1-adaptivity
Joffroy Beauquier, Sylvie Delaét and Sammy Haddad

Laboratoire de Recherche en Informatiqgue, UMR CNRS 8623,
Université de Paris Sud, 91405 Orsay Cedex, France
email:{jb,delaet,haddad}@Iri.fr

Abstract

A 1-adaptive self-stabilizing system is a self-stabiligisystem that can correct any memory corruption of a single
process in one computation step. 1-adaptivity means thiat,ai legitimate state the memory of a single process is
corrupted, then the next system transition will lead to atilegte state. Then, in one step the system recovers a
correct behavior. Then 1-adaptive self-stabilizing aitipons guarantee that a single failure will not propagatevaitid

be corrected immediately. This is not the case for most okthigting self-stabilizing algorithms. Our aim here is

to study the possibility of designing such algorithms. Mprecisely we discuss necessary and sufficient conditions
for a self-stabilizing algorithm to be 1-adaptive. Suchditions yield a simple way to verify whether or not a self-
stabilizing algorithm is also 1-adaptive, as they only l@tlka small subset of the system states and as they can be
verified locally. We also provide examples of self-staliilig1-adaptive algorithms.

Keywords: Distributed Algorithms, Fault Tolerance, Self-stabitiva, Fault Containment, 1-Adaptivity.

Résumé

Un systeme auto-stabilisant 1-adaptatif a la capacité dégeo n’importe quelle corruption mémoire d'un seul de
ses processeurs en un seul pas d’exécution et n'importéeqeatuption plus importante en un temps fini borné.
Donc si le systéme se trouve dans une configuration légittme’an seul de ses processeurs est corrompu de telle
sorte que le systéme passe dans une configuration illégiore guelque soit la transition effectuée par le systeme
a partir de cette configuration il vérifira a nouveau sa smtitin. Les algorithmes auto-stabilisants 1-adaptatifs
permettentdonc de garantir que si le systéme est frappépdauteunique alors celle-ci ne pourra pas se propager et
sera corrigée immédiatement, ce que ne garantissent phslpgt des algorithmes auto-stabilisants existant. eNotr
but dans cet article est d’étudier la faisabilité de tel@datgmes. Nous discutons pour cela des conditions nécessai

et suffisantes pour qu’un algorithme auto-stabilisant s@itlaptatif. Nous avons d’abord considéré les algorithmes
auto-stabilisants strictement 1-locals avec une reftnictur la topologie des systemes qui les exécutent. Puis nou
avons étudié les algorithmes silencieux dont les configaratiégitimes sont éloignées les unes des autres. Ces
conditions nous donnent une maniére simple de vérifier gafgorithme auto-stabilisant est 1-adaptatif, puisga%ll

ne portent que sur un petit nombre des configurations duragsté qu’elles se vérifient de maniére trés locale. Nous
présentons aussi des exemples.

Mots clefs: Algorithmes Distribués, Tolérance aux fautes, Auto-sisdition, Confinement de fautes,
1-Adaptivité.

Chapter 1

Introduction

Self-stabilization was introduced by E. W. Dijkstra in [4]. In this article he presents the three first self-
stabilizing algorithms for the problem of mutual exclusimm a ring. Since, this notion has been proven to
be one of the most important notions in the field of fault tafere in distributed systems.

Indeed self-stabilization guarantees that regardlestsafitial state the system will eventually reach
a legitimate state (a state from which the execution sadisfsespecification) in a finite bounded time. In
particular, this implies that no matter how bad the memonyumions that hit the system are, the system
will always regain a correct behavior by itself, without aternal intervention. The only assumption made
in self-stabilization is that the code of the processorsiotibe corrupted. That is why self-stabilization is
so efficient in systems where some memory spaces are satedrgeduted from ROM memory) and where
the frequency of faults that hit the non safe memory zone (RA&mory) are not greater than the time of
stabilization.

Self-stabilization is the best known solution for largetilisited systems, where failures are a normal
part of the behavior and where non systematic correctiama@trpossible. One difficulty in the application
of self-stabilizing algorithms is that most of these alguoris still have a stabilization time proportional to
the dimension of the system and are not related to the aatmaber of failures.

Thus a small number of faults can force most of the processbthe system to participate in the
stabilization phase. In particular, non-faulty processman start to behave incorrectly, and this for quiet a
long time even if, originally, their state was not corruptedne solution to this problem is time adaptive
stabilization. Time adaptive stabilization guaranteethikzation time directly proportional to the number
of memorycorruptions that hit the system. For example, i @me processor is corrupted, then the system
will stabilize in a constant time, whatever is the netwodesiBut,as it appears in the literature, this attractive
notion, in terms of its practical usefulness, is not obvitmsbtain.

Time adaptivity was first introduced in the context of noaative problems, where specifications are
on the system configurations and not on its executions. 98 Ehe notion of fault locality is introduced,
as well as an algorithm for the simple task called the pexsisbit. This algorithm has é(k.log(n))
stabilization time, wheré: is the number of corrupted nodes in the initial state anid the number of
nodes of the system. In this article the number of faults ®uemtime adaptivity mustnot excegd=
6(n.log(n)).In [KP97] another solution for the same problem is presénis stabilization time ig(k) for
k < n/2. An asynchronous version of this algorithm can be found iR9K].

[KP97] and [Her97] give transformations of silent selftslizing algorithms into time adaptive algo-
rithms. A silent algorithm is an algorithm that does not ammny of its output values after reaching a
legitimate configuration. This transformation has an ougpabilization time irf(k) for a number of faults

equal tok, £k < n/2, and ind(diam) otherwise, wherdiam is the diameter of the network. In [KP97], the
idea is to replicate data and to use a voting strategy tordpta corrupted by transient faults. In [GGHP96],
the authors present another transformation which has dizagion time in6(1) if £ = 1 and inf(T.diam)

for k > 2, whereT is the stabilization time of the non transformed algorithifhe first k-adaptive reactive
algorithm was presented in [BGK99]. This algorithm solves problem of mutual exclusion and stabilizes
in a time proportional to the number of faults that hit thetegsif that number is smaller than a fixéd If

the number of faults is greater tharthen the system may not converge to a legitimate state. IOJKR is
proven that any non silent algorithm in synchronous systesssan adaptive solution. The proof is based on
an adaptive algorithm for broadcast, which is used to diste all output variables’ values in a time adaptive
manner. In [AKPO03] the measure of agility which quantifies strength of a reactive algorithm against state
corrupting faults is defined and another broadcast alguritiat guarantees error confinement with optimal
agility within a constant factor, is given. In [GT02] it isated that a large class of reactive problems do not
have an adaptive solution in asynchronous networks.

Two similar approaches of fault containment can be foundAin97] and [NAO2]. In [AD97] a local
stabilizer transforming any algorithm into a self-statiig algorithm that stabilizes ifi(k) is presented.
Every processor manages a snapshot of the system. A faoltggsor can detect inconsistencies with its
neighbor correct view. It then regains the state that it hefdrde the corruption thanks to a system of vote
on its neighbors’ snapshot. Algorithms that guaranteedtednce of Byzantine behavior are presented in
[NAO2]. Byzantine processors are processors subject ttsfthat are not limited in time.

We introduce here l-adaptivity which is a stronger notiortiofe adaptivity. An l-adaptive self-
stabilizing algorithm can correct in one step the memoryugifon of a single processor in the network
(and thus completely prevent the fault propagation). Maexigely, we present here necessary and suffi-
cient conditions for 1-adaptivity. These conditions cancenly a subset of the system configurations. It
will appear that they can easily be locally checked. Theswlitions ease the task of verifying whether a
self-stabilizing algorithm is also 1-adaptive. They albow that there is no need to study every execution
of the system as they just involve a few local properties ahalssubset of configurations. These condi-
tions are a simple tool for verification of the 1-adaptivep@xy and they also highlight the need of some
properties for an algorithm to be 1-adaptive.

First we restrict ourselves, for technical reasons, to sparécular networks, in which there are no
triangles. The scheduler is quite general : we assume thrébdied demon (at each step an arbitrary subset
of the enabled actions of the system are applied). Secorgljyrasent those conditions for silent algorithms
having legitimate configurations not too close one from ttieo(two different legitimate configurations
differ by the states of at least three processors). Here #erno restrictions on the network topology. The
assumption on the legitimate configurations allows us tatto¢her types of problems as, contrary to the
first case, problems which are not strictly 1-local.

