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Résumé

La complémentation locale d’un graphe simple G = (V, E) au sommet u ∈ V inverse
la relation d’adjacence de G sur l’ensemble des voisins de u. Étant donné un ensem-
ble fini V , la complémentation locale induit une action de groupe sur l’ensemble des
graphes simples ayant V comme ensemble de sommets. Chaque orbite induite par cette
action est appelée une orbite de Kotzig. Les membres d’une orbite de Kotzig donnée
peuvent être représentés par des suites finies de complémentations locales, une par classe
d’équivalence obtenue en quotientant par le stabilisateur de G, soit le sous-groupe de
complémentation qui fixe G. Puisque le stabilisateur d’un graphe dépend de l’ensemble
des arêtes, afin d’en obtenir une bonne description ainsi qu’une bonne description des
classes d’équivalence qu’il induit, nous introduisons le concept de règle de substitution.
Certaines règles de substitution ne dépendent de la relation d’adjacence que localement,
sur un sous-ensemble de V , elles sont qualifiées de locales. Les règles de substitution
locales sont caractérisées dans cette article. La complémentation locale de graphes ayant
une 2-coloration de leurs sommets est définie et étudiée d’une manière analogue et nous
appellerons leurs orbites de complémentation orbites de Sabidussi. Comme application,
nous montrons comment le polynôme d’entrelacement de Arratia, Bollobás et Sorkin est
un invariant des orbites de Sabidussi. Nous démontrons également de quelle façon les
orbites de complémentation sont liées à plusieurs constructions combinatoires de Bouchet
telles que les systèmes isotropes, les delta-matröıdes et les multimatröıdes.

Abstract

Local complementation of a simple graph G = (V, E) at a vertex u ∈ V reverses the
adjacency relation of G over the set of neighbors of u. Given a finite set V , local comple-
mentation induces a group action on the set of simple graphs defined on a finite vertex set
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V . Each resulting orbit of graphs is called a Kotzig orbit. For a given graph G, the mem-
bers of its Kotzig orbit can be represented by finite sequences of local complementations,
one from each coset of its complementation stabilizer, by which we mean the complemen-
tation subgroup that fixes G. The complementation stabilizer of a graph depends on its
edge set, so in order to obtain a good description of it and of its cosets, we introduce
the notion of substitution rules. Some rules depend only on the adjacency relation over
a subset of V , they are said to be local. Local substitution rules are characterized in
this paper. The local complementation of graphs with a vertex 2-coloring is defined and
explored in an analogous manner and their complementation orbits are called Sabidussi
orbits. As an application, we note that the vertex-nullity interlace polynomial of Arratia,
Bollobás and Sorkin is an invariant of Sabidussi orbits. We also demonstrate how com-
plementation orbits are related to several combinatorial constructions of Bouchet such as
isotropic systems, delta-matroids and multimatroids.

1 Introduction

After giving in this section the basic definitions and properties of the local complementa-
tion of simple uncolored and bicolored graphs, we introduce Kotzig orbits and Sabidussi
orbits in Sections 2 and 3, respectively. Minors of Kotzig orbits and Sabidussi orbits are
defined in Section 4 and the relationship between Sabidussi orbits and other combinatorial
objects is discussed in Section 5. In Section 6, we make some remarks about Sabidussi
orbits and the vertex-nullity interlace polynomial of Arratia et al.

1.1 Motivation

The local complementation of simple graphs was introduced by Kotzig in relation to the
κ-transformation of the eulerian trails of 4-regular graphs (as mentioned in [8, 15]). It
was investigated, amongst others, by Bouchet [7], Fon-der-Flaass [13, 14], Kotzig [17] and
Sabidussi [19]. Local complementation is intimately related to the theory of isotropic
systems developed by Bouchet [7]. Sabidussi established the basis of local complementa-
tion applied to bicolored graphs (defined in subsection 1.2) in relation to his work on his
Compatibility Conjecture [19]. In that context, the 2-coloring corresponds to the parity
of the degrees (even is white, odd is black). The author generalized Sabidussi’s local
complementation to arbitrary 2-colorings in his thesis [16] and many results appearing in
this article are taken from there with the difference that the point of view of group theory
adopted here is new and, hopefully, helps to clarify the concepts involved.

Recent work shows a renewed interest in local complementation. For example, Arratia
et al. [3], motivated by a problem relating to DNA sequencing, rediscovered the Martin
polynomial and generalized it to what they call looped graphs, which are essentially bi-
colored graphs where the 2-coloring is encoded by the presence or absence of a loop. In
so doing, they defined the interlace polynomial, also called the vertex-nullity polynomial,
which is shown to be identical to the Tutte-Martin polynomial of Bouchet in Section 6.
In work related to the rank-width of a graph, Oum [18] revisits the work of Bouchet on
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the i-minors of graphs. In a forthcoming paper, Cada et al. [12] extend Bouchet’s result
on the reduction of prime uncolored graphs [5] to prime bicolored graphs using results
presented here.

One of the main results of this paper is the characterization of local substitution rules
(see definitions 2.4 and 2.5), which allows us to find good sequences of vertices to represent
the members of the Kotzig orbit of a graph. In the case of bicolored graphs, we are
even able to represent the members of a Sabidussi orbit by subsets of the vertex set, a
surprising and esthetically pleasing result. More can be found in the thesis [16], such as a
how Sabidussi orbits are related to Sabidussi’s Compatibility Conjecture and to the Cycle
Double Cover Conjecture, but the results presented here are self-contained and interesting
by themselves.

The aims of this paper are to present the fundamental theorems of the theory of local
complementation and to give examples of how it is related to other subjects of interest. In
particular, we bring attention to the fact that the vertex-nullity polynomial of Arratia et
al. is an invariant of Sabidussi orbits and that Sabidussi orbits are therefore the natural
objects on which to define this polynomial.

1.2 Basic definitions

Any terminology about graphs not defined here is found in Bondy and Murty [4]. Local
complementation operations modify graphs but leave their vertex sets unchanged. There-
fore, it is natural to consider their action on sets of graphs sharing a common vertex
set. In this paper, given a finite set V , a graph G = (V, E) has the vertex set V and an
edge set E of unordered pairs of distinct vertices. The edge set E determines a unique
irreflexive symmetric relation on V that is called the adjacency relation of G. Edges are
commonly written as comma-separated vertices inside brackets, i.e. [u, v]. A bicolored
graph G = (V, E, c) is the graph (V, E) with a 2-coloring c : V 7→ {0, 1} of its vertices.
In figures, vertices of color 0 are drawn as empty (white) circles and vertices of color 1
are drawn as solid (black) circles (see Figure 2). The colors are referred to as white and
black, respectively. When the vertex set V is fixed, as will be the case in our study of
local complementation, a graph is completely determined by its edge set and there will
be no ambiguity when we refer to a graph G = (V, E) as the graph E. For A, B ⊂ V ,
A × B = {[u, v]|u 6= v, u ∈ A, v ∈ B} and A2 = A × A (the complete graph on A). Given
A, B ⊂ V or A, B ⊂ E,

A + B = (A\B) ∪ (B\A) (the symmetric difference).

