
User Interface Façades: Towards
Fully Adaptable User Interfaces

Wolfgang Stuerzlinger
Interactive Systems Research Group

Dept. of Comp. Science, York University
Toronto, Canada

http://www.cs.yorku.ca/~wolfgang

Olivier Chapuis, Nicolas Roussel
Projet In Situ

CNRS, Université Paris-Sud & INRIA
Orsay, France

http://insitu.lri.fr/{~chapuis,~roussel}

ABSTRACT
User interfaces are getting more and more complex, and
adaptable and adaptive interfaces have been proposed to
address this issue. Previous studies have shown that users
prefer interfaces that they can simply adapt themselves to
self-adjusting ones. However, most existing user interface
toolkits provide very little support for creating adaptable
interfaces. As a consequence, interface customization tech-
niques are still very primitive and usually constricted to
particular applications.

In this paper, we present User Interface Façades, a system
that provides end-users with simple ways to adapt and re-
combine existing graphical interfaces, through the use of
drag-and-drop paradigm. User Interface Façades employs a
more appropriate level of granularity for adaptation com-
pared to previous work and also allows end-users to adapt
the interaction of arbitrary applications. Finally, we show
several examples to demonstrate the power of the new
technique.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces.

- Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Adaptable user interfaces

INTRODUCTION
User interfaces are becoming more and more complex as
the underlying applications add more and more features.
Although most people use only a small subset of the func-
tionalities of a given program at a given time
[McGrenere2002], most software make all commands
available all the time, which significantly increases the
amount of screen space dedicated to interface components
such as menus, toolbars and palettes. This quickly becomes

a problem, as users often want to maximize the space avail-
able for the artifacts they are working on (e.g. an image or a
text document). One reason for this problem might be that
most user interfaces are still designed by software pro-
grammers today, a fact that is only slowly changing. How-
ever, even trained interface designers cannot always foresee
how a software package is going to be used in practice,
especially if the package is used by a large amount of users.
This makes creating flexible user interfaces a major chal-
lenge.

Consider GIMP as an example. This image manipulation
program opens automatically many toolboxes in separate
windows. This in turn increases the window management
overhead and increases the distance to the drawing tools
and functions from the drawing area. Users adapt with
varying strategies, such as having all toolboxes on a secon-
dary monitor, overlapping the drawing with the toolboxes,
etc. On the other hand, some applications use an all-in-one
window logic, which provides less flexibility in terms of
user interface layout.

Screen space is today mainly limited by the size of moni-
tors, and this factor increases only slowly. Efficient display
space management remains a problem for people using
multiple monitors, since the distances the mouse cursor has
to travel across the screens can get fairly large [Baudisch et
al., 2003]. Interacting with several applications on several
screens can quickly turn into a frustrating and painful expe-
rience as it forces users to move their hand and head con-
stantly.

One way of dealing with the growing number of application
features and the desire to optimize screen space is to allow
users or applications to customize the interfaces. These two
concepts have been studied for some time by the HCI
community (see [Kantorowitz 1989] or [Kühme 1993], for
example). Today, they are most often referred to as (user-)
adaptable and adaptive (or self-adapting) interfaces
[McGrenere 2002]. Adaptive interfaces change their ap-
pearance based on some algorithm, such as a least-recently
used criterion. One recent example is the menus of the Mi-
crosoft Office suite. Adaptable interfaces, on the other
hand, can be configured by the user to suit his or her own

criteria. As an example, many toolbars used in Mac OS X
applications can be interactively customized with simple
drag-and-drop operations.

Adaptive interfaces can have some unpleasant side effects,
such as to surprise the user by moving or removing menu
entries. Adaptable interfaces suffer from the problem that
new interface elements and interaction techniques must be
added to the software to support the customization of its
“primary” interface. A comparison of static, adaptive, and
adaptable menus showed that users could optimize their
performance if they knew about the possibility of adapting
and were able to adapt their menus with a simple interface
[Findlater 2004]. Another interesting finding is that the
adaptable user interface did not perform worse than the
other two alternatives. Furthermore, participants greatly
preferred the adaptable interface to the two other alterna-
tives, a fact that we see as strong motivation for additional
research in this area.