Finally we provide a 1-adaptive self-stabilizing algonittfor the problem of naming a complete net-
work. This example shows how the second necessary and sofficbnditions we present here can also
be interpreted to design 1-adaptive algorithms. This @aler example proving also that even probabilistic
algorithms can be 1-adaptive, this algorithm being the Kinstwn probabilistic fault containing algorithm.

Chapter 2

Model

2.1 Communication Graph

A communication graph G = (P, &) is a tuple such thaP is a set of processors aitda set of edges
I = (pi,pj), where(p;, p;) € P? andp; # p;.

Each edge is associated to a neighborhood relationship pii@e@ssorg; andp; can communicate 6
if and only if (p;, p;) € €. We noteN,, the set ofp’s neighbors inG. Communications among neighboring
processors are carried out blgared registers

A communication graplG has notriangle if for any pair of processors i, (p;,p;), there is no
processop;, such that(p;, p,) € € and(p;, pi) € £.

A path of lengthk in G is a sequence of processors nated= {p;..., p } such that/i € {1...k-1}, (p;, piy1) €
E.

In a communication graph thdistance between two processogs andp;, noteddist(p;,p;), is the
length of the shortest path fromto p; in P.

2.2 Distributed System

A distributed system is a communication graph where gaobessorp is a state machine. Its state, noted
ep, Is the vector of all the values of its variables.

A processor has a set guarded rules notedr = {labely,...,label,}, of the form < label >::<
guard >—< action >, wherelabel is the identifier of the ruleguard is a boolean expression ovgs and
p’s neighbors’ variables ang:tion updates all values ofs variables.

A distributed system is associated téransition system A transition system is a tupl& = (C,7),
where(is the set of all the configurations of the system dnis the set of all the transitions 6f.

A configuration C € C is a vectorC' = (e, , ..., ¢,) Of the processors’ states 5f We noteC)p the
restriction of the configuratiofy to a set of processo® = {p;, ...,p;}, P C P. We noteDist(C,C"), the
distance between two configuration€ andC’such thatDist(C, C’) is equal to the number of processors
which have a different state il andC".

We say that a guarded ruleggecutablein a configuratiorC' if and only if p evaluates the guard of this
rule to true inC'. We also say that a processoreisabledin a configurationC' if and only if it has at least
one of its guarded rule executableGh

A deterministictransition of 7 is a triple (C,¢,C"), such that C, C") € C? andt is a set of guarded
rules. The activation of the guarded rulestjrwheret is a subset of the executable rulesCinbrings the

system in the configuratiof”.
Thus in the deterministic systems transitidiis= (C,¢,C") are completely defined by the starting
configurationC' and the set of actionsexecuted irC'.

T=(C,1,C)

C— ¢

Figure 2.1: A deterministic transitioh = (C,t,C")

In the probabilistic systems the configuratiéi also depends on the random values updated by the
actions oft. The set of values given to random variables during a triansi is notedrand. Thus in these
systems a transitioi’ becomesl” = (C, ¢, rand,C"), also noted™¢ = (C,t,rand, C™"%), and it is
associated to a probability notefy(7"). This probability correspond to the probability to get tredue
rand among all the possible set of values for the probabilisticatdes updated by{". In a probabilistic
system we have that for any transitidh Pr(7') > 0and Y. Pr(T) = 1 for any configuratiorC'.

T=(Cyt,_,)

LetT = (C,t,C") be a deterministic transition (repectively = (C,t,rand,C") be a probabilistic
transition) we notefirst(T) the configuratiorC' andlast(T) the configuratiorC’ (respectivelyfirst(T")
the configuratiorC' andlast(T”) the configuratiorC”).

T=(C, 1,3, C))

LY CI

Figure 2.2: Probabilistic transition§; = (C, ¢, a;, C]’.) based oi¥" = (C\t,,)

We use the notatio? 224, ' for a transition where;..., p; are the processors that execute an action

in C.
An executione of a systemS is a maximal sequence of transition= (7g, T} ..., T;...), such that for
everyi > 0, last(T;) = first(T;4+1) orlast(T;) is final, that is, no processor is enableddrt(T;).

Figure 2.3: Execution in the deterministic model

2.3 Demons

The set of possible transitions of the system is restriciethb demon. A demon is a predicate over the
executions of the system. It chooses for each transitiea (C, ¢, C’) the sett of executed actions among
all the executable actions.

The distributed demon determines, for each transition, any subset of thieleshg@rocessors g’ to
apply at least one of their executable rules. With $igachronousdemon, in a transitiol” € 7, all the
enabled processors apply one of their executable rules.

2.4 Trees of Executions and Strategies

The following definitions are taken from [Gra0Q].
An execution tree rooted in Cfor a systemS, noted7 ree(C'), whereC' is a configuration of, is the
tree-representation of all the executionsSodtarting inC' (see figure 2.4 and 2.5).

CIJ

Figure 2.4: Beginning of the execution tree in the deterstimimodel

A sub-tree of execution of degreé rooted in C for a systemtS, is a restriction ofZ ree(C') such that
for every node of7 ree(C') either there is no outgoing branch or every possible triamsftom that node
has the same labéli.e. the same actions are executed).

The interaction between a demon and a distributed systeallézi@strategie

Let S be a transition system, |é? be a demon and let’ be a configuration of. We call ademon
strategy rooted inC' a sub-tree of degree 1 @free(C') such that any execution of the sub-tree verifies

Let st be a strategy. Aoneof st corresponding to a non maximal executiof st, notedConey, is
the set of all possible executions @f with the same prefid. last(h) denotes the last configuration bf

Q
W

Figure 2.5: Beginning of the execution tree in the probatidimodel

\

c,

Figure 2.6: Beginning of a sub-tree of degiee

The number of transition®' in the historyh is denoted byh|.

In deterministic systems a strategyyis reduced to an execution (cf 2.3).

The probability measure of a coneCy, is the probability measure of the prefix that is the product of
the probability of every transition occurring in Thus for any strategy: and any cone&’oney, of st we
havePr(Coney) > 0.

A coneConey is called asub-coneof Coney, if and only if b’ = [k f], wheref is an execution factor.

We can note that, since that in a probabilistic system we have, Pr(T") = 1 for any configuration

T:(C7t7_7—)
C, we also have for any cone of any strateqy Pr(Conens) = Pr(Coney,).
|f1=1
c ! c Covvnnns c c —

Figure 2.7: Beginning of a cone

2.5 Deterministic Self-Stabilization

The specification of a problemis a predicate over the system executions. The specificafienstatic
problem is a predicate over the system configuration. We oatput variables of a system, the set of
variables which have to verify the specification.

LetS = (C,T) be a transition system arftpe be a specification of a problem. Théns self-stabilizing
for Spe if and only if there is a subset of configurations o, namedegitimate configurationsof S such
that:

e Every execution that starts in a configurationfo¥erifies Spe.

e Every execution reaches a configurationCof

A silent self-stabilizing algorithmA is a self-stabilizing algorithm such that all the configioas
reached by an execution df starting from a legitimate configuration have the same ptigje on the out-
put variables ofA. The legitimate configurations of a silent self-stabilizialgorithm are said to bsilent
configurations.

2.6 Probabilistic Self-Stabilization

The notationt - Pred means that the elementof X’ satisfies the predicatéred defined on the set'.

We use the notatiofip,.4 to represent the set of executions of a strateégynder a demow that reaches
a configuration that satisfies the predic&tecd. The probability associated ©p,.q is the sum of the
probability of the cone€’oney, of st such thats = [1'f], |f| = 1, ~(last(h') = Pred) andlast(f) - Pred.

A predicatePred is closedfor the executions of a distributed system if and only if wh&red holds in
a configurationC, Pred also holds in any configuration reachable fréGm

Let S be a system])) be a demon anet be a strategy satisfying. LetC p,.4 be the set of all system
configurations satisfying a closed predicdtecd. The set of executions oft that reach configurations
C € C|pyeq is denoted b¥'p,..q and its probability byPr(Epyea)-

In this paper we study a silent probabilistic algorithm. Hedinition of self-stabilization for this partic-
ular type of algorithms is restricted to the probabilistizieergence definition.

A systemS is self-stabilizing under a demorD for a closed legitimacy predicaté on the system
configurations, if and only if in any strategy of S under D the following condition holds:

¢ (Probabilistic Convergence) The probability of the setx#aitions ofst, starting fromC, reaching
a configuration”’, such that”” satisfiesL is 1 . Formally,Vst, Pr(&y) = 1.

2.7 Convergence of Probabilistic Stabilizing Systems

We recall here the theorem of local convergence presenié&ta®0]. This theorem can be used for proving
self-stabilization via probabilistic attractors.