If A or B is a singleton, we omit the braces, i.e. A + u = A + {u} and E + [u, v] = E +
{[u, v]}. Recall that the symmetric difference operation is associative and commutative.
Some simple observations:

B × A = A × B = (A ∩ B)2 + (A\B) × (B\A)

and A × (B + C) = A × B + A × C.
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For a given G = (V, E), the neighborhood of u ∈ V is N(u) = NG(u) = {v ∈ V |[u, v] ∈ E}
and the degree of u is dG(u) = |NG(u)|.

Definition 1.1. Given G = (V, E) and u ∈ V , the local complement at u of G = (V, E)
is the graph

Gu = (V, E + N(u)2).

PSfrag replacements

uu

N(u)N(u)

Figure 1: A complementation at u.

Note how the neighborhood of v is changed by a complementation at u:

NGu(v) = NG(v) +

{

NG(u) + v if [u, v] ∈ E

∅ otherwise.

From the definition, we see that each vertex determines a local complementation op-
eration. This extends naturally to sequences of vertices, and each sequence will determine
a complementation operation.

Definition 1.2. Let s ∈ V + = {u1u2...ur|ui ∈ V, r ≥ 1}. The complement of G = (V, E)
with respect to s is the graph

Gs = Gu1u2...ur = (...((Gu1)u2)...)ur.

Sequences of the form uvu ∈ V + play an important role in local complementation and
a special notation is reserved for them : we write [uv] for uvu.

For a bicolored graph G = (V, E, c), local complementation operations are not defined
in terms of vertices, but instead depend on the choice of an unordered pair of vertices,
not necessarily distinct. For ease of notation, when working with bicolored graphs, a
complementation with respect to u will mean a complementation with respect to the pair
{u, u} and a complementation with respect to [uv] will mean a complementation with
respect to the pair {u, v}. Although the notation is similar to the uncolored case, the
meaning will be clear from the context and the similarity will prove to be natural and
useful.
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Definition 1.3. Given a bicolored graph G = (V, E, c) and u, v ∈ V , we denote the local
complement of G with respect to {u, v} by G[uv] and when u = v we also use the notation
Gu. Let

A = N(u)\N(v) + v, B = N(u) ∩ N(v), C = N(v)\N(u) + u.

G[uv] = G(V, E ′, c′) is defined in the following way :

• If u = v is white, then

E ′ = E + N(u)2 and c′(w) =

{

1 − c(w) if w ∈ N(u)

c(w) otherwise.

• If u 6= v are black and [u, v] ∈ E, then

E ′ = E + {u, v} × (A ∪ C) + A × B + B × C + A × C and c′ = c.

• In all remaining cases,
G[uv] = G.

The non-trivial local complementations are illustrated in Figure 2 and Figure 3. A
dotted line between two sets of vertices indicates that edges between the sets have been
“toggled” in the sense that the existing edges were removed and the missing edges were
added.

PSfrag replacements
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N(u)N(u)

Figure 2: A complementation at white u = v.

Definition 1.4. Let s = p1...pr be a finite sequence of unordered pairs of vertices. The
complement of G = (V, E, c) with respect to s is the bicolored graph

Gs = Gp1...pr = (...(Gp1)...)pr.

Definition 1.5. V (s) is the set of vertices appearing in the word s (the support of s) as
elements of the sequence (uncolored case) or as elements of the pairs (bicolored case).

For example, in the uncolored case, for s = [uv]w = uvuw, V (s) = {u, v, w} and in
the bicolored case, for s = u[vw] = {u, u}{v, w}, V (s) = {u, v, w}.
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Figure 3: A complementation at adjacent black u, v.

1.3 Fundamental properties

For an uncolored graph G = (V, E), aside from the trivial statements

Guu = G (1)

[u, v] /∈ E ⇒ Guv = Gvu, (2)

it is a known fact that if [u, v] ∈ E then Guvu = Gvuv. This is seen from the symmetry
of Lemma 1.6. Therefore we have

[u, v] ∈ E ⇒ G[uv] = G[vu] (3)

and this result suggests that local complementation operations can be defined for edges.
Indeed, this has been done and, up to a relabeling of the vertices u, v, they are called
pivot or switching operations in the literature. We refrain from that here and reserve for
bicolored graphs the notion of complementation with respect to pairs of vertices.

The following lemma, which is the usual way to prove (3) (note the symmetry in u
and v), establishes the relationship between the local complementation of uncolored and
bicolored graphs.

Lemma 1.6. In a graph G = (V, E), let [u, v] ∈ E, A = N(u)\N(v)+v, B = N(u)∩N(v),
C = N(v)\N(u) + u, so that N(u) = A + B + v and N(v) = B + C + u. Then

Guvu = G + {u, v} × (A ∪ C) + A × B + B × C + A × C.

Proof.

Gu + G = (A + B + v)2 = A2 + B2 + A × B + (A + B) × v (4)

Guv + Gu = NGu(v)2 = (A + C + u)2

= A2 + C2 + A × C + (A + C) × u (5)

Guvu + Guv = NGuv(u)2 = (B + C + v)2

= B2 + C2 + B × C + (B + C) × v (6)

Adding (4)+(5)+(6), we get

Guvu + G = A × B + B × C + A × C + (A + C) × u + (A + C) × v.
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This lemma explains why a complementation at a pair of adjacent black vertices {u, v}
can be interpreted as the complementation of the underlying uncolored graph with respect
to the sequence uvu or vuv. With this in mind, (1), (2) and (3) also hold in the context
of bicolored graphs.

Another fundamental property of the local complementation of uncolored graphs is
the following.

(uncolored) [u, v], [u, w] ∈ E, v 6= w ⇒ G[uv][wv] = G[wu] (7)

This was shown by Arratia et al. in their work on the interlace polynomial [2] and a
nice algebraic proof of this result is given by Oum [18]. The author proved independently
the following equivalent statement in [16].

(uncolored) [u, v], [v, w], [u, w] ∈ E ⇒ G[uv][vw][wu] = G (8)

Equivalence follows from the fact that if [v, w] /∈ E then (8) can be applied in Gu so
that

G = Guu = (Gu)[uv][vw][wu]u = Guuvuvwvwuwu = G[vu][wv][uw].

Another useful equivalent formulation of (7) is the following.

(uncolored) [u, v], [v, w] ∈ E, u 6= w ⇒ Guvw = G[vw]u (9)

In the case of bicolored graphs, we have the following corresponding properties.

u, v, w black, [u, v], [u, w],∈ E, v 6= w ⇒ G[uv][vw][wu] = G (10)

u white, v, w black, [u, v], [v, w] ∈ E, u 6= w ⇒ Guvw = G[vw]u (11)

Proof of (10) and (11). From (7) and (9), the underlying uncolored graphs are equal
and there remains only to check that the colorings are equal in (11). Let C(s) be the
set of vertices with different colors in G and Gs. We have that C(u) = N(u), NGu(v) =
N(v) + N(u) + v, C(uv) = C(u) + NGu(v) = N(v) + v.

If [u, w] ∈ E,
NGuv(w) = NGu(w) = N(w) + N(u) + w,

C(uvw) = C(uv) + NGuv(w) = N(u) + N(v) + N(w) + v + w,

C([vw]u) = NG[vw](u) = N(u) + N(v)\N(w) + w + N(w)\N(v) + v

= N(u) + N(v) + N(w) + v + w.

