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Abstract. In decision-support applications one often needs to analyse
transactional data accumulated over time and usually stored in a data
warehouse. The data is analysed along various dimensions, and at various
levels in each dimension. Although several SQL extensions are available
today for the analysis of dimensional data, there seems to be no agree-
ment as to a conceptual model able to guide such analysis. The objective
of this paper is, precisely, to propose such a model. In our model, a di-
mensional schema is a labelled, directed, acyclic graph with a single root,
and a dimensional database is an assignment of finite functions, one to
each arrow of the dimensional schema. Data analysis is performed based
on a path expression language and its associated language for Online
Analytic Processing (OLAP). The main contribution of the paper is the
proposal of a formal model for dimensional data analysis, offering a clear
separation between schema and data, as well as a simple yet powerful
functional algebra for data manipulation. The expressive power of the
model is demonstrated by showing how it can serve as a formal basis for
multi-dimensional OLAP (MOLAP) and for relational OLAP (ROLAP).

1 Introduction

Motivation
In decision support applications one often needs to analyse large volumes of
transactional data accumulated over time, typically over a period of several
months. The data is usually stored in a so-called ”data warehouse”, and it is
analysed along various dimensions and at various levels in each dimension [5, 10,
12].

A data warehousing system consists of three main levels: the source level,
the data warehouse level and the data mart level (see Figure 1). At the source
level we find the various sources from which data is extracted and fed into an
integration module before loading at the warehouse; these sources can be opera-
tional databases, collections of files, collections of Web pages, and so on. At the
data warehouse level, the integrated data is stored and maintained, usually in
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the form of a relational database. At the data mart level we find smaller, sub-
ject oriented data warehouses, called ”data marts”, which are actually views of
the data warehouse (either virtual or materialized). End users interact with the
warehouse either directly or through a data mart. Actually, a data warehouse
functions just like a usual database, with some important differences, that we
briefly discuss below.
Access Mode: In a data warehouse, access to data by the users is almost ex-
clusively for reading and not for writing, i.e., data warehouses can be seen as
read-only databases. Changes of data happen only at the sources, and such
changes are propagated to the warehouse.
Nature of the Data: The data stored in a data warehouse differs from that stored
in a traditional (transactional) database, in that (a) it is historic data, i.e. data
accumulated over time, and (b) it is not production data but the result of inte-
gration of production data coming from various sources.
User Needs: The end users of a data warehouse are mainly analysts and decision
makers, who almost invariably ask for data aggregations along various dimen-
sions (e.g. ”total sales by store”, or ”average sales by city and product category”,
and so on). Such aggregations require not only efficient processing of very com-
plex queries but most importantly the use of special kinds of schemas, called
”dimensional schemas” that facilitate the formulation of such queries.

This paper is focused on dimensional schemas and their query languages,
as opposed to normalized relational schemas and their transaction processing
languages. Schema normalization was introduced in relational databases with the
goal of increasing transaction throughput. Normalized schemas, however, rarely
reflect the ”business model” of the enterprise, that is, the way the enterprise
actually functions; their main concern is to make database updating as efficient as
possible, usually at the cost of rendering the schema virtually incomprehensible
by the non specialist. Therefore normalized schemas are not suitable for data
warehouses, as the analysts and decision makers of the enterprise are unable to
”read” the schema and to formulate the queries necessary for their data analyses.
Then the question is what kind of data model is most appropriate for easy
formulation and efficient evaluation of such queries. Unfortunately, no generally
accepted model has emerged so far.

The products offered by data warehouse vendors today are not satisfactory
because (a) none offers a clear separation between the physical and the con-
ceptual level, and (b) schema design is based either on methods deriving from
relational schema normalization or on ad hoc methods intended to capture the
concept of dimension in data. Consequently, several proposals have been made
recently to remedy these deficiencies. The model proposed in this paper is a
contribution in that direction.

Related Work
On-Line Analytic Processing, or OLAP for short, is the main activity carried
out by analysts and decision makers. The term OLAP appeared first in a white
paper written for Arbor Software Corporation in 1993 [3, 4], though the concept
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Fig. 1. Data Warehouse Architecture.

seems to be much older. Informally, OLAP can be defined as the interactive
process of creating, managing and analyzing data, as well as reporting on the
data; the data is usually perceived and manipulated as though it were stored in a
multi-dimensional array. Two main approaches have been followed by industrial
vendors. The first, known as MOLAP (for Multidimensional OLAP), is based on
building separate dedicated engines using multidimensional storage strategies.
The second, known as ROLAP (for Relational OLAP), is based on adapting
relational database systems.

