists a graph which
set of b-colorings cardinalities (called b-spectrum) is this given set. We show
that the same property holds for fall colorings and we show that the problem of
knowing if a given graph is f-continuous is NP-complete, as we did in [3] about
b-continuity.

Given an integer k, determining whether b(G) is greater or equal to k is a NP-
complete problem [6, 8]. Answering a question of Dunbar et al. [7], we show in this
paper that so it is for ¢4 (G). Note that we also answer another question of [7] by
showing that for any integer n there exists a graph such that x¢(G) — x(G) > n.
Thus, considering these results about complexity, the question we want to deal
with is to know how the existence of some not f-continuous graphs influences
approximability behaviors of the problem of determining ¢(G). To our knowl-
edge, the only first result about non-approximability concerns b-coloring and
does not use the b-continuity property [9].

In this paper, we focus on the link between the fact that some graph (with
at least one f-coloring) are not f-continuous and that the problem of determining
1¢(G) can not be approximated by a constant ratio. In fact, we define a class
of graph with n vertices with f-spectrum {2} or {2, a}, with a € 8(n), in which
knowing if there exists a fall a-coloring is a NP-complete probllem. This shows

n

that there is no approximation algorithm with ratio less than Te.

The paper is organized as follows. In the next section, we show that for any
finite integer set S, there exists a graph with f-spectrum S(i.e., S is the set of
all fall coloring cardinalities of the graph). Then, in Section 3, we present our
complexity results. Finally, answering an open question of Dundar et al [7].



2 A graph with a given f-spectrum

To prove Theorem 2, we first need to define a particular graph product. For
arbitrarily graphs G and H, we define the categorical product of G and H to be
the graph G x H with vertices {(u,v) : u € G,v € H}. Two vertices (u1,v1) and
(u2,v2) are adjacent in G x H if and only if u; is adjacent to us in G and v,
is adjacent to ve in H. Figure 1 gives the categorical product K2 x Ky. In [7]
Dunbar et al. have shown that:

[0 — (7}
uy (ug,v1) (u1,v2)
Uz (ua,v1) (uz,v2)
3 (us3,v1) (us,va)
4 (ug,v1) (us,v2)

Fig. 1. The categorical product K> x K4

Theorem 1. [7] The f-spectrum of the graph K,, x K,, where ny > 2 and
ny > 2 is the set {ny,no}.

This theorem does not generalize to categorical products of three or more
complete graphs. Therefore, in an arbitrarily specified set S = {ng,n1,...,n,}
of positive integers, the categorical product G of complete graphs K, for every
n; € S, has fall n;-colorings, for every n; € S, but graph G has also other fall
k-colorings for some k ¢ S.

Theorem 2. For any finite nonempty set S C (IN\ {0,1}), there ezists a graph
G such that S¢(G) = S.

The remaining of this section is devoted to the proof of Theorem 2. We deal first
with the particular cases where |S| < 2. If S = {n}, then the complete graph K,
has the required property. If S = {2,n}, then by Theorem 1, S is the f-spectrum
of the graph K3 x K,,. To prove the case |S| > 2, we consider two steps.

Step 1: Set S with argmin S = 2

Let S = {ng,n1,n2,...,np} such that ng =2 < n; < n2 < ... < np and
2 < p. We initialize G5 with graph Ky x K, x...x K, . Moreover we add a new
vertex v to Gg and connect v to vertex in B defined by : B = {(1,41,...,41) :
1<4 <ng — ]-} U?;zl (”0 - ]-;nl - 1;”2 - 17"';"(—1 - 1;185"'5/3) ing—1 <
B < ng—1}. In Figure 2, a partial construction of the graph Gg for S = {2,4,6}
is given, v is adjacent to vertices in {(1,1,1),(1,2,2),(1,3,3),(1,3,4),(1,3,5)}.