If [u, w] /∈ E,

NGuv(w) = NG(w) + NGu(v) + w = N(u) + N(v) + N(w) + v + w,

C(uvw) = C(uv) + NGuv(w) = N(u) + N(w) + w,

C([vw]u) = NG[vw](u) = N(u) + N(w) + w.

In all cases C(uvw) = C([vw]u).
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2 Kotzig orbits

In this section, all graphs considered are uncolored.

2.1 Kotzig orbits and graph stabilizers

Consider the set of words V ∗ = V +∪{ε} of all finite sequences of elements of V including
the empty word ε. Letting uu = ε for each u ∈ V , the set V ∗ can be considered as a group
with concatenation as the group operation: the unit of the group is ε and the inverse s−1

of a word s = u1...ur is s−1 = ur...u1. Let GV be the set of all graphs with vertex set
V . By the definition of local complementation and because of (1), it is natural to view
complementation with respect to words as the group action of V ∗ on GV .

Definition 2.1. The Kotzig orbit of a graph G = (V, E) is the set

GV ∗ = {Gs|s ∈ V ∗} ⊂ GV .

An important problem in the subject of local complementation is to determine when
two graphs of GV can be obtained from one another by a sequence of local complementa-
tions or, using our terminology, when two graphs belong to the same Kotzig orbit. This
can be done in polynomial time, as was proved by Bouchet [10]. A generalized proof for
directed graphs is given by Fon-der-Flaass [13].

Another important problem is to find good elements of V ∗ to represent the members of
the Kotzig orbit of a given graph. Obviously, we would favor short words over arbitrarily
long ones and we would like these words to be “efficient” in some sense. Intuitively, we
would like to avoid having any vertex appearing more times than necessary. This is the
motivation for the study of the stabilizer of a graph and the introduction of substitution
rules in the next subsection.

Definition 2.2. The stabilizer of G = (V, E) is the subgroup of V ∗

ΓG = {s ∈ V ∗|Gs = G}.

An important point is that, except in the most trivial cases, ΓG is not a normal
subgroup of V ∗ because it depends on the adjacency relation of G. Therefore the cosets
V ∗/ΓG do not form a group.

Definition 2.3. Given the graph G = (V, E), we define an equivalence relation ∼G on
V ∗ by s ∼G s′ if and only if Gs = Gs′.

With this definition, ΓG = {s ∈ V ∗|s ∼G ε}.

2.2 Substitution rules

It is obvious that given u, v, w ∈ V , we can deduce from (1) that the words uu, uvvu,
uvwuuvvwvu are all in ΓG. Just this one property ensures that ΓG contains an infinity
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of words and we have not yet taken into account properties (2), (3), (7). To get a good
description of the cosets of ΓG, we need to describe ΓG itself and this is made possible by
the concept of substitution rules. The main result of this section is Theorem 2.13, which
says that to know the cosets of ΓG and to obtain a good description of the Kotzig orbit,
it suffices to look at the words of V ∗ that are reduced with respect to G (Definition 2.10)
and those reduced words are nicely related to one another by Proposition 2.15.

Definition 2.4. Let G = (V, E) be a graph variable and let s be a word on a set of vertex
variables over V . Let P be a logical formula dependent on G (a property of G). The
couple R : (P, s) is a substitution rule if

P (G) ⇒ s ∼G ε.

Such a rule will often be written R : P ⇒ s ∼G ε. Unless otherwise specified, we
assume rules to be non-trivial, i.e. at least one graph G satisfies P .

Given a substitution rule R : P ⇒ s ∼G ε, some fixed graph G and words s1 = s′ss′′

and s2 = s′s′′ such that P (Gs′) is true, we deduce that s1 ∼G s2. To emphasize that R

was used, we write s1
R
∼G s2. The following substitution rules are easily deduced from

(1), (2), (3) and (7).

uu ∼G ε, (R1)

u 6= v and [u, v] /∈ E(G) ⇒ uvuv ∼G ε, (R2)

[u, v] ∈ E ⇒ [uv][vu] ∼G ε, (R3)

v 6= w, [u, v], [u, w] ∈ E ⇒ [uv][wv][wu] ∼G ε, (R4)

The following two rules are fundamentally different from the previous ones, can you
see in what way?

d(u) ≤ 1 ⇒ u ∼G ε, (R5)

N(u) = N(v) ⇒ uv ∼G ε. (R6)

In the first rules, the adjacency relation is considered only on a subset of vertices.
In the last two, say R5 for example, to ensure that d(u) ≤ 1, we have to look at the
relationship of u with every vertex of the graph.

Definition 2.5. A substitution rule P ⇒ s ∼G ε is local if for any two graphs G and H
such that G is an induced subgraph of H,

P (G) ⇒ s ∼H ε.

A non-local rule is global.

Thus R1 to R4 are local rules and R5 and R6 are global rules.
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Definition 2.6. Given a word s ∈ V ∗ and a set of substitution rules R, RG(s) is the
set of words which can be deduced to be equivalent to s using the rules in R, i.e., s′ ∈
RG(s) ⇐⇒ ∃R1, ..., Rn ∈ R and s0, ..., sn ∈ V ∗, n ≥ 0, such that s0 = s, sn = s′, and

si

Ri+1

∼ G si+1, i = 0, ..., n − 1.

Definition 2.7. LocG(s) = {R1, R2, R3, R4}G(s). We write s
loc
∼G t if s ∈ LocG(t).

Definition 2.8. Let R be a set of substitution rules. The set of substitution rules
generated by R, written 〈R〉, is the set of rules (P, s) such that for every graph G satisfying
P , we have s ∈ RG(ε). R is independent if no proper subset of R generates 〈R〉.

From the definition of local substitution rules follows that:

Proposition 2.9. Local rules generate local rules.

Definition 2.10. A word s ∈ V ∗ is reduced with respect to G = (V, E) if it can be
written s = s1...sr, where no letter appears in different si’s and each si either consists of
a single vertex or can be expressed as si = [uv], where [u, v] ∈ E(Gs1...si−1).

Proposition 2.11. A substitution rule P ⇒ s ∼G ε where s is a non-empty reduced word
is global.

Proof. Let G = (V, E) be a graph satisfying P . Let u, v /∈ V . If s ends with a single
occurrence letter w, let E ′ = E ∪ {[u, w], [v, w]}. If not, we have s = s′wxw with w, x /∈
V (s′), in which case let E ′ = E∪{[u, w], [v, x]}. By construction, G is an induced subgraph
of H = (V ∪ {u, v}, E ′) but [u, v] /∈ H while [u, v] ∈ Hs. Thus Hs 6= H.

Lemma 2.12. Given G = (V, E) and u0, v, w ∈ V subject to the condition that u0, v, w
be distinct for (12e) to (12g), the following hold.

u0u0
loc
∼G ε (12a)

[v, u0] /∈ E ⇒ uu0
loc
∼G u0u (12b)

vvu0
loc
∼G u0 (12c)

[v, u0] ∈ E ⇒ u0vu0
loc
∼G vu0v (12d)

[v, w], [v, u0] /∈ E ⇒ vwu0
loc
∼G wu0v (12e)

[w, u0], [v, w] ∈ E ⇒ vwu0
loc
∼G wu0wv (12f)

[v, u0] ∈ E, [v, w] ∈ E(Gu0) ⇒ vwu0
loc
∼G u0vwv (12g)

Proof. We prove (12e) to (12g), the other statements are straightforward.