In terms of research, the proposal of the cube operator [7] is one of the
early, significant contributions, followed by much work on finding efficient data
cube algorithms [2, 9]. Relatively little work has gone into modeling, with early
proposals based on multidimensional tables, called cubes, having parameters and
measures [1, 11]. However, these works do not seem to provide a clear separation
between schema and data. More recent work (e.g. in [8]) offer a clearer separation
between structural aspects and content (see [17] for a survey).

However, a common characteristic of all these models is that they somehow
keep with the spirit of the relational model, as to the way they view a tuple in
a table. Indeed, in all these models, implicitly or explicitly, a tuple (or a row
in a table) is seen as a function associating each attribute with a value from
that attribute’s domain. In our model, by contrast, it is each attribute that we
see as a function; such an ”attribute function” associates each object in a set of
objects being modeled with a value from that attribute’s domain (thus describing
a property of the objects, much in the spirit of [14]). We then construct sets of
tuples by ”gluing” together these attribute functions, using function ”pairing”
(an operation to be introduced shortly). Our approach is similar in spirit to the
one proposed in [6] although that work does not address OLAP issues. The main
contribution of our paper is the proposal of a formal model for dimensional data
analysis, offering a clear separation between schema and data, as well as a simple
yet powerful functional algebra for data manipulation.
In the remainder of the paper, in section 2 we present our functional algebra,
while in section 3 we define dimensional schemas and dimensional databases. In
section 4, we first define a path expression language for dimensional schemas
and then use it to define the OLAP language of our model; in doing so, we also
explain how our model can serve as a formal basis for multi-dimensional OLAP
(MOLAP). In section 5 we discuss in detail how our model can serve as a formal



basis for relational OLAP (ROLAP) as well. Finally, in section 6, we offer some
concluding remarks and outline ongoing research and perspectives.

2 The Functional Algebra

In this section we introduce four elementary operations on functions that con-
stitute what we call the functional algebra. We shall use this algebra in the
evaluation of path expressions and OLAP queries later on.

Composition
Composition takes as input two functions, f and g, such that range(f) ⊆ def(g),
and returns a function g ◦ f: def(f) → range(g), defined by: (g ◦ f)(x)= g(f(x))
for all x in def(f).

Pairing
Pairing takes as input two functions f and g, such that def(f)=def(g), and re-
turns a function f ∧ g: def(f) → range(f) × range(g), defined by: (f ∧ g)(x)=
〈f(x), g(x)〉 , for all x in def(f). The pairing of more than two functions is defined
in the obvious way. Intuitively, this is the tuple-forming operation.

Of particular interest are pairings f1 ∧ .. ∧ fn : X → range( f1 ) × .. × range(
fn ) that are one-to-one functions. Such a pairing provides an unambiguous rep-
resentation of the elements of X, in the following sense: for all x, x’ in X we
have: if x 6= x′ then there is i ∈ {1, 2, .., n} such that fi(x) 6= fi(x′). In other
words, such a pairing sets up an n-dimensional coordinate space with origin X,
in which the functions f1 , .., fn are the coordinate functions, and in which each
point x of X is represented by its coordinates 〈f1(x), .., fn(x)〉.
Note: Throughout this paper, we consider that the product of n sets is always
the same (up to isomorphism), no matter how the factors are ordered or paren-
thesized. For example, the notations A × (B × C), (A × B) × C, A × (C × B),
and so on, will all stand for A × B × C.

Projection
This is the usual projection function over a Cartesian product. It is necessary in
order to be able to reconstruct the arguments of a pairing, as expressed in the
following proposition (whose proof follows immediately from the definitions).

Proposition 1
Let f : X → Y and g : X → Z be two functions with common domain of
definition, and let πY and πZ denote the projection functions over the product
Y × Z. Then the following hold:
f = πY ◦ (f ∧ g) and g = πZ ◦ (f ∧ g)

In other words, the original functions f and g can be reconstructed by com-
posing their pairing with the appropriate projection. This double commutative



property is depicted in Figure 2. The extension to pairings with more than two
arguments is obvious.
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Fig. 2. Double commutative diagramme.

Restriction
It takes as argument a function f : X → Y and a set E, such that E ⊆ X, and
returns a function f/E : E → Y , defined by: f/E(x) = f(x), for all x in E.