RELATED WORK
One of the simplest forms of user interface customization is
the notion of skins and themes available in some applica-
tions and user interface toolkits. The term skin comes from
video games such as Quake that allowed players to alter the
appearance of their character by providing a set of images.
Soon after its introduction into video games, a number of
media players adopted this customization mechanism. To-
day, user interface toolkits such as GTK+ or QT include a
styling engine that makes it possible for several applica-
tions to share a common visual style — or theme — speci-
fied at runtime by the user. A skin (or a theme) can simply
consist in a set of colors or textures used by some existing
drawing code. It can also partially or completely replace
that drawing code, possibly adding complex output modifi-
cations [Edwards1997]. In addition to the visual style of the
interface elements, skins can also specify the layout and
behavior of these elements. Recent work by [Fogarty et al.
2002], [Chatty et al. 2004] and others has extended this
approach to bridge the gap between appearance and seman-
tic meaning. However, although they allow visual designers
to customize interfaces using off-the-shelf drawing tools
such as Adobe Photoshop or Illustrator, these systems re-
main out of reach for end-users who can simply choose
between pre-defined skins or themes.

Bentley et al. distinguished between surface and deep cus-
tomizations [Bentley & Dourish, 1995]. An example for a
surface customization is the option provided by some appli-
cations to reconfigure their menus, toolbars or palettes. In
this case, the user is constrained to using the functions the
system developer has provided, and cannot customize the
actual behavior of the system. An example of deep cus-
tomization is the ability to integrate a word processor with a
foreign language translation program, when this operation
was not pre-programmed by the system developer. Overall,
Bentley characterized the customization gulf by two inter-
related problems. The first one is the level of customization
possible, and with most systems this lies above the func-
tionality of the application, rather than within it. The sec-
ond problem is the language of customization, and tradi-

tional systems provide limited facilities to express customi-
zation requirements using the skills users already have,
requiring the learning of new languages to describe new
system behaviors. Both of these problems combined make
it hard for or prevent the user from reaching into the system
and customizing the way in which functionality (and not
simply the interface to the functionality) relates to their
accomplishment of work.

One of the biggest obstacles for adaptable interfaces is that
it requires a fairly substantial programming effort to add
this capability to a software package. Most user interface
toolkits offer no support for implementing adaptable inter-
faces. This factor has certainly hindered the adoption of the
idea of adaptable interfaces. As a notable exception, Ap-
ple’s Cocoa toolkit provides developers with a toolbar wid-
get that users can customize at runtime using drag and drop
operations. However, the customization interface it pro-
vides is far from optimal (Figure 1), as it doesn’t provide
for undoing changes, reverting to previous versions, and
employs a fixed window. Microsoft Office applications also
allow users to customize their various toolbars and menus.
Again, the customization interface has again some serious
flaws (Figure 2), which are similar to the Apple example. In
both cases, what we have is some permanent surface cus-
tomization (if not permanent, at least hard to get rid of or to
revert).

Figure 1. Apple Mail’s interface for customizing th
toolbar. Individual icons and the standard icon set
can be dragged to/from the toolbar, but these op-
erations cannot be undone and there’s no Cancel
button. The interface is about 600x600 pixels and is
attached to the main window (it cannot be moved
elsewhere). Icons already in the toolbar still appear
in the customization interface.

Tan et al. introduced the idea of WinCuts [Tan2004]. This
prototype allows the user to select arbitrary rectangular
regions from a window, and presents each such region in a
separate window. The authors present this as a collabora-
tion tool and also as a way to reconfigure user interfaces.
However, the inability of WinCuts to merge regions into
new windows is clearly a limiting factor here. Another
problem is that WinCuts does not allow for full interactiv-
ity, due to focus management problems and does not allow
the user to change the interaction itself.

Hutchings and Stasko recently presented several papers in
this area. They first proposed “copying a part of a window”
[Hutchings and Stasko03] and then developed the idea of
replicating dialogs boxes on multiple monitors until the
user interacts with one of the copies [Hutchings and
Stasko05]. Also, they presented the idea of removing (un-
used) parts of a window to keep only the part that is rele-
vant to the user [Hutchings and Stasko04].