By definition of the categorical product, we have

Lemma 1. Two vertices x = (zo,%1,...,2Zp) and ¥ = (Yo,Y1,-.-,Yp) of graph
Gs are adjacent if and only if x; # y; for every i, 0 <1i <p.



(1%7 1) (1»% 1) (Lg 1) (1,) (27C1), 1) (2-%7 1) (27% 1) (2-,37 1)
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v (1,1,4)(1,2,4) (1,3,4) (1,4, .3,4) (2,4,4)
(@] (@] [ ] (@] O O
(1,1,5) (1,2,5) (1,3,5) (1,4 .3,5) (2,4,5)
O O [ ] O O O
(1,(1),6) (1,%,6) (17%6) <1’é ,,6) (27é,6)

Fig. 2. Partial construction of the G for S = {2,4,6}. Only the edges between vertex
(1,4,1) and its neighborhood are drawn.

Let us prove that G's satisfies the following lemma:

Lemma 2. For every 0 < i < p, Gg has a fall n;-coloring.

Proof. G is a bipartite graph because all edges of G have exactly one extremity
in vertex set {(1,2z1,%2,...,2p) : 1 < x; < n;,1 <4 < p}. So Gg has a fall 2-

coloring.
Given an integer ¢ such that 1 < i < p, a fall n;-coloring 7 of G g is constructed
as follows. The color of vertex v is the color n;. For x; = 1,...,n;, vertices

in {(zo,z1,...,Ti,...,2p) 11 <z; <n;,0<j<pAj#i}and 1 < z; < n;
are colored with the color z;. We check first that coloring 7 is proper. If two
vertices z = (%o, %1,...,2p) and y = (Yo,Y1,.-.,Yyp) of graph Gg are colored
with the same color then z; = y;. So,  and y are not adjacent (see Lemma, 1).
Moreover, vertex v is not adjacent to & = (zg,21,...,2p) if ; = n;. So 7
is proper. Furthermore, the vertices in V(Gs) \ {v} are colorful because each
vertex £ = (zo,Z1,--.,%¢,---,2p) Of color z, iscolo adjacent to vertex in z' =
(®o,%1,-..,%j,-..,2p) of color z; with j # £. Since v is adjacent to the vertices
(]-ajl;jl) s ajl)a (1an1 - 17j27 s 5j2) s (lanl - 17 -eeNg—1 — laj’ia s 7ji) where
1<jgp<ni—-landnp1—1<y7, <np—1with 2 < h <1, vertex v is
colorful. So coloring 7 is a fall a n;-coloring of G. This concludes the proof of
this lemma. O
It remains to prove that if Gg has a fall k-coloring, then k € S. For a given
$07.Z'1,....Z'i,WheI'e 1< Z; < n; and 0 S] <1 Sp—l,]et Ai+1($0,$1,...,$z’) be
a subset OfV(GS) such that Ai+1($0,$17 . ,1171') = {(.’L'(), LlyeweyTjyLjgly--- ,.Z'p) :
1<z, <npANi+1<r<p}h
We show now the following lemma.

Lemma 3. For every fall k-coloring of graph Ggs such that k < n,41, all the
vertices in Ary1(xo,%1,-..,%,) are colored with the same color.

Proof. Let I'(A) be the neighborhood of a vertex set A in Gg. First, we consider
the case where r = p — 1. Assume that G has a fall k-coloring with k¥ < n,. We
consider two sub-cases: g = 2 and zy = 1.



Case 1: 29 = 2. Vertex v and A,(2,21,...,2p—1) are in the same class of the
bipartition. As [4,(2,21,...,2p—1)] = n, > k, at least two vertices uq and uso
of A,(2,21,...,2,—1) are colored with the same color denoted by c. Moreover,
by construction of G, we have I'(u1) UI'(u2) = I'(Ajy1(xo,x1,...,2;)). Hence
the vertices of I'(A;41 (%o, 1, .. .,2;)) can not be colored by the color c. So, to
be colorful, all the vertices of A,(zo,1,.-.,2;) must be colored c.