We note that the set E can be given either extensionally, or intentionally. We
also note that one can use domain restriction, as defined above, to define the
restriction of f to a desired subset of its range. Indeed, assuming F ⊆ Y , this
can be done by defining the restriction f/E , where E = {x ∈ X/f(x) ∈ F}.

The four operations just introduced form our functional algebra. Note that
this algebra has the closure property, i.e. the result of each operation is a func-
tion. Well formed expressions of the functional algebra, their evaluation, and the
evaluation of their inverses lie at the heart of the OLAP query language that we
shall present in the remainder of this paper. A relevant issue in this respect is
how to compute the inverse of a functional expression in terms of the inverses of
its component functions. The following proposition gives some elementary prop-
erties of inverses, whose proofs follow immediately from the definitions.

Proposition 2 - Properties of Inverses
Composition: Let f : X → Y and g : Y → Z. Then for all z ∈ range(g ◦ f) we
have: (g ◦ f)−1(z) = ∪{f−1(y)/y ∈ g−1(z)) that is, a z-block under g ◦ f is the
union of all y-blocks under f , where y ranges over the z-block under g
Pairing: Let f : X → Y and g : X → Z. Then for all (y, z) ∈ range(f ∧ g) we
have: (f ∧ g)−1((y, z)) = f−1(y) ∩ g−1(z)
Restriction: Let f : X → Y and E ⊆ X. Then for all y ∈ range(f/E) we have:
(f/E)−1(y) = E ∩ f−1(y)

These and other properties of inverses can be used to reduce the computational
effort when evaluating inverses of functional expressions. Indeed, by ”caching”
and re-using previously computed inverses, one can save computational time.



3 Dimensional Schema and Dimensional Database

Following our model, a data warehouse operates from a ”dimensional schema”
over which one formulates ”OLAP queries”. In this section, we define the con-
cepts of a dimensional schema and a database and in the following section we
use them to define OLAP queries and their answers.

3.1 Dimensional Schema

In our model, a dimensional schema is actually a directed acyclic graph (dag)
satisfying certain properties, as stated in the following definition.

Definition 1 -Dimensional Schema
A dimensional schema is a connected, labeled dag, whose nodes and arrows
satisfy the following properties (see also Figure 3):

Nodes

1. There is only one root; it is labeled O, and called the origin
2. There is a distinguished node other than the root, called the unit node; it is

labeled ⊥
3. Each node A is associated with a set of values, or domain, denoted as

dom(A); the domain of ⊥ is required to be a singleton

Arrows

1. There is no arrow with the unit node ⊥ as its source
2. All arrow labels are distinct; we use the notation f : X → Y to denote that

f is the label of arrow X → Y
3. The arrows with source O are of two distinguished kinds: dimensional arrows

and measure arrows; we use the following notation:
dimensional arrows f1 : O → D1, f2 : O → D2, .., fn : O → Dn

measure arrows m1 : O → M1, m2 : O → M2, .., mk : O → Mk

4. There is an arrow ⊥: O →⊥, called the unit arrow; it is considered as a
dimensional arrow

5. There is no path of length greater than one from the origin O to the target
of a dimensional arrow.

Note that, in the above definition, we use the label ⊥ to denote both the unit
node and the unit arrow. Hereafter, in all our discussions, we shall refer to the
values in the domain of the origin O as objects (and will denote them by integers
in our examples). Moreover, we shall refer to all nodes other than the origin and
the unit node as attributes (the intension being to view attributes as properties
of the objects).

Figure 3 shows an example of a dimensional schema that we shall use as our
running example throughout the paper. In this schema, we assume the arrows f ,
g and h to be the dimensional arrows, and the arrow m to be the only measure



arrow (in reality, it is the designer who decides which arrows are the dimensional
arrows and which are the measure arrows). It should be easy to check that the
graph of figure 3 satisfies all the requirements of the above definition. Note that
the schema of figure 3 is a tree. This choice was made only to simplify the
presentation; a schema need not always be a tree.

Intuitively, in the schema of our running example, each object o represents a
sales record containing a date, a store number, a product reference number, and
the number of units sold of that product; moreover, each of the attributes Date,
Store and Product has ”levels” for aggregation purposes. More formally, we call
dimensional path any path beginning with a dimensional arrow fi : O → Di, and
we call each node in the path other than O an aggregation level, or simply level
(Di being the base level). Similarly, we call measure path any path beginning
with a measure arrow mj : O → Mj , and we call each node in the path other
than O a measure level (Mj being the base level).