Figure 2. Microsoft Word’s interface for customizing
menus and toolbars. The list on the left side con-
tains 22 categories (including All the commands).
The list on the right side shows the commands rele-
vant to the selected category. More than 1100
commands are available through this interface.
Command icons and labels can be dragged to/from
menus and toolbars, but these operations cannot be
undone and there’s no Cancel button. The interface
is about 600x500 pixels, it can be moved but not
resized. Icons already in the toolbar still appear in
the customization interface.

The idea of Web Clipping was also introduced to synthe-
size new overviews based on information available on sev-
eral different WWW pages. Here new pages are generated
based on individual elements selected from other pages.
Recently, this idea was generalized to a more interactive
version by Fujima et al., who added Excel-like computa-
tional facilities to this concept [Fujima2004]. However, this
approach is limited to WWW technologies and does not
allow the user to change the interaction behavior of the UI.

Given that most of the mentioned factors are not going to
change in the short term, we see a strong need to come up
with new ideas for adaptable UIs. While the idea of adding
this functionality to software toolkits seems attractive at
first glance, it has the drawback that it will make the al-
ready very complex API (application programming inter-
faces) for user interface toolkits even more complex, re-
quiring yet more code. This is clearly not a positive thing
and would not speed adoption of the fundamental paradigm
of adaptable interfaces.

USER INTERFACE (UI) FAÇADES
This work focuses on direct-manipulation applications,
where the focus of work is usually a single (or a best a few)
document(s) and we will limit our discussion in this paper
to this class of applications. In such applications the screen
is dominated by a large work area, with UI elements clus-
tered around. Examples for this are drawing packages, text
processors, spreadsheets, etc. This is in contrast to dialog-
based applications, which rely on a query-answer paradigm
with popup boxes – such as the Windows configuration
dialogs or many WWW-based banking applications.

When reflecting on new ways to allow end users to redes-
ign the interface for arbitrary applications, we realized that
one of the simplest paradigms for handling arbitrary regions
of screen space is the “cut, copy & paste” paradigm, as this
is a form of functionality that practically all users are very
familiar with.

Based on the above discussion, we formulated the follow-
ing criteria for adaptable user interface:

1) Granularity: Redesigning interfaces necessitates
that individual elements can be moved around.
This is very similar to the way a window manager
permits the user to move individual windows
around. However, a much more appropriate level
of adaptability for interfaces is that each widget
(and potentially even parts of widgets) can be se-
lected and manipulated.

2) Level of control: As discussed above, it is benefi-
cial if users can reconfigure the interface them-
selves. The alternative of changing the user inter-
face via software is clearly inferior from the end-
user’s viewpoint.

3) Modify interaction: While many user interfaces al-
low for changes in the visual appearance (e.g.
themes), adaptability should also extend to the
level of the interaction with the user interface ele-
ments.

In this section, we present our new User Interface (UI) Fa-
çades. UI Façades supports the rearrangement of UI ele-
ments, the modification of the interaction, as well as several
other capabilities. Each of these will be discussed in turn in
the next sections.

Initial concept: cutting, copying and pasting arbitrary
interactive screen regions
A basic functionality of UI Façades is the ability to re-
arrange UI elements. For this, we employ the paradigm of
cut, copy & paste. More precisely, the user can select arbi-
trary rectangular regions in a special mode, which is acti-
vated via a modifier key or by selecting a special option in
a window manager menu. The user can then copy (i.e. du-
plicate) or cut (i.e. remove) these selected UI elements and
paste them into a UI Façade window. UI elements can
come from arbitrary windows and can be pasted into UI
Façade windows. New UI Façade windows are created
simply by pasting a UI element onto the desktop (back-
ground). Alternatively, a left click on a Façade selection
pops up a menu which proposes different actions on the

selection (the system does not send mouse events under a
selection in this mode).

Figure 3 shows a user constructing a façade from four dif-
ferent regions (three on the left image, one on the right one,
which the user has selected one after the other). Each re-
gion appears as an overlaid transparent gray rectangle.

Figure 3. Constructing a façade from screen re-
gions, 3 regions have been selected from the left
dialog, one from the right.