Case 2: g = 1. The vertex ¢ = (1,21,...,Zp_1,np) in Ay(1,21,...,2p—1) is
not adjacent to v and its color is c¢. As vertex z must be colorful, then for every
color ¢ # ¢, x is adjacent to a vertex y = (2,y1,...,yp) colored ¢’. By Case
1,iff y = (2,41,...,Yp) is colored ¢, then all the vertices in A,(2,y1,...,Yp—1)
are colored ¢. This implies that every vertex of the set Ap(1,21,...,2p_1) are
colored with the color ¢’ on its neighborhood for every color ¢’ # ¢. This means
that all the vertices of A,(1,41,...,2p—1) are colored with color c.

The case where » = p — 1 holds. Assume that the lemma holds for r =
p—1,...,i+1, and let us prove it for » = 4. Assume that G has a fall k-coloring
with & < n;y1. We have

Ai+1($0,$1,...,$i): U Ai+2(x0;$1;---7$i+1-)
1<z;<nit1
Since k < njt1 < ni42, by hypothesis, all the vertices in A;y2(zo, 21, ..., Zit1)

are colored with the same color. We consider two sub-cases: g = 2 and zg = 1.

Case a: z¢p = 2. Since k < m;41, all the vertices of at least two subsets
Aiy2(2,2,...,2) ) and A0(2, 21, ..., 27,4) of Aiy1(2, 1, ..., ;) must be col-
ored with the same color denoted color ¢. Moreover, it is easy to see that the
neighborhood of any two subsets A;y2(2,21,...,2}, 1) and A;2(2,21,...,27, ;)
is equal to the neighborhood of A;y1(2,1,...,2;). This implies that the color
¢ will not appears in the neighborhood of the set 4;11(2,z1,...,%;). So, to be
colorful, the vertices of A;y1(2,21,...,x;) would have to be colored c.

Case b: zg = 1. The vertex z = (1,21, ..., Zp—1,np) Of Ajy1(1,21,...,2;) is
not adjacent to v and its color is ¢. Vertex z is colorful. So for every color ¢’ # ¢,
z is adjacent to at least one vertex y = (2,y1,...9i,-..,yp) colored ¢'. By Case
a, all the vertices of A;11(2,y1,...,y:). But every vertex in A;11(zg,T1,...,T;)
has at least one neighbor in A;+1(2,y1,...,y;), Hence the color ¢’ can not be
assigned to any vertex of the set A;y1(1,21,...,2;), and this for every ¢’ # c.
This implies that all the vertices in A;1(xo,21,...,%;) are colored with color c.
This concludes this lemma.

O

Now, we can determine the f-spectrum of graph Gg:
Lemma 4. S¢(Gg) =S

Proof. By Property 2, we know that S C S¢(Gs) Now, we will prove that, if Gg
has a fall k-coloring with n; < k < n;y; and 1 <i < p—1, then k = n;. Assume
that such a fall k-coloring exists. Vertex v has some neighbors in exactly n;_; —1
distinct sets A;y1(xo,T1,-- -, ;). Indeed, vertex v has some neighbors in the sets



Ai+1(1,j1,...,jl),...,Ai+1(1,n1 - 1,...,nh,1 - l,jh,...jh),...,A,-+1(1,n1 -
1,...,n;1—1,j;), withnp_1 —1 < jp <np —1and 1 < h < i. Moreover, by

Lemma 3, for every x1,%2,...,%; with 20 = 1,2, 1 <z; <njand 1 < j <4, all
the vertices in A;11(xo, 1, .. .,2;) are colored with the same color. This means
that vertex v has at most n; — 1 colors on its neighborhood. So, v is colorful if
and only if k = n;. O

So, graph Gg are build such that S¢(Gs) = S and argmin S = 2. Now we
generalize this result.