Let L; and L, be two predicates defined on configuratiohs.is aprobabilistic attractor for L; in a
systemS under the demo®, notedL; &>, L2, if and only if for every strategigt of S underD such that
PT(ELI) =1,we haV&PT(ELQ) =1.

Let st be a strategyP’ R, and P R, be two predicates on configurations, whé&¥R; is a closed predicate.
Let 6 be a positive probability and/ a positive integer. Le€one;, be a cone okt with last(h) - PR1

7

and letF denote the set of sub-coné%ney, of the coneCone;, such that the following is true for every
sub-coneConey, : last(h’') = PR2 and|h/| — |h| < N. The coneConey, satisfies the property dbcal
convergencerom PR1 to PR2, notedLC (PR, PRy, 6, N), if and only if PT(UConeh/E]-' Conep) > 0.

Theorem 2.7.1 Let st be a strategy of the systefunder the demorD. Let PR, be a closed predicate
on configurations such thaPr(£;) = 1. Let PRy be another closed predicate on configurations and
PRy; = PRy A PRy. If 364 > 0 and3ng > 1 such thatst verifies LC(PR1, PRy, 05, ns) then
Pr(épgr,) = 1.

2.8 l-adaptivity

In this paper we introduce the new notion of 1-adaptivityfcisw.
A deterministic self-stabilizing algorithm is 1-adaptive if and only if there is a subset of legitimate
configurations called stable configurations, na$ét such that:

e (Correction) For any pair of configuratiori€’, C’) such thatC € SC, C' ¢ £ and Dist(C,C’) =1,
we have, for every’” such thatC’ — C”, C" € L.

e (Convergence) Every execution dfreaches a configuration 6.

¢ (Closure) Every execution that starts in a configuratios©freaches only configurations 8

A probabilistic self-stabilizing algorithmd executed by a systetsi under a demorD is 1-adaptive if
and only if there is a subset of legitimate configurationgedastable configurations, notét’, such that:

e (Correction) For any pair of configuratiori€’, C’) such thatC € SC, C' ¢ £ and Dist(C,C’) = 1,
we have, for every’” such thatC’ — C”, C" € L.

¢ (Probabilistic Convergence) Every strategyof S underD starting in a configuratiod’ verifies that
the set of executions ist that reach a configuration &iC, noted€CS has a probability 1. Formally,
Vst, P?“st(ECSSt) = 1.

e (Closure) Every execution that starts in a configuratios©@freaches only configurations 8.

2.9 Balls and Views

In this article we use the concepts B/l andView inspired by those presented in [BDDT98].

Let G be a communication graph,an integer angh a processor of7, Ball(p, d) is the setB of nodesh
of P such thatlist(p, b) < d. Theview V4(C) at distancel of the processop in a configuratiorC' contains
the state of the processors Btill(p, d) in C, Vg(c) = C|Bali(p,a)- We Use sometimes the term B/l in a
configurationC' instead of viewV; (¢), also noted”|, /()

A correctview foi(C) for a self-stabilizing algorithmi, in a transition systen$, is a view such that
there exists alegitimate configuratibe £ of S'in which there is a processpy such thaﬁigi (C) = ng Q).
Let B be theBall(p, 1), we say thaB is enabled in a configurationC' if and only if p is enabled inC.
We will also say thab)} (C) is enabled.

A self-stabilizing algorithm isl-local if and only if every configuratiorC' that only contains correct
views at distance 1 is legitimate.

A self-stabilizing algorithm istrictly 1-local if it is 1-local and if for any configuratio®’ containing a
processop; whose view at distance 1 is not correct, then there is a psocgg, neighbor ofp;, whose view
is also incorrect.

Chapter 3

Necessary and Sufficient Conditions for
1-adaptivity

We consider here 1l-adaptive algorithms such th@t= £. As soon as the system reaches a legitimate
configuration, it gains the ability to correct a memory cetion in just one transition. The l-adaptive
algorithms have, under this assumption, the capacity thradegitimate configuration in only one transition
from an illegitimate configuration at a distance 1 from atiegite configuration.

Thus, once stabilization is reached and if the faults ararségd in space, the only enabled processors
are processors that can correct the system state and tHenete inopportune propagation of erroneous
values and incorrect behaviors due to faults. This propesdies the self-stabilizing systems much safer.

We study here the feasibility of such algorithms. For that,establish some necessary and sufficient
conditions for a self-stabilizing algorithm to be 1-adaeti

For the sake of generality, we choose as the execution mioelglistributed demon [Dol00].

First we will consider strictly 1-local algorithms desighfor specific network topologies. The hypoth-
esis of 1-locality is easy to understand: if the algorithrmas 1-local, from an illegitimate configuration
such that every view at distance 1 is correct, it is almostpossible to reach a legitimate configuration in
one step. In a second step we will consider any topology buwilleestrict our study to algorithms whose
legitimate configurations are not too close one to the othasrder to be able to determine with certainty
which is the nearest legitimate configuration.

3.1 Networks without triangle

The networks we consider in this section have no trianglesmake this assumptions for technical reasons,
but it should be noticed that several common topologies k@Egeproperty (rings, trees, grid, hypercubes,
etc.). The corruption of a single processor in a stableilagie configuration of a self-stabilizing algorithm
may put the system into an illegitimate configuration whevteptially several processors can be activated.
Then for being an 1-adaptive algorithm any combination tfgmust bring the system back into a legitimate
state.

Definition 3.1.1 Let A be a strictly 1-local self-stabilizing algorithm execut@ia communication grapy
without triangle, with associated transition systéiunder the distributed demon. For al) € P, VC € L,

C" ¢ L such thatCg,, # Cfy,, andCip g,y = Clpy g, - LeL:

10

e Condition 1 (Locality) No processgr; with a correct vievWI%i (C") is enabled inC".
e Condition 2 (Correction) Any transition &f from C’ implying only processorg; located inB =
Ball(p;, 1) brings the system into a configuratiéf’ such that all the viewy;j (C") are correct.

Proposition 3.1.1 Condition 1A Condition 2 is a necessary and sufficient condition for aratgm to be
1-adaptive.

Proof : First, let us prove&onditionl A Condition2 = 1-adaptive

Let C'andC’ be two configurations of such thaC' € £, C' € L, Dist(C,C') = 1 andC), # C|’p.

The view at distance 1 i’ and inC”’ which are not centered on a processorBafli(p;, 1) are iden-
tical and thus correct sind€ is legitimate. FromConditionl, only the balls centered on a processor of
Ball(p;, 1) with an incorrect associated view (i are possibly enabled. However as A is self-stabilizing,
then at least one processor is enabled'in

ThenCondition2 implies that any step taken by the algorithm makes corréthalview centered in a
processor ofBall(p;, 1) and thus that any transition of the algorithm starting fréfrbrings the system in
a configurationC” where for allp € P, V;(C”) is correct.C" is thus legitimate sincd is strictly 1-local.
We can conclude that'onditionl A Condition2 = 1-adaptive

Let us prove nowl-adaptive= Conditionl A Condition2 and thus-Conditionl V ~Condition2 =
—1-adaptive First, if Condition]1 is false, then there is at least oBe= Ball(p, 1) enabled inC’ with a
correct associated vieW, (C”).

Moreover asC’ is illegitimate and the algorithm is strictly 1-local themete are two neighbors pro-
cessorg; andp;, such thatVé,(C’) andvgk(C’) are not correct. Since the system has a topology without
triangle then ifp; € NV (p) (respectivelyp;, € N (p)) thenp,, & N (p) (respectivelyp; ¢ N (p)).

Thus the system may only activate because we are under the distributed demon. It comes that in
a configurationC” where at Ieasvgj(C”) or V! (C") is not correct. Because if onl is activated in
C' then from what precedes eithgy ¢ N (p) or p, & N (p) and thus eithenigj(C’) = V;].(C”) or
V5, (C) =V, (C”). Moreover because A is strictly 1-loc@t” is illegitimate and then the algorithm is not
1-adaptive. Thus, we have thaCondition1 = —1-adaptive

Now if Conditionl is true andCondition?2 is false, then there is a transition of the system which pre-
serves an incorrect view and thus leads the system to aitiitdege configuration. In this case the algorithm
is not 1-adaptive and we obtain the following implicatiGondition1 A =Condition2 = —1-adaptive

We can now conclude thatConditionl V =Condition2 = —1-adaptived

These conditions show that to study the property of 1-adiaptdf strictly 1-local self-stabilizing al-
gorithms, it is unnecessary to study all the executions efsystem (but just the possible transitions of
the faulty processor and its neighbors in the configuratatndistance 1 from a legitimate configuration,
becauseonly these processors can correct the error).