Figure 4 shows the façade created from the four regions
selected in Figure 3. A new toolbox is build from two tool-
boxes: some tools were selected from the main GIMP tool-
box, as well as the most interesting parts of the pencil dia-
log. Once the new toolbox is created, the two other win-
dows can be hidden to save screen space.

Figure 4. UI Façade constructed from the elements

marked in Figure 3

After the UI Façade has been created, the user can hide (or
iconify) the original windows and the system transparently
passes mouse movements and clicks to the underlying ap-
plication. Updates to the window content, by the applica-
tion are duplicated into the UI Façade. Similarly overlay

window such as menus appear in the Façade. The system
also transparently manages the focus according to standard
window manager rules. In effect, the behavior of an UI
Façade is indistinguishable from the underlying application.
A screen region can be used in as several UI Façades in
parallel and a UI Façade can contain an arbitrary number of
regions. In this instantiation of UI Façades the Façade can-
not be resized, as this would require modifications to the
underlying GUI toolkits, but an enhanced version described
below solves this problem.

Additional UI elements can be added to an UI Façade using
drag-and-drop. If there is a free space in the UI Façade
window, an element is simply added (enlarging the window
if necessary). If there is no free space, the new element is
added to the side of the window where the cursor was when
the drop occurred. I.e. if the cursor was near the top of the
UI Facade window, the window is enlarged appropriately
and the UI element is added at the top of the window. See
Figure 5 for an example.

Figure 5. Selecting another screen region (the opac-
ity slider, top left) and then dropping it into an exist-
ing UI Façade (top right) enlarges the Façade (bot-
tom image)– see text for details.

If there is little or no desktop space available, UI Façades
can also be created by first selecting several regions and
then instantiating a new UI Façade window that contains all
active selections with a special key combination.

To enable quick recall of a UI Façade, the user can save a
UI Façade and give a name to it (via a Save Façade menu
item of the window menu of the Façade). The system uses
the geometry, class, and resource names of the windows
used by the Façade as an identifier for a UI. An entry in the
desktop menu (available with a right-click on the back-
ground) gives the user the ability to recreate the UI Façade.

Implementation details
We implemented UI Façades based on Metisse [Chapuis,

Roussel04]. Metisse is a fully functional X Window system
designed to easily prototype new rendering techniques as
well as novel window management techniques. This system
contains an X server (called the Metisse server) that can
render application windows off-screen as well as a slightly
modified version of a standard X window manager,
FVWM. Finally, the system also contains the UI composi-
tor also called FvwmCompositor, which communicates
with both the Metisse server and FVWM. The UI composi-
tor renders the contents of the windows of the Metisse
server in a full-screen window of the native windowing
system to simulate a full window system. All these compo-
nents usually run on a single machine.

The Metisse server and the UI compositor communicate
with a protocol similar to VNC, but at a per-window level.
In particular, each time an application updates its window,
the server sends the corresponding region to the UI com-
positor, which uses OpenGL to render the desktop using
textures. This way, the visual appearance of the final screen
layout can be very different from the layout on the Metisse
server.

The UI compositor receives all use input. While keyboard
events are simply forwarded, mouse input is transformed
into the original position of each source region of the
Metisse server desktop.

Besides rendering the desktop, the UI compositor also en-
hances the capabilities of FVWM. For example, FVWM
can ask the UI compositor to perform some non standard
operation, such as scaling a window. Selecting a screen
region for UI Façades is implemented as a local operation
in FVWM, i.e. the related events are not forwarded to the
server. Also, FVWM can request that the UI compositor
create a new UI Façade. Technically speaking, each UI
Façade is an independent instance of a simple program
which creates a new X window to hold the UI elements of
the Façade and stores all associated information such as
size and the source region of all its UI elements. Based on
this information, the UI compositor redirects any content
changes of the UI elements to the UI Façade. The UI com-
positor then handles any necessary focus changes as the
mouse is warped to various source application windows.
Special care is taken to render transient overlay windows
(popup-menus, tooltips, …) in the right place. Closing a UI
Façade simply destroys all these associations (and poten-
tially closes all source applications, depending on an user-
selectable option).