(12e) Since [v, u0] /∈ E(Gw), we have, by (12c), that vw
loc
∼G wv and vu0

loc
∼Gw u0v, so that

vwu0
loc
∼G wu0v.

(12f) vwu0
R4
∼G [wu0][vu0][vw]vwu0

R1
∼G wu0wv.

(12g) vwu0
R1
∼G u0u0vwu0 and, since [v, w], [u0, v] ∈ E(Gu0), we have, by (12f), that

u0vw
loc
∼Gu0

vwvu0 and thus vwu0
loc
∼G u0(vwvu0)u0

loc
∼G u0vwv.
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Theorem 2.13. Given G = (V, E), s ∈ V ∗ and u ∈ V , there exists a reduced s′
loc
∼G s

such that V (s′) ⊂ V (s), and u appears in position 1 or 2 of s′, if at all.

Proof. By way of contradiction, suppose that G, u and s constitute a counter-example
with λ(s) := |V (s)| minimal. Clearly s is non-empty. Choose u0 ∈ V (s), with the
restriction that u0 = u if u ∈ V (s). Writing ρ(v, t) for the position of the last occurrence
of v in t, we can suppose without loss of generality that r := ρ(u0, s) ≤ ρ(u0, s

′) for

all s′
loc
∼G s such that V (s′) ⊂ V (s). Suppose that r > 2 and consider the subwords

of s of length 2 and 3 ending with the last occurrence of u0. For all possible edge sets
just prior to complementation to the subword considered, Lemma 2.12 ensures that we

can find a word s′
loc
∼G with V (s′) = V (s) and ρ(u0, s

′) < r, a contradiction. Therefore
we must have r ≤ 2. By the minimality of λ(s), s cannot have the prefix u0u0 (if
s = u0u0s

′′ then s ∼G s′′ with λ(s′′) < λ(s)). If s = u0s
′′, then by the minimality of

λ(s) we know that s′′ can be replaced by a word reduced with respect to Gu0 and not
containing u0, resulting in a reduced word equivalent to s, a contradiction. Thus s is
of the form s = vu0s

′′ with [v, u0] ∈ E(G) and u0 /∈ V (s′′). Now consider the graph

H = Gvu0. We can find a reduced word t
loc
∼H s′′ with V (t) ⊂ V (s′′) and v /∈ V (t) or

v in position 1 or 2. However, v cannot be absent from t or else s
loc
∼G vu0t, a reduced

word. If t = vt′ then s
loc
∼G [vu0]t

′, a reduced word. The only remaining possibility is

t = wvt′ with [v, w] ∈ E(H) (if [v, w] /∈ E(H), then t
loc
∼H vwt′ for which we can apply

the preceding argument). Knowing that [v, u0] ∈ E(G) and [v, w] ∈ E(Gvu0), we must

have [w, u0] ∈ E(G). From (12f), we have that s
loc
∼G vu0wvt′

loc
∼G (u0wu0v)vt′

loc
∼G [wu0]t

′.
If w /∈ V (t′), then [wu0]t

′ is reduced with respect to G. If w ∈ V (t′) then, since t is

reduced with respect to H, t is of the form t = wvwt′′ and s
loc
∼G wu0t

′′, which is reduced.
Therefore no counter-example exists.

Proposition 2.14. The rules

uu ∼G ε, (R1)

u 6= v and [u, v] /∈ E(G) ⇒ uvuv ∼G ε, (R2)

[u, v] ∈ E ⇒ [uv][vu] ∼G ε, (R3)

v 6= w, [u, v], [u, w] ∈ E ⇒ [uv][wv][wu] ∼G ε, (R4)

form an independent generating set of the local rules.

Proof. We first show independence. Consider G = ({u, v}, {[u, v]}). Since GV ∗ = {G},
{R1,R2,R4}G(ε) = {R1}G(ε) and any word in {R1}G(ε) will contain an even number of
occurrences of the letter u. Thus any independent generating subset of the four rules
must contain R3.

Now let G = ({u, v, w}, {[u, v], [u, w], [v, w]}). Any word in {R1,R2,R3}G(ε) has
an even number of letters, so that R4 is also essential. If we let G = ({u}, ∅), then
{R2,R3,R4}G(ε) = {ε}, thus R1 is essential. Finally, let G = ({u, v}, ∅). Defining the
total order u < v on V (G), let the sign of a word s = u1u2...un in V ∗ be σ(s) = (−1)α
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where α = card{(i, j)|ui < uj, 1 ≤ i < j ≤ n}. By induction on the length of words,
we can show that for any s ∈ {R1,R3,R4}G(ε) = {R1}G(ε), we have σ(s) = 1. Since
σ(uvuv) = −1, this completes the proof of independence.

We know from Proposition 2.9 that 〈{R1,R2,R3,R4}〉 is a set of local rules. Let
P ⇒ s ∼G ε be a local rule. Consider V = V (s) and {Gi}i∈I the family of graphs on the
vertex set V satisfying P . By Theorem 2.13, for any rule Ri : G|V = Gi ⇒ s ∼G ε there
exists a rule R′

i : G|V = Gi ⇒ s′ ∼G ε in 〈{Ri,R1,R2,R3,R4}〉 where s′ is reduced. Since
R′

i is local, Proposition 2.11 forces s′ = ε. Thus R′
i ∈ 〈{R1,R2,R3,R4}〉, and since every

substitution in the proof of Theorem 2.13 is reversible, we have Ri ∈ 〈{R1,R2,R3,R4}〉.
Since P ⇒ s ∼G ε is generated by the Ri’s, we conclude that it is in 〈{R1,R2,R3,R4}〉.

Proposition 2.15. If s, s′ are reduced words such that s′
loc
∼G s, then V (s) = V (s′).

Proof. Suppose, by way of contradiction, that there is a u ∈ V (s)\V (s′). Then s′s−1 ∼G ε

and a reduced word t
loc
∼G s′s−1 given by Theorem 2.13 will contain u. But this would mean

that local rules generate a global rule of the form P ⇒ t ∼G ε, contradicting Proposition
2.9.

3 Sabidussi orbits

In this section, all graphs are bicolored.

3.1 Definitions

Let Vp be the set of unordered pairs of vertices of V with repetitions allowed. Then,
similar to the uncolored case, local complementation can be seen as the group action of
V ∗

p on BV , the set of all bicolored graphs with vertex set V .

Definition 3.1. The Sabidussi orbit of a bicolored graph G = (V, E, c) is the set

GV ∗
p = {Gs|s ∈ V ∗

p } ⊂ BV .

Definition 3.2. The stabilizer of G = (V, E, c) is the subgroup of V ∗
p

ΓG = {s ∈ V ∗
p |Gs = G}.

Definition 3.3. Given G = (V, E, c), we define an equivalence relation ∼G on V ∗
p by

s ∼G s′ if and only if Gs = Gs′.

With this definition, ΓG = {s ∈ V ∗
p |s ∼G ε}.
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3.2 Complementation sets

We want to obtain for Sabidussi orbits the concept equivalent to the reduced words
that we found for Kotzig orbits. In the discussion following Lemma 1.6, we point out
the connection between the local complementation of uncolored graphs and the local
complementation of bicolored graphs, namely that to each local complementation of a
bicolored graph there corresponds, for the underlying uncolored graph, a complementation
with respect to a word of the form ε, u or uvu. With this correspondence in mind,
the concepts and proofs in this section, although technically different from those of the
preceding section, follow the same ideas.