We can note that the hypothesis of the distributed demon sndieCondition2 difficult to obtain.
Indeed the condition implies that all the enabled processbBall(p;, 1) must, if they are activated, correct
the error. Then, if several processors are enabled at the siam®, their activations must be compatible.

Thus for an algorithm being 1-adaptive under the distridbudemon, it is necessary for a processor
neighbor ofp; to be enabled if and only if :

e |ts activation corrects the error.

11

e This activation is compatible with the activation of any tf @nabled neighbors.

We can derive a useful property from proposition 3.1.1.

Proposition 3.1.2 Let A be a 1-adaptive self-stabilizing algorithm, strictly leid, executed on a network
without triangle, under the distributed demon. If in a givegitimate configuration, there exist two proces-
sorsp; andp, such thatdist(py, p2) > 3 and whose corruption can lead to an illegitimate configurati
then this configuration is silent.

Proof: LetC € L, p; andp, be two processorslist(p1, p2) > 3, such that there exigt! andC? such
that fori € {1,2} C; & L, Cip\{pi} = C\ZP\{pi} andCi,,y # Cll{pi}'
By definition of C", for all p such thatdist(p, p;) > 2, we haveV] (C*) = V1(C). SinceC is legitimate
Vi (C?) andV}(C) are correct. Since the algorithm verifies condition 1 of psion 3.1.1,V}(C") is

correct and enabled and thu$(C) is enabled.

Then for everyp and everyi € {1,2}such thatlist(p, p;) > 2,V (C) is enabled.

By the triangular inequality, and by the choice af and p» we have, for allp € P, dist(p,p1) +
dist(p,p2) > dist(p1,p2) > 2. As the distances are positive integers and by virtue ofrikguality we
obtain that, for allp € P there exists € {1,2} such thatdist(p,p;) > 2. But for everyp there exist
i € {1,2} such thalist(p, p;) > 2. ThenV!(C) is not enabled and we obtain that no rule is applicable in
C. ThusC' is a silent configurationd

We get the following corollary :

Corollary 1 An algorithm which verifies proposition 3.1.2 for all its iggate configurations is silent.

Proof : It is obvious that if all the legitimate configurations of algaithm verify 3.1.2 then all of its
legitimate configurations are silent and by definition thgodthm itself is silentO

For a large majority of self-stabilizing algorithms, thermgtion of any of its processors brings the
system in an illegitimate configuration. Then for the slyict-local algorithms, 1-adaptivity is strongly
related to the property to be silent.

3.2 Example : 1-adaptive algorithm for a network without tri angles

We present in this section a very simple 1-adaptive selfilstang coloration algorithm. A distributed sys-
tem is in a configuration that satisfies the coloration pnobifeand only if all the processors are colored and
every processor has a color different from its neighborss @lgorithm colors a chain of three processors.
These three processors are named and thus distinguishseleaame themp,, p, andps wherep; andps
are both neighbors af;.

The system is in a legitimate configuration if and only if itiskes the coloration specification.

Proposition 3.2.1 Algorithm 3.2 is self-stabilizing for the coloration preiph.

Proof :

12

Algorithm 1 Coloration algorithm for a chain of three processors

p1’S variable : po’S variable : p3’s variable :

Color : integer, Color =0 ;| Color : integer, Coloe { 1,2}; | Color : integer, Coloe { 2,3};
p1'S action : p2’S action : p3’s action :

TRUE — 0; Color =p3.Color— Color :=1 ;| Color =p,.Color— Color := 3 ;

Closure Let us suppose that the system is in a legitimate configuratteen all the processors have a color
different from each other. Thuys evaluates”olor = p3.Color to false anghs evaluate€ olor = py.Color
also to false. Ag, cannot change its color, we obtain that no processor canuexeaa action and change
its color. The system cannot make any transition and thughigains in a legitimate configuration. The set
of the legitimate configurations is closed.

Convergence The only illegitimate configuration of the system is the cguafation wherep, andps have
the same color. In fagt; can only have the color 1 which is necessarily different fitbiat of its neighbors
P2 Sincep, can not get the color 1.

The only color thap, andps can have in common is the color 2. Thus the only illegitimatefiguration
is C; = {p1.Color = 0, ps.Color = 2, p3.Color = 2}. In this case botlp, andps can execute their action.
Since the execution of the action pf or p3 gives to this processor a color that the other cannot have the
system necessarily get into a legitimate configuration inteansition starting front;. O

Proposition 3.2.2 This algorithm is 1-adaptive.

Proof: Algorithm 3.2 is strictly 1-local and is executed on a chalmah by definition contains no triangle.
Thus it suffices to checK'onditionsland2 from proposition 3.1.1.

Conditionl is actually verified, since if a processor has a correct viemm its neighbors have a different
color and thus ifpy has a correct view at distance 1 then it evaludtetor = p3.Color to false. Ifps has
a correct view at distance 1 then it evaluat&sor = p,.Color to false. Asp; cannot change its color, we
obtain that this algorithm verifieSonditionl.

Let us check now that’ondition2 is also satisfied. There is only one illegitimate configunatithe
configurationC;. This configuration is 1 distant of at least one legitimatefiguration since we just have
to change either the color pf or the color ofps to reach a legitimate configuration.

In this configuration, two balls are enable; = Ball(p2,1) and By = Ball(ps, 1). There are three
possible transitions. In the first onpg executes its action. In this caggtakes color 1 and the system gets
into the configuratiorC; = {p;.Color = 0,p2.Color = 1, ps.Color = 2}, where all the balls are correct
and thusCondition?2 is satisfied. With the transition where only executes its action, the system reaches
Cy = {p1.Color = 0,ps.Color = 2,ps.Color = 3}. Finally if p, andps are activated at the same time
then the system reaches the configuration= {p;,.Color = 0,py.Color = 1,p3.Color = 3} and this
transition also satisfieSondition2. Thus algorithm 3.2 is 1-adaptivel

3.3 Restriction on the legitimate configuration density
Corollary 1 confirms the impossibility result of [GT02] andipts out the connexion between 1-adaptivity

and the property to be silent. Let us remind that in [GTO2)theove that any dynamic global algortihm
that tolerates at least one memory corruption requiresaat {& D) transitions to converge, whei@ is

13

the diameter of the system. We study now the conditions fentsalgorithms to be 1-adaptive. We as-
sume that self-stabilizing algorithms we consider hereeHeagitimate configurations at distance at least 3
from each other. This hypothesis is verified by many algorigolving problems with only one legitimate
configuration, such that the computation of the network, gfmetopology learning, the leader election, etc.

Definition 3.3.1 Let A be a silent self-stabilizing algorithm and its legitimate configurations, such that
forall (1,I') € £L2Dist(l,I') > 3.
Then for allp; € P,VC € £, C" ¢ LsuchthatCy,, # C/y,,, andCipy g,y = Clpy (- Let:
e Condition 1 (Locality) The only enabled processoi3nll(p;, 1) is the processop;.
e Condition 2 (Correction) The activation @all(p;, 1) in C’ brings p; back in the state,,,.

Proposition 3.3.1 Condition 1A Condition 2 is a necessary and sufficient conditionsAdo be 1-adaptive.

Proof: First we prove the implicatio@'onditionl A Condition2 = 1 — adaptive.

In C” all the viewsV!(C") such thatp € P\ p; U N (p;) are correct sinc&!(C’) = V}(C) andC
is legitimate. Becausd is silent any processor with correct view at distance 1 isematbled. We obtain
that inC’ only the processors with an incorrect view are potentiatigtded. Thus only the processors of
Ball(p;, 1) are potentially enabled. According @onditionl the only enabled ball i’ is Ball(p;, 1).
Moreover according t@'ondition2, the activation of this ball putg; in the same state as . We can
conclude that the only possible transition fratis the transition”” 2% C where by assumptio' € £
and thusA is 1-adaptive.

Let us prove now the reciprocal: — adaptive = Conditionl A Condition2. For that, as for the
preceding conditions, we will prove thaCondition1 Vv ~Condition2 = —1 — adaptive. Let us suppose
thatConditionl is false. As previously, i” all the viewsV} (C”) such thap € P\ p; UN (p;) are correct
sinceV;(C') = V1(C) andC is legitimate. Thus-Conditionl implies that3p; # p;, p; € N(p;) such
thatvgj((]’) is not correct andBall(p;, 1) is enabled inC’. Since we are under the distributed demon the

system may perform the transitiaif 2% C”, whereDist(C',C") = 1 andC(pj # C|’pj. We thus obtain

that Dist(C,C") = 2. However by assumptioft' is legitimate and all the legitimate configurations are
separated by a distance of least 3. Thifsis not legitimate and we have a transition fra*hwhich brings
the system into a legitimate configuration. Finally we ha¥éonditionl = —1 — adaptive.