Interaction “Skins”
One idea that has not appeared frequently in the discussion
about adaptable UIs in the literature is that one can not only
adapt the visual appearance of the UI, but also the interac-
tion part of the UI. Consider e.g. the replacement of a long
dropdown list widget containing all countries of the world
with a map widget showing the world or alternatively a
small set of radio buttons for the short list of countries that
the user needs frequently in his work.

To achieve this, the system only needs information about

widgets and can then map each user action on a widget in
an UI Façade to one or more actions on the widget(s) of the
original application. This results in a very powerful way of
modifying the behavior of applications. Other benefits of
this approach is that the selection of screen regions can
snap to the boundaries of widgets and it is possible to have
UI Façades that resize automatically when the original win-
dow is resized.

For this part of UI Façades, information about the size, type
current state, and parameters of each widget is needed. One
way of getting access to this information is to use modified
version of user interface toolkits such as GTK+, Xaw, Qt,
Swing, etc. that reports this information to UI Façades.
Once this info is available, it is fairly straightforward to
write code that can activate the different functionalities of
each widget (such as selecting the nth entry in a list, clicking
on a spinner, entering text, etc.) as dictated by the mapping
of the actions on the UI Façade widget to the original, un-
derlying widget(s). Other mappings require several actions
on the underlying widgets, e.g. if a radio button Façade
selects a specific entry from a long drop-down list widget it
may be necessary to first “drop” the list “down” with a sys-
tem generated mouse click in the right place, then scroll to
the top with more simulated clicks and then scroll to and
finally select the desired entry with yet more simulated
clicks.

We have implemented some of the described mapping via
additional code. However, it should be fairly straightfor-
ward to create a tool similar to a GUI builder that lets end-
users specify new mappings by selecting pre-defined or
pre-programmed actions and compositing these appropri-
ately.

Given that the above described approach gets fairly com-
plex if multiple toolkits and many widgets are involved, we
are currently investigating a better way based on the fea-
tures of the accessibility API that some of these toolkits
include as these APIs include functionality to query and
interact with widgets.

WORKING EXAMPLES
This section introduces several applications of and varia-
tions on the basic idea of UI Façades.

Combining UI elements
We already presented an example of the power of combin-
ing UI elements based on GIMP above. Another example is
the creation of a notification UI Façade from different ap-
plications. Most e-mail programs display the “inbox” as a
list of one-line items containing information on the sender,
subject, etc. Selecting (part of) this list and the two last
lines of an instant messaging (IM) application allows the
user to compose a novel “contact” UI Façade notificator
application. The advantage of such a notification applica-
tion compared to the usual small notificators in the taskbar
is that it gives simultaneously information on new mails
and new IM messages (especially the sender name). The
users can use this information to decide whether to switch
from their current work to answer a message. Moreover, the

user can even answer an e-mail message at once without
switching to the full mail reader window as he/she can in-
teract with the mail application by right-clicking on an e-
mail’s header line. One disadvantage of such notification
window is that it uses more screen space than taskbar noti-
ficators, which use very little screen space. However,
Metisse has the ability to scale windows. Hence, such win-
dows can be also scaled (e.g., by reducing the size of 30%
to reduce the screen usage while maintaining readability).

Duplicating interface elements
Another interesting application of UI Façades is to change
the UI of a software package designed for right-handed
people into a left-handed version, e.g. by moving the
scrollbar from the right to the left-hand side. Another inter-
esting idea is to duplicate a toolbar on both sides of the
work area (or even on all four sides), which has the poten-
tial to significantly decrease average tool selection time.
The next figure (Figure 6) shows a file browser (Kon-
queror) with an additional toolbar on the bottom.

Figure 6. Filebrowser with duplicated toolbar (at the
bottom).

UI Façades also support the full duplication of whole win-
dows, similar to the work presented in [Hutchings and
Stasko03, Hutchings and Stasko05]. This functionality is
activated via a menu available by clicking on the title-bar of
a window and short-cuts. Duplication can be extremely
useful in a multiple monitors setting as it allows the user
e.g. to duplicate the task bar or a panel with launch buttons
on every monitor (with changes visible everywhere simul-
taneously). Another application of this idea is best illus-
trated with an example: Alice has two monitors on her
desk, a laptop monitor and an external monitor, which can
be turned in any direction. Paul arrives in Alice’s office and
sits down on the other side of the desk. Alice turns the ex-
ternal monitor so that it faces Paul and duplicates her web
browser onto the external monitor. Alice can then freely
show her work while Paul is able to observe the demonstra-
tion.