Definition 3.4. A word s ∈ V ∗
p is reduced with respect to G if s = p1...pr, where no

vertex appears in different pi’s and each pi is of the form pi = u where u is white in
Gp1...pi−1 or pi = [uv], where u, v are adjacent black vertices in Gp1...pi−1.

Substitution rules and local rules are defined just as in the uncolored case. The
following are local substitution rules. Rules T1 and T2 reflect the fact that, by definition,
some local complementations do not change the graph.

u black ⇒ u ∼G ε (T1)

u 6= v not adjacent black vertices ⇒ [uv] ∼G ε (T2)

[uv][uv] ∼G ε, (C1)

[u, w], [u, x], [v, w], [v, x] /∈ E(G) ⇒ [uv][wx][uv][wx] ∼G ε, (C2)

u, v, w black, [u, v], [u, w],∈ E, v 6= w ⇒ [uv][vw][uw] ∼G ε (C3)

u white, v, w black, [u, v], [v, w] ∈ E, u 6= w ⇒ uvwu[vw] ∼G ε (C4)

Definition 3.5. LocG(s) = {T1, T2, C1, C2, C3, C4}G(s). We write s
loc
∼G t if s ∈

LocG(t).

Lemma 3.6. Let G = (V, E, c) and consider p1p2 ∈ V ∗
p such that, in the appropriate graph

(G when considering p1, Gp1 when considering p2), pi is either of the form pi = u = [uu]
where u is white or pi = [uv] where u, v are adjacent black vertices. Subject to the condition
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that u0, u, v, w be distinct in (13c) to (13i), the following hold.

[uu0][uu0]
loc
∼G ε (includes the case u0u0

loc
∼G ε) (13a)

[u, w], [u, u0], [v, w], [v, u0] /∈ E ⇒ [uv][wu0]
loc
∼G [wu0][uv] (13b)

[u0, v], [v, w] ∈ E ⇒ [vw]u0
loc
∼G u0vw (13c)

[u, u0] ∈ E and either [u, v] or [vu0] ∈ E ⇒ u[vu0]
loc
∼G u0vu (13d)

[u, u0] /∈ E, [u, v] ∈ E ⇒ u[vu0]
loc
∼G vu0u (13e)

[vu0][wu0]
loc
∼G [vw] (13f)

[vw][vu0]
loc
∼G [wu0] (13g)

[u, u0] ∈ E ⇒ [uv][wu0]
loc
∼G [uu0][vw] (13h)

[u, u0], [v, u0] /∈ E, [u, w] ∈ E ⇒ [uv][wu0]
loc
∼G [wu0][uv] (13i)

Proof. We prove (13d) to (13i).

(13d) u[vu0]
C4
∼G u(uu0vu[vu0])[vu0]

C1
∼G u0vu.

(13e) u[vu0]
C4
∼G u(uvu0u[vu0])[vu0]

C1
∼G vu0u.

(13f) [vu0][wu0]
C3
∼G ([vw][wu0][vu0])[vu0][wu0]

C1
∼G [vw].

(13g) By (13f), [vw][vu0]
loc
∼G [wu0].

(13h) [uv][wu0]
C3
∼G [uu0][vu0][uv][uv][wu0]

C1
∼G [uu0][vu0][wu0]

C4
∼G [uu0]([vw][wu0][vu0])[vu0][wu0]

C1
∼G [uu0][vw].

(13i) By (13h), [uv][wu0]
loc
∼G [uw][vu0]

loc
∼G [wu0][uv].

Theorem 3.7. Given G = (V, E, c), s ∈ V ∗
p and u ∈ V , there exists a reduced s′

loc
∼G s

such that V (s′) ⊂ V (s) and such that, if u ∈ V (s′), then s′ is of the form us′′, vus′′ or
[vu]s′′.

Proof. By way of contradiction, suppose that G, u, and s = p1...pk constitute a counter-
example with λ(s) := |V (s)| minimal. Clearly s is non-empty. Choose u0 ∈ V (s), with
the restriction that u0 = u if u ∈ V (s). Writing ρ(v, t) for the index of the last pair of t
containing v, we can suppose without loss of generality that r := ρ(u0, s) ≤ ρ(u0, s

′) for

all s′
loc
∼G s such that V (s′) ⊂ V (s). By T1 and T2, this ensures that, for 1 ≤ i ≤ r, if

pi is of the form pi = u then u is white in Gu1...ui−1 and if pi is of the form pi = [vw]
with v 6= w then v and w are adjacent black vertices in Gu1...ui−1. We can also choose

s so that if there exists s′ = p′1...p
′
l

loc
∼G s satisfying V (s′) = V (s), ρ(u0, s

′) = r and such
that p′r = u0 then pr = u0. Suppose that ρ(u0, s) ≥ 2. Consider the subwords of s of
length 2 ending with the last pair containing u0. For all possible edge sets just prior to
complementation to the subword considered, Lemma 3.6 ensures that we can find a word

s′
loc
∼G with V (s′) = V (s) and ρ(u0, s

′) < r, a contradiction. Therefore, s must be of the
form s = u0s

′, s = vu0s
′ or s = [vu0]s

′. In each case, by the minimality of λ(s), we can
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suppose that s′ is reduced (with respect to Gu0, Gvu0 and G[vu0], respectively) with s′

of the form s′ = vt or s′ = wvt or s′ = [wv]t or v /∈ V (s′). If s = u0s
′, then s is also

reduced, a contradiction. If v /∈ V (s′), we obtain the same contradiction. If s = vu0s
′ with

[vu0] /∈ E, then, by (13b), s
loc
∼G u0vs′, a prior case. Therefore, we have [v, u0] ∈ E. If v

is white in G, using Lemma 3.6, s = vu0[wv]t
loc
∼G v(vwu0)t

C1
∼G wu0t, a contradiction. If

v is black in G, s = [vu0][wv]t
loc
∼G [wu0]t, a contradiction. Therefore no counter-example

exists.

Theorem 3.8. If s and t are reduced with respect to a bicolored graph G, then s
loc
∼G t.

Proof. Use induction on λ(s) := |V (s)|. If s = us′, then u is white in G, and applying

Theorem 3.7 to t, t
loc
∼G ut′. If s is of the form [uv]s′ then u is black in G, and applying

Theorem 3.7 to t, t
loc
∼G [uw]t′. If w 6= v, apply Theorem 3.7 again to get t

loc
∼G [uw][vx]t′′

and finally, from (13h) in Lemma 3.6, t ∼G [uv][wx]t′′. By changing the reference graph
to Gu or G[uv] accordingly, the problem reduces to words for which λ is smaller.

Given a bicolored graph G, we are now justified to speak about complementation with
respect to subsets of V .

Definition 3.9. A set S ⊂ V is a complementation set of a bicolored graph G = (V, E, c)
if there exists a reduced word s ∈ V ∗

p such that V (s) = S. In that case, the complement
of G with respect to S is GS := Gs.

The proofs of the two following propositions are similar to the uncolored case and are
omitted.