Let us consider now thaf'onditionl is true andCondition2 is false. Then we know that the only
enabled ball i3all(p;, 1) and thatC’ % C” with C” such thaC # C),, andCip, , = Clp\,,. = Cipyp,-
ThusDist(C,C") = 1, and by assumptio@' is legitimate. Because the legitimate configurations aieast
at distance 3 from each othér!’ is not legitimate and the@ondition1 A Condition2— = —1 — adaptive.
We conclude thatCondition1V-Condition2 = —1—adaptive and that by consequente-adaptive =
Conditionl A Condition2. O

The results of this section point out the fact that, if theitlegate configurations (of a silent self-
stabilizing algorithm) are at distance at least 3, then thly way to be 1-adaptive is to return after a
single corruption to the previous legitimate configuratidhat yields a general methodology for designing
1-adaptive algorithms.

e Increase the memory space of the processor for moving awdgditimate configurations.

e Manage for the corrupted processor to be the only one enabled

14

3.4 Example : 1-adaptive naming algorithm with N-Distant legitimate con-
figurations

In this section we describe a probabilistic 1-adaptive-sbilizing algorithm for the naming problem on a
complete network of siz&/. This algorithm has its legitimate configurations at disealv from each other.

It is well known that naming can not be achieved in a deterstimivay. Thus the only known solutions are
probabilistic. That is the case for the algorithm we presehich is also 1-adaptive.

This algorithm works on complete graphs. We assume that gackessor has previously numbered its
registers 1,2,.y — 1. We noteRegli] the value of the'” register. Ifp has a neighbog, corresponding to
its ¢! register , therp can read the number thathas for the register correspondingztavith the function
GetOrder(Regli]). This function returng if p corresponds to thg” register ofq. The numbering of
registers can not be corrupted.

3.4.1 Algorithm description

Each processor executing this algorithm has four variabVasne, Names, Snapshot and Reg. The
variable Name represents the name of the processor, the varidhiewes is an array used to collect the
Name of the neighbors of the processor. T#é entry in Names corresponds to the register numbeied
The variableSnapshot is an array containing a view of the system configuration.

Finally Reg is an array and it contains at the indethe shared variable values of the neighbor corre-
sponding to the'” register. Reg is completely updated before the evaluafitimeoguarded actions.

A legitimate state is defined as follows. Every pair of preoes(p, ¢) whereq corresponds to the
ith register ofp, is such thatp.Name # q.Name, p.Names[i] = q.Name and p.Snapshots[i] =
(¢.Name, q.Names).

The principles used for this algorithm are inspired by thealcstabilizer of [AD97]. Our goal is to
enlarge the system state with copies of each processor@iadach node of the network thanks to the
variablesNames and Snapshot, in order to get the property of N-Distant legitimate confagions. Then,
after the corruption of a single processor, the nearedinegfie state is determined. This example illustrates
how the necessary and sufficient conditions we gave, candgkfasdesigning 1-adaptive algorithms.

Stabilization is in two phases. The first one is probabiljstind put the system either into a correctly
named configuration (th& ame variable are all different but th& ames and Snapshots variables are not
necessary consistent) or into an illegitimate configuratibdistance 1 from a legitimate one. To do this,
every processor that has at least one neighbor with the $&mec picks up a randoniVame (action A1
or A2), among the set of names not yet attributed. These pilidiec actions lead with probability 1 to a
configuration where only deterministic actions are possibl

The second phase is deterministic. It either corrects inamtien the state of a single faulty processor
(action A5), or it updates the variabldsames and Snapshot (action A3 and A4).

The 1-adaptive property is obtained by ensuring that in #s& ©f a single corruption there is only one
enabled action (only the faulty processor is enabled). glsicorruption leads the system into a configu-
ration where only deterministic actions are possible. ¢fsimgle fault does not corrupt tiéame variable
of the faulty processor only actions A3 or A4 are possible tliedfaulty process returns in the correct con-
figuration by updatingVames and Snapshot variables. If the single fault corrupts théame variable of
the faulty processor, the functioigv-1)ConsistentSnapshots and Consensus are used for fault con-
finement. Indeed in this case, as tNe— 1 correct processors evaluat®’-1)ConsistentSnapshots to
true, they are not enabled. The faulty processor evalate$)ConsistentSnapshots to false and applies

15

A5. The faulty processor updates ame variable with value computed by the consensus function and
updates itsVames andSnapshot values. These new values are consistent with\faenes and.Snapshot
variables of the correct processors.

Algorithm 2 Naming Algorithm for complete networks

Variables

Name :integere {0...N-1};

Snapshot :array of(Name, Names) of size N-1;
Names:integer array of sizév-1;

Functions

TakeSnapshot :Vi € {0...N-1}, Snapshot[i] := (Reg[i]. Name, Reg[i]. Names);

GetNewName : returnsrandom({0, ..., N-1} \ {Regli]. Nameli € {1...N-1} AVk € {1...N-1},

Regli]. Name # Reglk].Name});

ConsistentSnapshot : returns(Vi € {0...N-1}, Snapshot[i]| = (Regl[i].Name, Reg[i]. Names));
(V-1)ConsistentSnapshots :

if the Snapshot of p is consistent with th&napshot of (N-2) of its neighbors and thesgnapshot repre-
sent a legitimate configuratiaeturns true elsefalse;

Consensus :

if the Snapshot of the (N-1) neighbors of are consistent with each other and th8sepshots represent
a legitimate configuration wher@.Name,p.Names) # Reg[i].Snapshot|GetOrder(Reg[i])] for all i
€ {0...N-1} thenreturns Snapshot|GetOrder(Reg[1])]; els€;

Actions

Al: 3(i,j, k) € {1..N-1}3,j # k, (Name = Reg[i]. Name A Reg[j].Name = Reg[k].Name)

— GetNewName;

A2: V(i,j) € {1..N-1}2, Regli]. Name # Reg[j].Name A3k € {1...N-1}, Name = Reglk].Name
A=(N-1)ConsistentSnapshots AConsensus = 0

— GetNewName;

A3:V(i,j) € {1..N-1}2,i # j, Reg[i]. Name # Name A Reg[j].Name # Regli]. Name

Ak € {1...N-1}, Names|k] # Reglk].Name

— Vi € {1...N-1}, Names][i] := Reg[i]. Name, TakeSnapshot;

A4 V(i,j) € {1..N-1}%i # j, Regli]. Name # Name A Reg[j].Name # Regli|. Name A Vk €
{1...N-1}, Names[k] = Reg[k].Name N ~ConsistentSnapshot A =(N-1)ConsistentSnapshots

— TakeSnapshot;

A5 Y(i,j) € {1...N-1}2, Regli]. Name # Reg[j].Name A3k € {1...N-1}, Name = Reg[k].Name
ANConsensus # 0

— Name = Consensus.Name, Names = Consensus.Names, TakeSnapshot;

3.5 Algorithm Analysis
Definition 3.5.1 A legitimate configuration for algorithm 3.4.1 is such that £very pair of processors

(p, q) whereq corresponds to the” register ofp, p.Name # q.Name, p.Names|i] = ¢q.Name and
p.Snapshots[i] = (¢.Name,q.Names).

16

Proposition 3.5.1 The legitimate configurations of algorithm 3.4.1 are N-Bist

Proof : In any two different legitimate configurations, notéd and L-, there are at least two different
processors, noteglandg, such thatl ;. Name # Loy -Name and Ly gy Name # Lojqy-Name. In
fact if every processor has the saiWeime then Ly = Lo, and if one processgr has a differentVame

in L, and L, then has there are only possibleName for the N different processor there is at least the
processoy that had theVame, Ly, Name in Ly which necessary has a névame in L.

Then every processerdifferent fromp andg, for whichp is thei*” neighbor and; the j** neighbor, is
suchthatly (. Names[i] # Loj(yy.INames[i] sinceLy (. Names[i] = Lyqpy.-Name, Loy Namesli] =
LQ‘{p}.Name andLal}.Name 75 L2|{p}.Name. Thus we haVE”{T} 75 L2|{T}.