Another interesting example is the duplication of the GIMP
toolbox window: one toolbox window can be created for
each drawing window. We can even have two toolbox win-

dows on each side of a drawing window. Figure 7 illus-
trates such a layout.

Figure 7. Screen layout with duplicated toolboxes.

Many enhanced window managers support a large virtual
desktop and/or multiple independent desktops. This lead to
the introduction of a “sticky” window: a window which
appear on all desktops (typically a taskbar or a application
panel). Some window managers allow this for arbitrary
applications. One classical use of this concept is a user
wanting to work with two windows which “reside” on dif-
ferent desktops. By “sticking” one of them the user can
simply move to the desktop of the other window and have
both available. After having finished working with these
two windows, the user can simply “unstick” the window to
restore the original desktop layout. The above interaction
has a few problems. It is necessary to unstick the second
window as its presence on other desktops can be annoying.
Moreover, when moving to the “working” desktop it may
happen that the two windows overlap and one window must
be moved. This may breaks the position of the sticky win-
dow relative to its original desktop, which can be problem-
atic. Window duplication provides a better solution. Instead
of “sticking” the window the user duplicates it and moves it
to the desktop of the others window. The duplicate window
can then be moved without disturbing the position of its
original and do not appear on others desktops. The dupli-
cate window can also simply be iconified or closed in stead
of “unsticking”.

Yet another application of UI Façades is the control of ap-
plications on secondary display devices. The main issue
here is the reduction of mouse travel across large distances.
We describe a two monitor scenario that significantly ex-
tends an example from a technical report of Hutchings and
Stasko [Hutchings and Stasko03]. Paul is a web developer
and he edits a web page on his main monitor. On his secon-
dary monitor he runs two different web browsers to test the
result of his work in real time. For this Paul first creates an
UI Façade consisting of the two reload buttons and the two
vertical scrollbars of the browsers. Then he places this UI
Façade in his main monitor just to the right of the web edi-
tor. This allows Paul to quickly test his design, while his

mouse never needs to leave the main monitor. Figure 8 il-
lustrates this.

Figure 8. Example with 2 monitors, page source
code and a UI Façade containing duplicated reload
buttons and scrollbars on left image, the two target
WWW browsers on the right image. The user can

control everything from the left monitor.

Integrating Elements from One Application into Another
and Holes
Another application of UI Façades is to duplicate useful
notification areas into the area of an arbitrary window. As
an example consider duplicating the clock from the taskbar
into the title bar or another unused area of a window. This
is clearly interesting for multi-monitor setups and for full-
screen applications. Figure 9 shows an example of this.

Figure 9. Duplication of taskbar clock into an un-

used area of Mozilla (near top right).

UI Façades provides also the ability to let the user cut a
‘hole’ into a window to expose underlying content. The
user can do this by selecting a screen region and cutting the
region. This idea was first proposed by Hutchings [Hutch-
ings and Stasko04] and is also implicitly mentioned in the
description of Ametista [Roussel03]. Hutchings suggested
that holes can be also used to hide part of a window from
the user’s view. Another way to use holes is to access a
utility application beneath another, e.g. the input/output
field of a calculator beneath an unused region of a text edi-
tor (e.g. an empty part of a menu- or toolbar). The advan-
tage of this scheme is that the calculator can be accessed
via keyboard interaction while the mouse is over its area
without visually blocking any part of the text (using X win-
dows focus semantics). This is not possible with normal
window managers as the calculator application is much
larger than the input/output field and will obscure other
things. See Figure 10 for an example image.

Figure 10. UI Façade simulating a text editor with a
“built-in” calculator.

This is especially interesting if the text editor is run in a
maximized/full-screen mode. Furthermore, it is possible to
raise the complete calculator window by clicking in the
hole. As usual, a click on the word processor will restore
the previous state, i.e. the state depicted in Figure 8. Note
that this does not necessitate switching the word processor
out of its maximized view! In UI Façades holes can be de-
leted via a title-bar menu or a keyboard short-cut.