Proposition 3.10. The rules

u black ⇒ u ∼G ε (T1)

u 6= v not adjacent black vertices ⇒ [uv] ∼G ε (T2)

[uv][uv] ∼G ε, (C1)

[u, w], [u, x], [v, w], [v, x] /∈ E(G) ⇒ [uv][wx][uv][wx] ∼G ε, (C2)

u, v, w black, [u, v], [u, w],∈ E, v 6= w ⇒ [uv][vw][uw] ∼G ε (C3)

u white, v, w black, [u, v], [v, w] ∈ E, u 6= w ⇒ uvwu[vw] ∼G ε (C4)

form an independent generating set of the local rules.

Proposition 3.11. If s, s′ are reduced words such that s′
loc
∼G s, then V (s) = V (s′).

Proposition 3.12. Let S, S ′ be complementation sets of G = (V, E, c) and let H = GS,
then

GS ′ = H(S + S ′).
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Proof. Let s ∈ V ∗
p be reduced with respect to H and let s′ ∈ V ∗

p be reduced with respect
to G with Hs = G and Gs′ = GS ′. We have GS ′ = Hss′ and by Theorem 3.7 there

exists a word t
loc
∼H ss′ reduced with respect to H. We first show that if u ∈ V (s)∩ V (s′)

then u /∈ V (t). By Theorem 3.7 applied to s′ and s−1 with respect to G, we can suppose
that if u is white in G then s = s1u and s′ = us2 and if u is black in G then s = s1[uv]

and s′ = [uw]s2 (with u, v, w black in G). Therefore we have either ss′
C1
∼H s1s2 or, by

(13f), ss′
loc
∼H s1[vw]s2 so there is a reduced t′

loc
∼H t with u /∈ V (t′). By Proposition 3.11,

u /∈ V (t). Now we let u ∈ V (s) + V (s′) and we show that u ∈ V (t). Without loss of
generality u ∈ V (s). If u is white in H, we can suppose that s = us1 and by Theorem 3.7,

there is t′
loc
∼Hu s1s

′ that is reduced with respect to Hu so that ut′ is reduced with respect
to H and by Proposition 3.11, u ∈ V (t). If u is black in H, we can suppose that s = [uv]s1

and then find some t′
loc
∼H[uv] s1s

′ reduced with respect to H[uv]. If v /∈ V (t′), [uv]t′ is
reduced with respect to H and u ∈ V (t). If v ∈ V (t′) we can suppose that t′ = [vw]t′′ and

thus, by (13f), s = [uv][vw]t′′
loc
∼H [uw]t′′ is reduced with respect to H and u ∈ V (t).

4 Minors

Bouchet introduced the i-minor of a graph in [5] as an analog to the concept of the minor
of a matroid. As his definition involves local complementation, i-minors are implicitly
defined for Kotzig orbits. In this section, we define explicitly the minors of Kotzig and
Sabidussi orbits and give some elementary properties of minors.

Given a complementation orbit O (either a Kotzig orbit or a Sabidussi orbit) and
V ′ ⊂ V , it is easy to see that the set {G − V ′|G ∈ O} is stable under the action of
complementation and is therefore a union of orbits.

Definition 4.1. Given a Kotzig orbit (respectively, Sabidussi orbit) O and S ⊂ V , the
Kotzig orbits (respectively, Sabidussi orbits) that partition {G−S|G ∈ O} are called the
S-minors of O. A {u}-minor (or u-minor) is also called an elementary minor of O at u.

4.1 Minors of Kotzig orbits

Bouchet proved the following using the properties of isotropic systems [7]. We give a
direct proof.

Theorem 4.2. For any u ∈ V , a Kotzig orbit O has at most three u-minors. Furthermore,
given G = (V, E) ∈ O, they are

O1 = {Gs − u|u /∈ V (s), s ∈ V ∗}, O2 = {Gus − u|u /∈ V (s), s ∈ V ∗}

and, if not empty,

O3 = {Gvus − u|[u, v] ∈ E, u /∈ V (s), s ∈ V ∗}.
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Proof. First note that, by Theorem 2.13, O1 ∪O2 ∪O3 = {G− u|G ∈ O}. For u /∈ V (s),
Gs − u = (G − u)s, so complementation acts transitively on O1 and O2. There remains
to show that complementation acts transitively on O3. Let [u, v], [u, w] ∈ E and consider
vus, wus′ ∈ V ∗ with u /∈ V (s) ∪ V (s′). Let H = Gvus so that Gwus′ = Hs−1uvwus′. If
v = w then Gwus′ = Hs−1s′. Otherwise we must have [u, v], [v, w] ∈ E(Hs−1) and, by
(12f), Gwus′ = Hs−1[vw]uus′ = Hs−1[vw]s′. Therefore Gwus′ − u is in the same Kotzig
orbit as H − u.

4.2 Minors of Sabidussi orbits

Theorem 4.3. For any u ∈ V , a Sabidussi orbit O has at most two u-minors. Further-
more, given G = (V, E) ∈ O, they are

O1 = {GS − u|u /∈ S and S is a complementation set of G}

and, if not empty,

O2 = {GS − u|u ∈ S and S is a complementation set of G}.

Proof. Given complementation sets S, S ′ of G such that GS, GS ′ belong to the same Oi,
we have, by Proposition 3.12, that GS ′ = (GS)(S + S ′) with u /∈ S + S ′. Therefore
GS ′ − u = (GS − u)(S + S ′) and complementation acts transitively on O1 and O2. Since
O = O1 ∪ O2, this completes the proof.

Corollary 4.4. Given S ⊂ V with |S| = k, the number of S − minors of a Sabidussi
orbit O is bounded by 2k.

Proof. The proof is a simple induction on k.

5 Complementation orbits and isotropic systems

This section presents the relationship between complementation orbits and several combi-
natorial structures introduced by Bouchet. Isotropic systems (Definition 5.1) are a gener-
alization of 4-regular graphs and binary matroids (see Bouchet [7]). Matroids and isotropic
systems are in turn generalized in [11] by multimatroids (Definition 5.7). Bouchet showed
in [7] that isotropic systems are essentially the same objects as Kotzig orbits. We show
that Sabidussi orbits can be considered as a subset of the 2-matroids (Definition 5.8).
From this relationship, we deduce in the next section that the interlace polynomial of
Arratia et al. is identical to the Tutte-Martin polynomial of Bouchet.

5.1 Isotropic systems

Let K = {0, α, β, γ} = Z2 × Z2 and define a product K × K 7→ GF (2) by xy = 1 if and
only if 0 6= x 6= y 6= 0. Given a set V of cardinality n, say, for simplicity, V = {1, ..., n},
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we consider the vector space KV of dimension 2n over the field GF (2) together with the
bilinear form 〈A, B〉 = 〈(a1, ..., an), (b1, ..., bn)〉 =

∑n

i=1 aibi. A subspace L of KV is said
to be totally isotropic if 〈A, B〉 = 0 for all A, B ∈ L.

Definition 5.1. A subspace L ⊂ KV is an isotropic system if it is totally isotropic and
of dimension n.