SinceLl‘{p}.Name #* L2|{p}.Name andL1|q.Name =+ Lz‘q.Name, we haveLal} #* L2|{p} and
Ly)q # Lg)4- Then we can conclude that every processor has a differaetist.; and L,. ThusL; and Ly
are at distancéV from each other.

The legitimate configurations of this algorithm are N-Digta

O

Definition 3.5.2 We say that a processogsin a configurationC' of a distributed systen§ that executes
algorithm 3.4.1 ismisnamed (or wrongly named) if and only if there is a processpiin S such that
C|p-Name = C|,.Name. We also say that andq are homonyms.

Definition 3.5.3 Let P(k) be a predicate over the configurations of a systgxecuting algorithm 3.4.1.
A configurationC' of S satisfiesP (k) if and only if there is exactely different misnamed processors(éh

First we prove that there is no possible way to misnammed@egsor. Thus the number of misnammed
processor in the system can only decrease.

Proposition 3.5.2 LetS be a system that executes algorithm 3.4.1. There is no trandi = (C, ¢, rand, C")
of S such thatC - P(k;),C’ - P(ky) andky > k.

Proof : In any configuratiorC' of the system, the processors that can change Meine are the proces-
sors that can execute Al, A2 or A5. Those processors neitgdsare at least one neighbor with the same
Name, otherwise they evaluate the guards of these rules to faleaiever none of these actions can give
a Name that a correctly named processor has before the transitiorfiact A1 and A2 use the method
GetNewName that picks up uniformly a randaWume in the set({0,..., N-1} \ {Reg[i]. Namel|i €
{1...N-1} AVk € {1...N-1}, Reg[i]. Name # Reg[k].Name}). Thus those processors cannot be mis-
named after the execution dfl or A2.

Moreover A5 can not give th& ame that a processor had before the transition otherwise thhadet
consensus would return 0. Thus it can have the sAmee as a processor that has been activated during
the same transition. In this case this processor was almgeatygly named3d

Proposition 3.5.3 Every cone&oney, of every strategyt of a systent that executes algorithm 3.4.1 under

the distributed demon, such thatst(h) satisfiesP(k), for a k > 3, satisfiesLC(P(k), P(k — 1), 0, 1),
whered;, > 0.

17

Proof : Let st be a strategy of algorithm 3.4.1 under the distributed destariing in a configuratio®
and Coney, be a cone okt, whereC’ = last(h) satisfiesP (k) for ak > 3. We have by definition that
Pr(Coneyp) > 0 sinceConey, is a cone ofst.

From proposition 3.5.2 we know that every configuration hedte fromC’ in st verifies P(k’) for
k" < k. Moreover the only action that can be executed'ins action Al. Thus in every possible transition
of st starting inC’ there is a non empty subset of misnamed processors of thegysotedV N, that are
activated to execute their action Al.

Then the probability, for the system to reach a configurafiérwhere there is at least 1 less misnammed
processor, is equal to the probability of a transition whame of the misnamed processors get a correct
Name. This means that this processor is activated and it picks Npae different from all theName of
the not activated processors. Tisime also has to be different from the neMame chosen by the other
activated processor.

Let Coney, be a cone okt whereh' = [hf],|h'| = |h| + 1,last(k') = C” andlast(h’) satisfies
P(k — 1) andT = (C’,t,rand,C") be a transition iy’ as described above. Let be the number of
different Name of not correctly named processors that are not activatéd {i/2) > m > 0, since every
misnammed processor has at least one homonym.

The probability associated B is :

Pry = probability to pick up avame that none of the not activated processor has
= (k—m)/k
Pro = probability that every other processors picks uy@mne different from the processor

that get a correct Name
= (k= (m+1))/R)MWN1
Pr3 = Pry*Pry
Pry = (k—m)/(k) * ((k = (m +1))/k)"WN1
We get thatPrs > 0 sincek > 2m. Thus we have that from any configuratiah of the system,
where there is at more than two misnamed processors. Thatdeiast one transition fromY that leads in
a configuration where there is one less misnamed processds thssociated positive probability. Then we
obtaine that the union of the sub-conegafne,, that reache a configuration with one less misnamed proces-
sor is superior or equal to the probability calculated abds@maly Pr(Ucoye, e 7, n/|=|nj+1 Conen) =

Pr(Conep) = Pr(Conep) * (k —m)/(k) * (k — (m + 1)) /k)"Nl =6, > 0. O

Proposition 3.5.4 Every strategyt of a systens' that executes algorithm 3.4.1 under the distributed demon
verifies Prs (Ep(a)) = 1.

Proof: Let st be a strategy under the distributed demon rooted.iff C' - P(k), k < 2 then the property
is trivially verified.

If C'+ P(k),k > 2then we know from proposition 3.5.3 and 3.5.3, and theoré@hi 2hatPs: (Ep 1)) =
1. By induction onk we get thatP,;(Ep(2)) = 1. O

Proposition 3.5.5 In any strategyst of a systemS that executes algorithm 3.4.1 under the distributed
demon, every con€'oney, such thatlast(h) = C;,C; ¢ L and C; F P(2), and for every legitimate
configurationL, Dist(L,C;) > 2. Then either the system reaches in one transition a configuravhere
every processor has an unigqdéame or Coney, verifiesLC(P(2), P(0),6,1) for 6 > 0.

18

Proof : Let Coney, be a cone of a strategy of a system executing algorithm 3.4.1 under the distributed
demon. LetC; = last(h) be an illegitimate configuration such th@t - P(2), so there exists two proces-
sors inC; with the sameaVame, namelyp andq, andC; is also such that for every legitimate configuration
L € L, Dist(L,Cy) > 2.

In C; no processor different from andq can execute an action. In fact they cannot execute A2 or A5
as they are correctly named. They can not execute Al, A3 orsAHleaxe is exactly two processors with the
sameName in the network. Thus the only enabled processorS;iarep andg.

For the same reasop,andq can not execute A1,A3 or A4. Then they can just execute A2 orARy
can not both evaluate the guard of A5 to true since that wowddnrihat they both evaluate Consensus to
true. And so they have a different state from the one inthepshot of their neighbors at the index that
correspond to them (which are different by definition). Buin€ensus is evaluated to O for a processor
if there is aSnapshot of one of its neighbor which contains more than one statedbas not match the
current state of a processor. Here this is the case for evecggsor different fromp andq. Thus there is at
most one processor ifi; that evaluates the guard of A5 to true.

Suppose that evaluates A5 to true. The first possibility is that in the sidion starting fromC;, justp
is activated. Then the system reaches in one transition fegooation where every processor has a unique
Name, since Consensus can not return a value withicane already attributed.

Otherwise the system takes a step wheigactivated. Ify is activated, then there is two possibilities :
p is also activated or justis activated.

Let Coney be a sub-cone af'oney, in st, such thath' = [hf], last(h') = C”,|h| + 1 = || and for
every pair(p;, pj) of P2, C(%pi}.Name + C""{pi}.Name.

Let Pr(Coney,) be the probability associated @oney,.

If just ¢ is activated inlast(h), then Cone;,, exists since it corresponds to the transitionsoffrom
last(h) wheregq picks up the lastVame that no processor has. Sing@niformly randomly chose & ame
in the set ofName corresponding to it&Vame in last(h) and theName € {0...N — 1} that no processor
has inlast(h) (by definition of GetNewName). We get that :

Pr(Conep) =1/2 % (Pr(Conep,))

If p andq are both activated itust(h). Then the con€'oney, exists since it corresponds to the transition
of st from last(h) wherep executes A5 and changes i¥sime andq picks up theName it already had in
last(h). Sinceq uniformly randomly chose & ame in a set of two values as described above. We get that :

Pr(Conep) = 1/2 % (Pr(Coney))

Suppose now that no processor can execute AB;inThenp andq are enabled as they evaluate the
guard of A2 to true.

If just one processor is activated théfane), exists and the probability associated to iinis :

Pr(Conep) =1/2 % (Pr(Conep,)).

As it has just been proven.

Otherwisep andq are activated irC;. Then there are four possible toss. They both get a Newe,
they both keep their forme¥Wame or one of the processor changesitame and the other don’t. Thus the
probability associated t6'one}, is :

Pr(Conep) =1/4 % (Pr(Conep,))

However as there is two sudfione), the probability associated to all the sub-conesCofe;, that
satisfiesP(0) is 1/2 x (Pr(Conep,)).