ENVISIONED EXAMPLES
The examples described below in this section are not yet
supported by our implementation of UI Façades. However,
our current explorations with the accessibility API of
GTK+ and Apple’s Cocoa convinced us that the following
examples are relatively simple to implement, given enough
time.

Transforming palettes into Toolglasses
Some previous research has shown that toolglasses can
improve user performance [Kabbash 94]. Toolglasses are
transparent UI elements, whose position is controlled by the
non-dominant hand. The user then “clicks-through” the
desired mode-icon of the toolglass with the dominant hand
to activate the function at the current cursor location.

This is realized in UI Façades when the user first selects a
screen region and then activates a special key sequence to
designate the region as a toolglass. Then, whenever the user
clicks the screen with the input device in the non-dominant
hand, the toolglass is blended on top of the application and
clicks with the dominant hand in the region of the toolglass
are both forwarded to the palette (to activate the correct
mode) as well as the underlying drawing/text-editing area.
One of the attractive features of UI Façades is that no
change to the underlying application is necessary to funda-
mentally improve the user interface.

Follow-me guys!
As an alternative to toolglasses we envision another way to
have mode-switching widgets within easy reach. For this,
the user first selects several regions corresponding to en-

tries in a palette or toolbar. After the use of another special
key combination, the system will then keep the selected
widgets near the cursor (more precisely not closer than a
preset distance), similar to fans following a star or flocking
behavior in animals. Quick mouse movements then tempo-
rarily “scatter” the widgets, which allow seeing hidden con-
tent, while slower movements allow the user to interact
with the mode-switching widgets. Such behavior is easily
implemented with a simple flocking algorithm, but the con-
stants need careful tuning to keep this technique unobtru-
sive.

Replacing min/max sliders with an alpha slider
Tanin et al. [Tanin96] introduced the concept of range slid-
ers, which is similar to a normal slider, but where the width
of the slider itself signifies a minimum/maximum range.
With the mechanism of interaction skins, UI Façades can
implement this by mapping interactions with a range slider
widget to the appropriate actions on a pair of numeric entry
fields. The only enhancement that is needed relative to pre-
viously described things is the ability of mapping clicks on
various regions of the range slider to numeric values.

GUI Tool for Modifying the Interaction
One important motivation for the work on UI Façades is to
provide end-users with the ability to adapt the interaction of
an application, i.e. modify its behavior. As discussed above,
a GUI tool to specify the mapping from user actions on
widgets in an UI Façade to actions on the application’s
widgets would bring us fairly close to the overall goal of
easily adaptable UIs. We already discussed most technical
issues for this in the section on interaction skins. One issue
that remains to be explored in future work is the creation of
a simple-to-understand description of widget actions – at a
level that even end-users can understand easily.

CONCLUSION AND FUTURE WORK
We have presented a new implementation of adaptable user
interfaces. Our UI Façades allow end-users to change the
UI of any application as they desire via the cut, copy and
paste paradigm, combined with the ability to drag screen
regions into a Façade. Furthermore, our approach also al-
lows the user to adapt the interaction behavior of arbitrary
applications, something that no previous work has allowed.
We presented several examples that demonstrate and ex-
tend the basic concept in several interesting directions
(window management, multiple monitors, etc.). Further-
more, we discussed several future extensions, which we
believe to be relatively easy to implement.

From a global perspective, we believe that UI Façades offer
a good complement to direct programming of UIs. From the
user’s view UI Façades greatly increase the flexibility of an
application. From the programmers view, UI Façades are
transparent as no programming is required to give the user
the ability to change the user interface. In the future, appro-
priate APIs to UI Façades may even enhance the UI pro-
grammer’s/designer’s ability to create good user interfaces.

For future work, we plan to investigate the integration of
many of the presented techniques into UI toolkits and/or

window managers, as this is the logical next step. In this
context it is interesting to realize that UI Façades extends
Apple’s vision of the “Window system as a digital image
compositor” [Graffagnino02]. More precisely, we can de-
fine that the addition of UI Façades to the standard window
management/UI paradigm allows us to talk about the vision
of the “window system as an interactive graphical compo-
nent compositor”.

The generalization from rectangular regions to more arbi-
trary regions is fairly simple from a high-level point of
view and may increase the utility of UI Façades even fur-
ther.