Step 2: Set S={n;:2<n; A0<i<p}

First we give a simple result about combining the f-spectrums of two graphs.
The join of two graphs G1 = (V1, E1) and Gy = (Va, E») with disjoint vertex
sets is the graph G = (V, E) defined by V =V, UV, and E = E; UE, U R, where
R = {(’Ul,vz) U € ‘/1,7}2 S ‘/2}

Lemma 5. Let Gy and G2 be two graphs. The f-spectrum of the join of G1 and
G4 is {’L +j:i€ Sf(Gl),j S Sf(GQ)}

Proof. The edges added between the vertex sets of G1 and G2 prohibit colors
from appearing in both sets. Thus the proper colorings consist of proper colorings
of G1 and of G2 using disjoint sets of colors. O

Let S = {ng,n1,n2,...,np} such that n;_1 < n; for all ¢ € [1,...,p]. Using
the previous case, there exists a graph G such that S¢(G) = {2,n1 —no+2,n2—
ng +2,...,np —ng + 2}. By Lemma 5, the f-spectrum of the graph join of G
and Ky,_» is S. And the proof of Theorem 2 is ended.

3 Complexity

This section is devoted to study the complexity of the problems connected to
the fall coloring. First, we study the complexity to the following problem:
FALL K-COLORING (FKC)

Instance: Graph G having a fall coloring and an integer K.

Question: Does G have a fall a-coloring such that a > K 7

Next, we consider its optimization versions defined as follows:
MAXIMUM FALL K-COLORING (MFKC)
Instance: Graph G having a fall coloring.
Solution: a a-coloring of G
Measure: «

Let OPT(x) denote the optimal value for any arbitrary instance x of MFKC
and let B(I) the solution found by an algorithm B. Let a function o : Z* — IR™*.
We say that a polynomial-time algorithm B is an a-approximate algorithm for
MFKC iff for every instance x of MFKC of size n, B produces a solution in the



range [OPT (z)/a(n),OPT(z)]. We say that MFKC is approximable within a
factor a if such an algorithm exists. The remaining of this section proves that

r—approximability with r < (%), becomes computationally intractable.

First, we present the polynomial time construction from an instance of Prob-
lem NOT-ALL-EQUAL 3-SATISFIABILITY to a graph G (the idea of the con-
struction is based on the work described in [7]). Next, we define the f-spectrum
of graph G;. Finally, we give some complexity results about the fall coloring.

3.1 Polynomial Transformation

The NP-complete problem NOT-ALL-EQUAL 3-SATISFIABILITY (NAE-3-
SAT) is defined as follow [5,10]:

NOT-ALL-EQUAL 3-SATISFIABILITY (NAE-3-SAT)

Instance: Set U of variables, collection C' of disjunctive clauses over U such that
each clause C; € C has |C;| = 3.

Question: Is there a truth assignment for U such that each clause in C has at
least one true literal and at least one false literal?

We give now a polynomial time transformation called A takes as input an
instance I = (U{ua,...,ux}, C = {Ci,...,Cp}) of NAE-3-SAT and an integer
t. It constructs a graph G4, a part of instance of FKC. Figure 3 gives an example
the resulting graph from algorithm A.

Fig. 3. An example of graph G; such that instance I has C1 = (u1, U2, ur)




Algorithm A.

Instance I of NAE-3-SAT (U = {uy,...,ux},C = {Cy,...,Cp})

Input: an integer ¢

Output: Graph Gy = (V¢, Et)

X1 {$k+1axk+1a a$k+1}a Yit1 < {yllc-',-l’ylzc—i-l’ e ’ylzcz-l}ﬂ

Vi < {a, b} UXp1UYep

Ei + {(yk+1>$k+1) (yk+17 a), (a“i+17b) 1<LLS2ANT S S2EANL# L'}
for each variable u; € U do o o

(a) X; + {z},22,...,2t}, X; « {a},2%,..., 2}

(b) Yi  {yt, v, uih, Vi < {yio w8, - v )