19

We can conclude that either the system reaches in one tcemBibm C; a configuration where every
processor has a uniquéame or Coney, verifiesLC(P(2), P(0),4d,1) for § = 1/4 « (Pr(Coney)) > 0.
O

Proposition 3.5.6 Any transition of a system executing algorithm 3.4.1 underdistributed demon that
starts in an illegitimate configuratio@”’ such thatC’ + P(2) and there exist€ € L, Dist(C,C") = 1
brings the system into a legitimate state, nant@ly

Proof : Suppose two configuration§ € £ andC’ ¢ L such thatCg,, # Cf Clipiy-Name #

{p:}’
C"{pi}.Name andC({pi}.Name = C"{pj}.Name. Then for the same reasons as the one mentioned above.

No processor of the system different frgmandp; is enabled irC".

Since (' is at distance 1 front, all the Snapshot of the processors different fromy are coherent
and all contains the current state of the processors différem p; in the correct order (in regard to their
local register order). Thus every processor different fignevaluates §-1)ConsistentSnapshots to true.
Thenp; cannot execute A2. It can not execute Al, A3 or A4 as there aetly two processors with the
sameName in C’. It can not execute A5 since it evaluatéé-()ConsistentSnapshots to true, which means
that all its neighbors different from; have its current state in theffnapshot at the right place and thus
Consensus returns 0.

The only enabled processord is p;. p; evaluates Consensus(i0|,,,;-Name, C,.1.Names) since
every Snapshot of its neighbors contains this value at the index concerpirig C' and thus inC’. Then it
can not execute any other actions and the only possibleitiransf the system starting frorf¥ is ¢’ 2 C.

O

Proposition 3.5.7 Let st be a strategy of a system executing algorithm 3.4.1 undedigtgbuted demon.
Then evenyConey, of st such thatlast(h) - P(0) only contains executions that reach a legitimate configu-
ration.

Proof : Let Coney, be a cone of a strategy of a system executing algorithm 3.4.1 under the distributed
demon such thdust(h) = C andC + P(0).

Then by hypothesis and by proposition 3.5.2 we have thapyrcanfiguration reachable frodi, P(0)
is satisfied and no processor can execute Al, A2 or A5'.irSince there are no two processors with the
sameName. Thus the only enabled actions are A3 and A4 and no proceasart@mnge its variabl® ame
any more. Then the processors just have to fill in correctyr tvariable N ames andSnapshot in order to
reach a legitimate configuration. Let us prove now that evocg@ssor will first get a correct value for its
variable Names. And then a correct value for its variabtsrapshot and thus the system necessarily will
get in a legitimate configuration.

Let WA be the set of processors that have a wrong varidhlenes. That is, a variableVames that
does not contain th& ame of each of its neighbors in the order of its registers. wetbe the number of
processors iWWN in C. Let WS be the set of processors that have a wrong varidblepshot. That is, a
variableSnapshot that does not contain the tupl&ame, Names) of each of its neighbors in the order of
its register in the current state of the system.

Every processor iV evaluates the guard of A3 to true. They evaluate the guardiabAalse since
they have a wrong variabl& ames. Every processors inWN N WS only have one action executable,
namely A3. Since the processors)ofN can not execute A4.

20

Every processor o'V chosen by the demon to execute A3 will get a correct varidblenes for
the remaining of the execution. Every processor fidgi$ activeted by the demon is not enabled until a
processor oV is activeted, since after the execution of A4 a processduaiesC onsistentSnapshot
to true until a processor changes either its vari@btene or its variableN ames.

Then every)WS| < N transitions at least one processor®i\ is activated and we hav@V | =
wn — 1. In fact even if in every transition of the execution the dencboses only processorsiiS it will
reach in a number of transition lower or equa| S| a configuration where))S = (), and where the only
enabled processors are the processoid’df. It will then activate one of those processors and thé/gét
will contain all the processors of the system.

But then again in at lea$VS| < N transitions we will haveWWN'| = wn — 2. By induction onwn
we get that the system reaches fréha configuration wher&y A = () in a number of transitions lower or
equal town * N.

Then the system only reaches configurations where everggsocis correctly named and has a correct
variable Names. In fact the only enabled processors are the processdng®fSince in every transition of
the system there is at least one processor activated thgmvithall be activated in a number of transition
lower or equal taV. Then everySnapshot will be updated correctly and the system will reach a legitien
configuration.

Finally we have that every sub-cone @bne;, reaches a legitimate configuration frafhin at most
N * (wn + 1) transitions.O

Proposition 3.5.8 Algorithm 3.4.1 is 1-adaptive.

Proof : Let C andC’ be two configurations of a systefexecuting algorithm 3.4.1 such that € L,
C' ¢ L, Dist(C,C") = 1,C, # C"pi.
Then if there is a processpy # p; in S such thaCI’pj.Na,me = C"pi.Name then by proposition 3.5.6

we know that the only possible transition fraff is ¢’ £ C.

Let suppose now that),,.Name = C’p .Name andC),,.Names # C" .Names. No processop;
different fromyp; is enabled. In fact as there are no two processors with the 8&mme, no processor can
execute Al, A2 or A5. Since for evepy € P,p; # p;, C)p, = C| andC),,.Name = C‘ .Name, they
all evaluate the guard of A3 to false since they hé?Ye Names[] Clp,-Name # C’ .Name for the
indexi corresponding te; and (V-1)ConsistentSnapshots to true, since every processa:rriwls in the
same state as i@f which is a legitimate configuration. Then they can not exeéut neither.

Thus the only enabled processor@ii is p;. SinceC),,.Names # C(pi.Names and every processor
has the samé&ame in C andC’, p; evaluates the guard of A4 to true. By the application of this p;
regains a correcvames and a correcbnapshot that contains the curretName and state of the processors
which are the same as @, since every processor verifidéame.C’ = Name.C. Thus the only possible
transition starting fronC’ is ¢’ 2 C.

Finally we suppose that just th€napshot of p; is corrupted. Then as previously, the only enabled
processor ip; and the only executable action foris A4. It can not execute A3 any more since its variable
Names is correct. Thus the only executable actionipis A4. Since all the other processors have the same
state as irC, p; regains with A4 the state that it had @ Then again the only possible transition fra@m
isC’ 2 C.

We can conclude that in any configuratioth as described above the only enabled processpr asd
the only possible transition of the system(ié £ C. Thus by proposition 3.3.1 we have that algorithm
3.4.1is 1l-adaptived

21

Proposition 3.5.9 Algorithm 3.4.1 is silent.

Proof : Suppose that a system that executes algorithm 3.4.1 is igitimate configurationC' € L.
Then no processor can execute actions Al, A2 nor A5 as thete t&o processorgp,q) € P? such
that C,. Name = Cy.Name. No processor can execute A3 or A5, since by the definitiorl3uxe know
that inC, p.Names|i] = ¢.Name andp.Snapshots[i] = (¢.Name,q.Names). Thus when a processor
evaluates the guard of A3 and A4 its evaluate: € {1...N-1}, Names[k] # Reg[k].Name to false and

Vi € {0...N-1}, Snapshot[i| = (Reg[i]. Name, Reg[i|. Names) to true and thus ConsistentSnapshot to
false. Finally, no processor is enableddirthenC is terminal and the algorithm is silent.

Proposition 3.5.10 Algorithm 3.4.1 is self-stabilizing for the predicate ofidéion 3.5.1.

Proof : From proposition 3.5.4, we have that in any strategpf a system that executes algorithm 3.4.1
under the distributed demoRyr s (Ep(2)) = 1.

Then we get thaf’(2) is a probabilist attractor for TRUE,RUE >, P(2).

From proposition 3.5.5 and the theorem 2.7.1 of local cayerece we have thd?(2) .., P(0). Thus
we havel' RUE >, P(2) D> prob P(0).

Finally from proposition 3.5.7 an@RU E >0, P(2) >pre P(0) We have that algorithm 3.4.1 is self-
stabilizing for the predicate of definition 3.5.1 and thustfe naming problemd

Proposition 3.5.11 Algorithm 3.4.1 is a self-stabilizing 1-adaptive silenbpabilistic algorithm for the
predicate of definition 3.5.1.

proof From propositions 3.5.11 3.5.9 and 3.5.8 we have that d@lgor8.4.1 is a self-stabilizing 1-adaptive
silent probabilistic algorithm for the predicate of defimit 3.5.1.