REFERENCES
1. Baudisch, P., Cutrell, E. and Robertson, G. High-

Density Cursor: A Visualization Technique that
Helps Users Keep Track of Fast-Moving Mouse
Cursors. Proceedings of Interact 2003, pp. 236-
243.

2. Bentley, R. and Dourish, P. Medium versus
Mechanism: Supporting Collaboration through
Customisation. Proceedings of ECSCW'95, pp.
133-148. Kluwer Academic.

3. Chapuis, O. and Roussel, N. Metisse is not a 3D
Desktop!. LRI research report, Université Paris-
Sud. 2004, submitted for publication.

4. Chatty, S., Sire, S., Vinot, J-L., Lecoanet, P.,
Lemort, A. and Mertz, C. Revisiting visual inter-
face programming: creating GUI tools for design-
ers and programmers. Proceedings of UIST 2004,
pp. 267-276. ACM Press.

5. Edwards, W., Hudson, S., Rodenstein, R., Smith,
I. and Rodrigues, T. Systematic Output Modifica-
tion in a 2D UI Toolkit. Proceedings of UIST
1997, pp. 151-158. ACM Press.

6. Findlater, L. and McGrenere, J. A comparison of
static, adaptive, and adaptable menus. Proceedings
of CHI 2004, pp. 89-96. ACM Press.

7. Fogarty, J., Forlizzi, J. and Hudson, S. Specifying
Behavior and Semantic Meaning in an Unmodified
Layered Drawing Package. Proceedings of UIST
2002, pp. 61-70. ACM Press.

8. Fujima, J., Lunzer, A., Hornbæk, K. and Tanaka,
Y. Clip, Connect, Clone: Combining Application
Elements to Build Custom Interfaces for Informa-
tion Access. Proceedings of UIST 2004, pp. 175-
184. ACM Press.

9. Graffagnino, P. Apple OpenGL and Quartz Ex-
treme. Presentation at SIGGRAPH OpenGL BOF,
2002.

10. Hutchings, D. and Stasko, J. Revisiting Display
Space Management: Understanding Current Prac-
tice to Inform Next-generation Design. Proceed-
ings of Graphics Interface 2004, pp. 127-134. Ca-
nadian Human-Computer Communications Soci-
ety.

11. Hutchings, D. and Stasko, J. An Interview-based
Study of Display Space Management. GVU Tech-
nical Report GIT-GVU-03-17, May 2003.

12. Hutchings, D. and Stasko, J. Shrinking Window
Operations for Expanding Display Space. Proceed-
ings of Advanced Visual Interfaces 2004, pp. 350-
353. ACM Press.

13. Hutchings, D. and Stasko, J. mudibo: Multiple
Dialog Boxes for Multiple Monitors. To appear in
CHI 2005 Extended Abstracts. ACM Press.

14. P. Kabbash, W. Buxton & A. Sellen. Two-Handed
Input in a Compound Task. Proceedings of CHI
'94, 417-423.

15. Kantorowitz, E. and Sudarsky, O. The Adaptable
User Interface. Communication of the ACM,
32(11), pp. 1352-1358, November 1989. ACM
Press.

16. Kühme, T. A User-Centered Approach to Adap-
tive Interfaces. Proceedings of the 1993 Interna-
tional Workshop on Intelligent User Interfaces, pp.
243-245.

17. McGrenere, J., Baecker, R.M. and Booth, K.S. An
evaluation of a multiple interface design solution
for bloated software. Proceedings of CHI 2002,
pp. 163-170. ACM Press.

18. N. Roussel. Ametista: a mini-toolkit for exploring
new window management techniques. In Proceed-
ings of CLIHC 2003, pages 117 124. ACM Press,
August 2003.

19. Tan D.S., Meyers B. and Czerwinski M. WinCuts:
Manipulating Arbitrary Window Regions for More
Effective Use of Screen Space. CHI 2004 Ex-
tended Abstracts, pp. 1525-1528. ACM Press.

20. Tanin E., Beigel R. and Shneiderman B. Incre-
mental data structures and algorithms for dynamic
query interfaces. SIGMOD Rec. 25 (4), pp. 21-24,
1996.