(C Vi <V, UuY;UY; UX,-UX,-U{zi}

Ll

)
)
(d) B « B, U{(yh,al), (Wl at) i 1 <e<tA1< 0 <t}
(e) By + E,U{(yhal),(wl,2?) : 1 <U<tAL< U <tALH£L}
(f) Et(_EtU{(_f )(xf,zi),(x_f,b),(xf,b),(yf, ) (sz ) 1§£St}

5. For each clause Cy € C do,
(a) Vi + ViU {ca}
(b) E; (—EtU{(Cd,ZU,H_l) 2<(< 2t/\€#t+].}
(c) for each literal uy in Cy do E; < E; U {(cq, 7))}
6. return Gy

Since the total number of vertices of Gy is 4t(k + 1) + k + p + 2, algorithm
A runs in polynomial time in term of ¢ and of the size of instance I. The next
section is devoted to study the f-spectrum of Gy.

3.2 The f-spectrum of G;

Now, we will give the f-spectrum of G;. We will use is Section 3.3. This f-
spectrum depends on the instance I of NAE-3-SAT and on an integer ¢.

Proposition 1. Let I = (U,C) be an instance of NAE-3-SAT. Let G; be the
result of algorithm A having I and an arbitrary integer t as input.

1. The f-spectrum of Gy is {2,2t+1} if set U of variables has a truth assignment
with desired properties
2. The f-spectrum of Gy is {2} otherwise

Proof. First, it is easy to see that graph G is a bipartite graph because all edges
have only one vertex in UX_; (X; UX;) UXg41 U{a}. So, we deduce that:

Claim 1. Gy has a fall 2-coloring.

Moreover, graph G satisfies the following claim:



Claim 2. The graph Gy has not any fall n-coloring for n = 3,...,2t.

Proof. We show Claim 2 by contradiction. Assume that Gy has a fall n-coloring
with 2 <n < 2t + 1.

Without loss of generality, we assume that the color of vertex z; is n. The
neighborhood of z; is X;UX]. Since z; is colorful, for each color ¢ in {1,...,n—1}
there exists at least one vertex in X; UX; colored c. Moreover, vertex b must be
colored n, because it is adjacent to all the vertices of X; U X;.

Since n — 1 < 2t and since |X; U X;| = 2t, at least two vertices in X; U Xy
are colored with the same color, denoted by color . This implies that color a
can not be assigned to any vertex of Y; U 71, because each vertex of Y; UY; has
2t — 1 neighbors in X; U X . So, every vertex of Y; UY] has at least one neighbor
in X; U X; colored a.

Since there are at least n — 1 distinct colors in X; U X, there exists at least
one vertex u of X; UX] colored o with o' # a. But vertex u can not be colorful.
Indeed, vertex u has not any neighbor of color a. This leads to contradiction with
the definition of fall coloring. This conclude the proof of Claim 2.

From Claims 1 and 2, it remains to prove that set U of variables has a truth
assignment with desired properties if and only if G; has a fall 2t + 1-coloring.

Claim 3. If set U of variables has a truth assignment with desired properties,
then G has a fall 2t 4+ 1-coloring.

Proof. Assume first that I has a satisfying truth assignment f : X — {T,F}.
Color the vertices {a,b,z;,¢cp: 1 <i < kA1<{<p} with the color 2t + 1. Fi-
nally, for i = 1,...,k, if f(X;) = T, color the vertices {zf,y!, ¢, yf} with the
colors {¢, € +t,£+1t,£} respectively for £ =1,...,t. Otherwise, color the vertices

{zf,yf, x¢, y} with the colors {£+1,£, £, £+t} respectively for £ =1,...,¢. More-
over, color the vertices xf; 41 and yf; 41 with the color £ for £=1,...,2t. Clearly
this coloring is a proper coloring. Moreover, by construction of the coloring, it is
easy to see that every vertex not in {¢; : 1 <14 < p} is colorful. Now, it remains
to check that all the vertices in {¢; : 1 < ¢ < p} are colorful. Let C; be a clause
in C. Vertex ¢; is adjacent to vertices in {zf |,z : 1 < £ < t} and so it is
adjacent to vertices of colors £, 1 < £ < t and to vertices of colors £, t+1 < £ < 2t
(by construction of the coloring). Since f is a satisfying truth assignment such
that every clause C; has at least one true literal and at least one false literal,
vertex c¢; is adjacent to vertices of colors 1, t+1. So this coloring is a fall coloring.