For X ⊂ V and A = (a1, ..., an) ∈ KV , denote by AX = (b1, ..., bn) the vector defined
by bi = ai if i ∈ X and bi = 0 if i /∈ X. Let Ai = A{i}. Let Â = {AX|X ⊂ V } and
let l(A) =dim(L ∩ Â). A vector A is complete if Ai 6= 0 for i = 1, ..., n. Two complete
vectors A, B are supplementary if Ai 6= Bi, for i = 1, ..., n. A complete vector A is an
eulerian vector of L if l(A) = 0. Note that l was originally called the rank function of
L but this is no longer desirable since Bouchet established the correspondence between
isotropic systems and 3-matroids. To avoid ambiguity, the rank function of an isotropic
system should coincide with the rank function of the corresponding 3-matroid, as defined
by Bouchet and seen in the next subsection.

Theorem 5.2 ([7], (4.1)). Given an isotropic system L ⊂ KV and a complete vector
B ∈ KV , there exists an eulerian vector of L that is supplementary to B.

Theorem 5.3 ([7], (4.3)(4.4)). Given an eulerian vector A = (a1, ...., an) of an isotropic
system L ⊂ KV , there exists a unique family B1, ..., Bn of vectors of L such that (Bi)i 6= 0,
for i = 1, ..., n, and (Bi)j ∈ {0, Aj}, for i 6= j. Furthermore, B1, ..., Bn form a basis of L,
0 6= (Bi)i 6= Ai, for i = 1, ..., n, and (Bi)j 6= 0 ⇐⇒ (Bj)i 6= 0, for i 6= j.

Consider the n×n matrix M whose rows B1, ..., Bn form the basis of L corresponding
to a given eulerian vector A. Let F = (V, E) be the graph with [u, v] ∈ E ⇐⇒ (Bu)v 6= 0,
for u 6= v. Let B be the complete vector whose entries are read from the main diagonal of
M , i.e. B = (B1)1 + ... + (Bn)n. It is easy to see that Bi = ANF (i) + Bi, for i = 1, ..., n.
Therefore L is completely determined by the triple (F, A, B), which is called a graphic
presentation of L. The converse is also true:

Theorem 5.4 ([7], (3.1)). Given a triple (F, A, B) where F is a graph on vertex set V
and A, B are supplementary vectors of KV , L = {ANF (X)+BX|X ⊂ V } is an isotropic
system.

Given an eulerian vector A = (a1, ..., an) of an isotropic system L and i ∈ V , it can be
shown that there is exactly one other eulerian vector which differs from A only in i. This
vector is denoted by A ∗ i and, given m = u1...ur ∈ V ∗, A ∗ m = (...(A ∗ u1)... ∗ ur).

Theorem 5.5 ([7], (7.1)). If A and B are two eulerian vectors of an isotropic system
L, then there exists a word m ∈ V ∗ such that B = A ∗ m.

Theorem 5.6 ([7], (7.6)). If P = (F, A, B) is a graphic presentation of an isotropic
system L, then for every vertex v ∈ V , the graphic presentation associated to the eulerian
vector A ∗ v is P ∗ v = (Fv, A + Bv, B + ANF (v)).
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The preceding theorems show that an isotropic system determines a unique Kotzig
orbit, that it has essentially the same structure as that orbit and that, conversely, up to
the choice of the supplementary vectors A and B, a Kotzig orbit determines a unique
isotropic system.

5.2 q-matroids

Consider a partition Ω of a finite set U . Each class ω ∈ Ω is called a skew class. Each pair
of distinct elements of a skew class is called a skew pair. A subtransversal (respectively,
transversal) of Ω is a subset S ⊂ U such that |S ∩ ω| ≤ 1 (respectively, |S ∩ ω| = 1)
holds for all ω ∈ Ω. We denote by S(Ω) (respectively, T (Ω)) the set of all subtransversals
(respectively, transversals) of Ω.

Definition 5.7. A multimatroid is a triple Q = (U, Ω, r) with a partition Ω of a finite set
U and a rank function r : S(Ω) 7→ N satisfying:

• r(∅) = 0,

• for A ∈ S(Ω) and x ∈ U such that A is disjoint from the skew class containing x,

r(A) ≤ r(A + x) ≤ r(A) + 1,

• (submodularity inequality) for A, B ∈ S(Ω) such that A ∪ B ∈ S(Ω),

r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B),

• for A ∈ S(Ω) and any skew pair {x, y} in a skew class disjoint from A,

r(A + x) − r(A) + r(A + y) − r(A) ≥ 1.

Definition 5.8. A multimatroid Q is a q-matroid if all skew classes are of cardinality q.

Definition 5.9. An independent set of a multimatroid Q is a subtransversal s such that
r(s) = |s|. A base is a maximal independent set. A circuit is a minimal subtransversal
that is not independent.

Bouchet shows in [11] how to construct a 3-matroid from an isotropic system L. It is
done in the following manner. Let αi be the vector with α in position i and 0 everywhere
else. Define βi and γi in the same manner. Let ωi = {αi, βi, γi}, Ω = {ω1, ..., ωn},
U = ω1 ∪ ... ∪ ωn and, for s ∈ S(Ω), let r(s) = |s|−dim〈s〉 ∩ L, where 〈s〉 denotes the
subspace generated by s (or equivalently, since s determines a unique vector of KV and
can be identified with it, r(s) = |s| − l(s)). Let Q(L) = (U, Ω, r).

Theorem 5.10 ([11], Proposition 4.3). If L is an isotropic system, then Q(L) is a
3-matroid.
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We now show how to construct a 2-matroid from a Sabidussi orbit. One way of
deriving this relationship is implicitly given by Bouchet in Section 4 of [6]. However, for
convenience, we give a construction similar to the one for 3-matroids.

Let G = (V, E, c) be a bicolored graph of a Sabidussi orbit O. Let A, B be supplemen-
tary vectors of KV and consider the isotropic system L with graphic presentation (F, A, B)
where F = (V, E) is the underlying uncolored graph of G. Let ωi = {Ai, Bi+(1−c(i))Ai)},
Ω = {ω1, ..., ωn} and U = ω1∪...∪ωn. (For simplicity, we can suppose without altering the
structure that A = (α, ..., α) and B = (b1, ..., bn) where bi = β if vertex i is white and bi = γ
if it is black. In that case, ωi = {αi, γi}, for i = 1, ..., n.) Let Q′ = Q(L) = (U ′, Ω′, r′) be
the 3-matroid associated with L. Let Ω = {ω1, ..., ωn}, U = ω1 ∪ ... ∪ ωn. Since S(Ω) is a
subset of S(Ω′), we can define r as the restriction of r′ to S(Ω). Let Q(G, A, B) = (U, Ω, r).
It follows that Q(G, A, B) is a 2-matroid.

Theorem 5.11. If O is a Sabidussi orbit, G = (V, E, c) ∈ O and A, B are supplementary
vectors of KV , then Q(G, A, B) is a 2-matroid.

In the following, let F = (V, E), G = (V, E, c), let A, B be supplementary vectors of
KV and consider the isotropic system L with graphic presentation P = (F, A, B), the
3-matroid Q′ = Q(L) = (U ′, Ω′, r′) and the 2-matroid Q = Q(G, A, B) = (U, Ω, r). As
stated by Bouchet ([7] (8.3)), if [v, w] ∈ E, then P ∗ vwv = (Fvwv, A + x, B + x), where
x = A{v, w} + B{v, w}. We identify the vectors of KV with the subtransversals of Q′ in
the natural manner.