22

Chapter 4

Conclusion

We have introduced here the new concept of 1-adaptivitydtfrstabilizing systems. This concept is pow-
erful and interesting since it makes possible to guarantealmost instantaneous correction of memory
corruptions hitting only one processor of the system. luessthat the fault is not propagated and thus that
the non faulty processors are not affected by the corrupifaheir neighbors. Note that our results have
in fact a larger application domain and there are two simpgtersions. First the assumption of a single
corruption can be slightly relaxed. Our results also apghemvan arbitrary number of memory corruptions
hit the system, provided that two neighbors are not simattasly corrupted. If it is not the case, the general
stabilizing mechanisms allow anyway the system to recaugfioftunately in more than one step). Secondly
the results can be extended in a straightforward way to the wéiere at most k (for a fixed integer k) cor-
ruptions hit the system. Analogous sufficient and necessamgitions can be obtained. They can also be
decided locally.

In conclusion we would like to emphasize the fact that, mbamta way for verifying that existing self-
stabilizing algorithms are not 1-adaptive (everybody krbat before), the conditions we presented give
a systematical way to design l-adaptive algorithms. Tha isléo enlarge the state of the processes with
variables whose unique role is to realize the necessaryudficient condition. We presented in the example
of naming how this idea could be exploited by hand (rule A&},dur approach leads to a more systematic
method. The goal here is to produce an automatic transfdneang as an input a self-stabilizing algorithm
and producing as an output an equivalent self-stabiliziggriahm, having the supplementary property to
be 1-adaptive (or more generally k-adaptive for any giverCk)e of the most often cited drawback of self-
stabilization is the loss of the safety during the stakiiczaphase, that makes self-stabilization inadequate
for critical tasks. Our work can be seen as an attempt to owaechis drawback.

23

Bibliography

[AD97]

[AKPO3]

[BDDTO8]

[BGK99]

[Dij74]

[Dol00]

Y. Afek and S. Dolev. Local stabilizer. Ilsrael Symposium on Theory of Computing Systems
pages 74-84, 1997.

Y. Azar, S. Kutten, and B. Patt-Shamir. Distributedor confinement. IifProceedings of the
twenty-second annual symposium on Principles of disgithebmputingpages 33—-42, Boston,
Massachusetts, July 2003.

J. Beauquier, S. Delaét, S. Dolev, and S. Tixeuitankient fault detectors. IRroceedings of
the 12th International Symposium on DIStributed CompufBEC'98), number 1499, pages
62-74, Andros, Greece, 1998. Springer-Verlag.

J. Beauquier, C. Genolini, and S. Kutten. Optimalative k-stabilisation: the case of mutual
exclusion. InL8th Annual ACM Symposium on Principles of Distributed Cating, May 1999.

E.W. Dijkstra. Self stabilizing systems in spite distributed control. Communications of the
ACM, 17:643—-644, 1974.

Shlomi Dolev.Self-StabilizationMIT Press, Cambridge, MA, 2000. Ben-Gurion University of
the Negeyv, Israel.

[GGHP96] S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaragultfontaining self-stabilizing algo-

[Gra00]

[GTO02]

[Her97]

[KP95]

[KP97]

[KP98]

rithms. InSymposium on Principles of Distributed Computipgges 45-54, 1996.

M. GradinariuModélisation vérification et raffinement des algorithmewastabilisants PhD
thesis, Université Paris XI, Orsay, 2000.

C. Genolini and S. Tixeuil. A lower bound of dynamicstabilization in asynchronous systems.
In 21st IEEE Symposium on Reliable Distributed Systems (SRp$ages 212-222, Osaka
University, Suita, Japan, Octobre 2002.

T. Herman. Observations on time adaptive selfitaltion, 1997.

S. Kutten and D. Peleg. Fault-local distributed nmiagd In Proceedings of the 14th Annual
ACM Symposium on Principels of Distributed Computing (PCE5{; August 1995.

S. Kutten and B. Patt-Shamir. Time-adaptive selbi§itzation. In Symposium on Principles of
Distributed Computingpages 149-158, 1997.

S. Kutten and B. Patt-Shamir. Asynchronous timepéida self stabilization. II'Bymposium on
Principles of Distributed Computingpage 319, 1998.

24

[KPO1] S. Kutten and B. Patt-Shamir. Adaptive stabilizataf reactive distributed protocols, 2001.

[NAO2] M. Nesterenko and A. Arora. Local tolerance to unbded byzantine faults, 2002.

25

Chapter 5

Annexe

(V-1)SnapshotsCoherents :
/* First we check if two processors have two index of th&irapshot that do not correspond to
the current state of a processor */
- (Jie{l.N-1}
dk € {1..N-1}
(Regli].Snapshot[k] # (Name, Names)
AVYm € {1...N-1} Regl[i|.Snapshot[k] # (Reg|m|.Name, Reg[m].Names)
Al e {1...N-1}
14k
ARegli].Snapshot[l] # (Name, Names)
AVYm € {1...N-1} Regl[i].Snapshot[l] # (Reg|m].Name, Reg[m].Names)
)
Aj € {1..N-1}
(J #i
AJk € {1..N-1}
Reglj].Snapshot[k] # (Name, Names)
AVYm € {1...N-1} Reg[j]|.Snapshot[k] # (Reg[m]|.Name, Reg[m].Names)
AJl e {1..N-1}
14k
AReg[j].Snapshot|l] # (Name, Names)
AYm € {1...N-1}Reg[j].Snapshot|l] # (Reg[m|.Name, Reg[m|.Names)
)
)
/* We check ifp has not two index of its Snapshot that do not correspond toufrent state of
a processor */
A~ (Jie{l.N-1}
Vm € {1...N-1}Snapshot[i] # (Reg|m|.Name, Reg[m|.Names)
AJj € {1...N-1}
i F

26

AYm € {1...N-1}Snapshot[j| # (Reg[m].Name, Regm|.Names)
)
/* We check if all the processors but one have an index in theiipshot that all
represent the same state of a processor that is not the tstaem of a processor*/
A - (Fie{l..N-1}
Vm € {1...N-1}Snapshot[i] # (Reg|m|.Name, Reg[m].Names)
AJj € {1..N-1}
Vm € {1...N-1} Regl[j]|.Snapshot[m] # Snapshot]i]
AJk € {1...N-1},
k#j
AYm € {1...N-1} Reg[k|.Snapshot[m] # Snapshot|i]
)
/* We check if there is no two processors with twice the sawene in their variable
Names.*/
A - (Fie{l.N-1}
3j € {1..N-1}
Regli]. Names[j] = Regli].Name
v3ak € {1...N-1}
k#j
AReg[i]. Names[j] = Reg[i].Names|[k]
)
ATl € {1..N-1}
l#1
AJj € {1..N-1}
(Regll]. Names[j] = Regll].Name
v3k € {1..N-1}
k #1
AReg[l].Names[j] = Regll].Names|[k]
)
)
/* Finally we check if there is no two processors with tWame in their variable
Names that correpond not to the curreMame of a processor.*/
A - (Fie{l.N-1}
3j € {1..N-1}
(Vm € {1...N-1} Reg[i]. Names|j] # Reg|m].Name
AJk € {1...N-1}
k#j
AYm € {1...N-1} Reg[i]. Names[k] # Reg[m].Name
)
A3l € {1...N-1}
(L#1i

27

AJj € {1..N-1}
Vm € {1...N-1} Reg[l]. Names[j] # Reg[m].Name

AJk € {1...N-1}
jAk
AVYm € {1...N-1} Reg[l]. Names[k] # Reg|m|.Name
)
)
Consensus :

[* First we check if all the Snapshot of the processors diffeifromp contain the same values */
if (Vie{l..N-1}
Vj e {1..N-1}
AVE € {1..N-1}
k #i
AJl € {1..N-1}
Regli].Snapshot[j| = Reg|k].Snapshot]l]
V3am € {1...N-1} Reg[i].Snapshot[j] = (Reg[m].Name, Reg[m].Names)
)
/* We check if all the current state of the processors difiefeom p appears in th&napshot of
their neighbors different from */
A (Vi€ {l1..N-1}
Vj € {1..N-1}
N
ATk € {1..N-1}
(Regli].Name, Reg[i].Names) = Reglj]|.Snapshot|k]
)
/* We check if all the processors different froprhave a variabléVames which contain theVame
of all their neighbors different from */
A (Vi e{l..N-1}
vj e {1..N-1}
i F]
Ak € {1...N-1}Regli]. Name = Reg[j].Nameslk])
Regli]. Name = Reg[j].Names|k])
/* Finally we check if all the processors different frgihave the same value in thefinapshot at the
index correponding to p and this value is different from theent state op */
A (Vie{l.N-1}
vj e {1..N-1}
iFJ
(Regli].Snapshot[Lire M onOrdre(Regli])] # (Name, Names)
ARegli].Snapshot[Lire M onOrdre(Regli])] =
Reglj].Snapshot[LireMonOrdre(Reg[j])]))

28