This concludes the proof of Claim 3.

Conversely, we prove the following claim:

Claim 4. If Gy has a fall 2t + 1-coloring. Then, set U of variables has a truth
assignment with desired properties.

Proof. Assume that graph G, has a fall (2t + 1)-coloring. Without loss of gener-
ality, we assume that the color of vertex b is 2t + 1.



Let ¢ be an integer between 1 and k. Since z; is a colorful vertex and since
z; is only adjacent to vertices in X; U X;, set X; UX; contains 2¢ distinct colors
and it does not contain the color of z;. Since vertex b is adjacent to X; U Xj,
the color of b is also the color of z;. So, for i =1,...,k, the color of z; is 2¢t + 1.
Since, the vertices of Y41 are of degree 2t, the neighborhood of any vertex y
of Yj,+1 must have distinct colors. Otherwise y cannot be colorful. This implies
that the vertices of X1 are colored by distinct colors. Indeed, if two vertices
of Xj41 have the same color then there exists at least one vertex of Y1 with
two neighbor of the same color. So the vertices of X1 have 2t distinct colors
in Xk+1-

Let C; be a clause in C. Since ¢; is adjacent to vertices in Ule Xi, ¢j is
colored with the color 2¢ 4 1. Moreover, for any clause C, vertex c; is adjacent
to {zf,, : 1 < <2tAL#t+1}. Since verticesin {zf,; : 1 <L < 2ALFAE+1}
have 2t — 2 distinct colors, we assume without loss of generality that no vertex
in this set of vertices is colored with the color 1 or the color ¢ + 1. We define a
function f : U — {T, F} by setting f(u;) = T if vertex x} is colored with color
1, otherwise f(u;) = F. Since the coloring is a fall (2t + 1)-coloring, each vertex
¢; is adjacent to at least one vertex of color 1 and at least one vertex of color
t + 1. This function f defined here is a satisfying truth assignment with desired
properties for NAE-8-SAT. Theses conclude the proof of Claim 4 and the proof
of Proposition 1. O

3.3 Complexity results

We give now the main result of the paper concerning a non-approximation result
about MFKC related to the fact that G; is not f-continuous. Proposition 1 allows
us to deduce that:

Theorem 3. The problem FKC is NP-complete even if graph G is bipartite and
nl=¢

k = 3. Its optimization problem MFKC is not approzimable within " for any
€ > 0 where n is the number of vertices, unless P = NP.

Proof. First, it is easy to see that problem FK(C belongs to NP. Moreover, let I
be an instance of NAE-3-SAT. We get an instance I' of FKC by setting k = 3.
Graph G of I is computed by algorithm A described in Section 3.1 with I and
t = 1 as input. By Proposition 1, we can deduce that the problem FKC(C' is
NP-complete even if graph G is bipartite and k£ = 3.

Moreover, using the gap technique [1], by Proposition 1, we prove that no
polynomial-time t-approximate algorithm for MFKC can exist unless P = NP.
Now, we will compare ¢ to n. In order to simplify this proof, we set t > (k + p)?
and graph Gy is transformed to graph G' by adding vertices whose have the same
neighborhood as vertex a such that n = 4¢(k + p) where n is the number of the
new graph (4t(k +p) > 4t(k+1) + k+ p+ 2). This graph satisfies Proposition 1.