Proposition 5.12. If u is a white vertex of G, then A ∗ u ∈ S(Ω). If v, w are adjacent
black vertices of G, then A ∗ uvu ∈ S(Ω).

Proof. We use Theorem 5.6 and the previous remark. For i 6= u, (A ∗ u)i = Ai ∈ ωi. For
i = u, (A ∗ u)i = Ai + Bi ∈ ωi. For v 6= i 6= w, (A ∗ vwv)i = Ai ∈ ωi. For i ∈ {v, w},
(A ∗ vwv)i = Ai + (Ai + Bi) = Bi ∈ ωi.

It follows that the complementation sets of G are in bijection with the eulerian vectors
of L that are contained in S(Ω). To be precise, if A′ is an eulerian vector of L in
S(Ω) with corresponding graphic presentation (F ′, A′, B′), let S = {i ∈ V |Ai 6= A′i},
V ′ = {i ∈ V |A′i + B′i ∈ ωi} and let G′ be the bicolored graph with underlying graph F
and with u white if and only if u ∈ V ′. Then G′ = GS and Q(G′, A′, B′) = Q(G, A, B).
Therefore, up to the choice of the supplementary vectors A and B, Sabidussi orbits can
be identified with a subset of the 2-matroids. Call this subset the graphic 2-matroids.

There exist non-graphic 2-matroids. As an example, consider the 2-matroid Q =
(U, Ω, r) with U = {a, a′, b, b′, c, c′}, Ω = {ωa = {a, a′}, ωb = {b, b′}, ωc = {c, c′}} and r
determined by the set C(Q) = {{a, b′}, {a′, b}, {a, b, c′}} of the circuits of Q. To show
that Q is not graphic, we proceed by contradiction. Suppose that Q is graphic with an
associated isotropic system L ⊂ KV , V = {a, b, c}, and a bicolored graph G corresponding
to the eulerian vector {a, b, c} of L. Since {a, b′, c} and {a′, b, c} are not independent but
{a′, b′, c} is, vertices a and b must be adjacent black vertices of G. Since {a′, b′, c′} is
independent, c must be white in G[ab], hence it is white in G. On the other hand,
{a, b, c′} is not independent, so c must be black in G, a contradiction.
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Definition 5.13. A set system is a pair S = (X,F) where X is a finite set and F is
a family of subsets of X, called the feasible sets of S. A delta-matroid is a set system
(X,F) with F 6= ∅ and satisfying the following symmetric exchange axiom.

F1, F2 ∈ F and x ∈ F1 + F2 ⇒ ∃y ∈ F1 + F2 such that F1 + {x, y} ∈ F

Definition 5.14. Given a 2-matroid Q = (U, Ω, r) and a transversal X of Ω, the set
system Q∩X = (X,F), where F = {A∩X|A is a base of Q}, is called the trace of Q on
X.

Theorem 5.15 ([11], Proposition 4.2). A set system is a delta-matroid if and only if
it is equal to the trace of a 2-matroid on one of its transversals.

From the correspondence between Sabidussi orbits and the graphic 2-matroids, we get
the following corollary.

Corollary 5.16. For a given bicolored graph G = (V, E, c), the set system (V,F), where
F is the family of complementation sets of G, is a delta-matroid.

Proof. Let V = {1, ..., n}, A = (α, ..., α) and B = (b1, ..., bn) where bi = β if vertex i
is white and bi = γ if it is black. Consider the trace of the 2-matroid Q(G, A, B) on
X = {γ1, ..., γn}. The result follows.

Proposition 5.17. The maximal feasible sets of a delta-matroid are equicardinal.

Proof. By contradiction, suppose that F1, F2 are maximal feasible sets of different sizes
chosen so that |F1 + F2| is minimal. Without loss of generality, let x ∈ F2\F1 and
y ∈ F1 + F2 such that F1 + {x, y} is a feasible set. By the maximality of F1, y /∈ F2,
so that |F1 + {x, y}| = |F1| but |(F1 + {x, y}) + F2| = |F1 + F2| − 2, contradicting the
minimality of |F1 + F2|.

Although a direct proof of the following non-trivial result is certainly possible, it is
an immediate consequence of the fact that the family of the complementation sets of a
bicolored graph has the structure of a delta-matroid.

Corollary 5.18. For a given bicolored graph G, all maximal complementation sets have
the same cardinality.

6 Application to the vertex-nullity polynomial

In [3], Arratia et al. define the vertex-nullity polynomial of a bicolored graph (in their
paper, a bicolored graph is called a looped graph). For S ⊂ V , let G[S] be the bicolored
subgraph of G induced by S. Let the adjacency matrix of a bicolored graph G encode
the coloring on its diagonal so that position uu holds 1− c(u). (Or, equivalently, consider
white vertices as having loops.) Let n(G) be the nullity (corank) of the adjacency matrix
of G.
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Definition 6.1. The vertex-nullity polynomial of a bicolored graph G = (V, E, c) is

qN (G; x) =
∑

S⊂V

(x − 1)n(G[S]).

Theorem 6.2 ([3], Theorem 6). Let u, v be adjacent black vertices of G = (V, E, c).
Then

qN (G) = qN(G − u) + qN(G[uv] − u).

Let u be white in G = (V, E, c). Then

qN(G) = qN (G − u) + qN (Gu − u).

From the preceding theorem and Theorem 4.3, it is easy to see that the vertex-nullity
polynomial of a bicolored graph is invariant over its Sabidussi orbit. Therefore, the vertex-
nullity polynomial of a Sabidussi orbit is defined in the following manner.

Definition 6.3. The vertex-nullity polynomial of a Sabidussi orbit O containing a bicol-
ored graph G is

q(O) = qN(G).

We can define a vertex-nullity polynomial for Kotzig orbits as well. Aigner and van
der Holst [1] showed that the following graph polynomial is invariant over its Kotzig orbit.
For S ⊂ V , let G[S] be the subgraph induced by S.

Definition 6.4. The vertex-nullity polynomial Q(G, x) of a simple graph G is

Q(G; x) =
∑

S⊂V

(x − 2)n(G[S]).

Definition 6.5. The vertex-nullity polynomial of a Kotzig orbit O containing a graph G
is

q(O) = Q(G).

Aigner et al. [1] established the relationship between the interlace polynomials pre-
sented in this section and the Tutte-Martin polynomials introduced by Bouchet in [9].
We can now interpret their result as follows : the complementation polynomials of Kotzig
and Sabidussi orbits are equivalent to the Tutte-Martin polynomials of the corresponding
isotropic systems and 2-matroids, respectively.

7 Conclusion

In order to study local complementation in a systematic manner, we found that the
concept of substitution rules is fundamental. We have characterized completely the local
substitution rules. The insight gained into the structure of Sabidussi orbits enabled us to
establish the relationship between Sabidussi orbits and 2-matroids, thereby generalizing
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the 2-matroids that are obtainable from 4-regular connected graphs with a given transition
system (see [6, 11, 16]). The reader is referred to [16] where the link between Sabidussi
orbits and the Cycle Double Cover Conjecture and Sabidussi’s Compatibility Conjecture
is explained. In light of the work presented here, it would be interesting to see what the
implications of multimatroid theory are for these two important conjectures.
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