Arbitrarily choose an € > 0. Let the natural number ¢ > 2 satisfy 1 — C_lk—l >
1—e. Let t = (k+ p)°. So graph G’ satisfies the following property:

1. G' is a graph with 4(k + p)°*! vertices.



2. G afall 2t + 1-coloring if instance I is a positive instance.
3. G' a fall 2-coloring if instance I is a negative instance.

1
nlT

By computation, it is easy to see that t = (%)l_ﬁ and ¢t > . Since
1

— o1 = 1 — € and since e was arbitrarily chosen, problem MFKC is not
-
n

approximable within Te . O

Thus, the NP-completeness of FKC and the fact that MFKC does not belong
to APX (unless P=NP) is related to the existence of not f-continuous graphs.
Once could ask if similar results occur if we consider only f-continuous graphs.
This is an open question, but we can give the following first result about the
difficulty to determine if a graph is f-continuous. Let us call f~-CONTINUITY
the problem:

f-CONTINUITY
Instance: Graph G having a fall coloring.
Question: Does graph G f-continuous?

Theorem 4. The problem ~-CONTINUITY is NP-Complete.

Proof. Problem f~CONTINUITY is in NP: Since for a graph G, for each integer k
between 2 and n, a non-deterministic polynomial time algorithm can determine
if there exists a fall (k)-coloring of G.

We prove that problem f~-CONTINUITY is NP-hard. The reduction takes I =
({U{u,...,ux},C ={C,...,C;}) as input. First, G; is computed by algorithm
A described in Section 3.1 taken I and ¢t = 1 as input in polynomial time.
Afterwards, graph G is constructed from the join of the graph G1 and the graph
H = K4 x K,. It is easy that this transformation runs in polynomial time.
To complete the proof, we show that this transformation is indeed a reduction:
graph G is f-continuous if and only if U has a truth assignment with desired
properties.

By Theorem 1, the f-spectrum of H is the set {2,4}. Moreover, by Propo-
sition 1, we know that the f-spectrum of G; is {2,3} if and only if U has a
truth assignment with desired properties. From Lemma 5, we deduce that the f-
spectrum of graph G is the set {4,5,6, 7} if and only if U has a truth assignment
with desired properties. And otherwise, the f-spectrum of G is the set {4,6}. So
G is f-continuous if and only if U has a truth assignment with desired proper-
ties. O

To end this paper, we answer an open question of Dundar et al [7].
Proposition 2. For every n, there is a graph G such that x¢(G) — x(G) > n.

Proof. We consider the graph G obtained from the complete bipartite graph
Knt3nt+3 = (U UV, E) by removing a perfect matching and adding an edge
(u1,u2), between two vertices uy,us € U. Clearly x(G) = 3, and it is easy to



see that G has a fall n + 3-coloring. To show that x¢(G) = n + 3. It remains to
prove that G' do not have fall k-colorings for 3 < k < n + 3. Assume that G has
such a fall k-coloring. As k < |V, at most two vertices of V are colored with
same color denoted by c. Since the neighborhood of any two vertices of V' is the
set U, color ¢ can not be assigned to any vertex of U. This means that every
vertex v € V must be colored with color ¢ (if it is not the case, then v will not
be colorful). This implies that no vertex u € U \ {uy, us} is colorful, since all
its neighbors are colored with the same color ¢. Therefore x#(G) = n + 3 and
(@) = X(@) > . 0

4 Conclusion

The main result of this paper given in Theorem 3 shows that problem MFKC

can not approximable within # for any € > 0. To our knowledge, this is the

first result giving a relation between interpolation properties of a coloring (i.e.,
there exist not f-continuous graphs) and the non-approximability of its maximum
colors cardinality. This result is directly deduced from the fact that there is a
"hole" between this (possible) maximal number and before the last one. We also
answer some open question from Hedetniemi et al concerning f-continuity. As
we say in the introduction, an open question is to know if a similar result about
non-approximability can be obtained for the b-coloring.
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