Referring to Figure 3, we see that there is one dimensional path beginning
with f , and having as levels Date and Month; one beginning with g, and having
as levels Store, City and Region; and two beginning with h, one having as levels
Product and Category, and the other having as levels Product and Supplier.
There is only one measure path beginning with m, having Sales as its only level.

3.2 Dimensional Database

Having defined what a dimensional schema is, we can now define the concept of
a database over such a schema.

Definition 2 - Dimensional Database
Let S be a dimensional schema. A dimensional database over S is a function δ
that associates: each node A of S with a finite subset δ(A) of its domain; the
unit arrow with a constant function; and each other arrow f : X → Y of S
with a total function δ(f) : δ(X) → δ(Y ), such that the following constraint is
satisfied:
Dimensional constraint: the pairing δ(f1) ∧ ... ∧ δ(fn) is a one-to-one function.

In Figure 4(a), we see a database, in the form of a set of binary tables giving
the finite functions assigned to the arrows by δ. Hereafter, we call dimensional
functions the functions assigned by δ to the dimensional arrows, and measure
functions the functions assigned by δ to the measure arrows.

What the above definition says is that an assignment δ of functions is a
database only if it sets up an n-dimensional space, with origin O, for which the
dimensional functions are its coordinate functions (recall also our remarks follow-
ing the definition of pairing in the previous section). As a consequence, a dimen-
sional database can be visualised as an n-dimensional cube, with origin O, and
each n-tuple of coordinates 〈δ(f1)(o), δ(f2)(o), .., δ(fn)(o)〉 can be visualised as a
”cell” of that cube. Moreover, the k-tuple of measures 〈δ(m1)(o), δ(m2)(o), .., δ(mk)(o)〉



associated with o can be viewed as the ”value” of the cell 〈δ(f1)(o), δ(f2)(o), .., δ(fn)(o)〉.
In data warehouse jargon, this cube is referred to as ”the data cube”.
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Several remarks are in order here concerning the above definition of a dimen-
sional database. Our first remark concerns notation. In the remainder of this
paper, in order to simplify the presentation, we adopt the following abuse of
notation: we use an arrow label such as f to denote both the arrow f and the
function δ(f) assigned to f by δ; similarly, we use an attribute label such as
X to denote both the attribute X and the finite set δ(X) assigned to X by δ.



This should create no confusion, as more often than not the context will resolve
ambiguity. For example, when we write def(f) it is clear that f stands for the
function δ(f), as ”def” denotes the domain of definition of a function; or when
we say ”function f”, it is clear again that f stands for the function δ(f) and not
for the arrow f . We hope that this slight overloading of the meaning of symbols
will facilitate reading.

Our second remark concerns the manner in which functions are assigned to
arrows by the database δ. Each function f in a database can be given either
extensionally, i.e., as a set of pairs 〈x, f(x)〉 , or intentionally, i.e., by giving a
formula or some other means for determining f(x) from x. For example, referring
to Figure 3, the function m : O → Sales can only be given extensionally, as there
is no formula for determining the sales transactions that took place on a partic-
ular date; whereas the function f : Date → Month will be given intentionally,
as given a date one can compute the month: dd/mm/yy 7→ mm/yy.

Our third remark concerns the requirement that all functions assigned by
the database δ to the arrows of S be total functions. This restriction could be
relaxed, by endowing each attribute domain with a bottom element ⊥ (mean-
ing ”undefined”) and requiring that for any function f : X → Y we have (a)
f(⊥) =⊥, i.e. ”bottom can only map to bottom” and (b) if x /∈ def(f) then
f(x) =⊥. Under these assumptions, the functions can again be considered as to-
tal functions. However, the resulting theory would be more involved and would
certainly obscure some of the important points that we would like to bring for-
ward concerning OLAP queries. Keep in mind, however, that the restriction that
all functions assigned by δ be total entails satisfaction of the following constraint:

referential constraint: for every pair of functions of the form f : X → Y and
g : Y → Z we have range(f) ⊆ def(g).

Our fourth and final remark concerns the intuitive meaning of dimension levels
and measure levels, in a database. Indeed, each function f : X → Y from a level
X to a level Y , can be seen as grouping together, or aggregating the elements
of X and ”naming” the groups using elements of Y . This is expressed by the
inverse function f−1 which maps each y in the range of f to a nonempty subset
of X as follows: f−1(y) = {x ∈ X/f(x) = y}, for all y ∈ range(f). For example,
consider the function g2 : City → Region of our running example. The inverse
g−1
2 maps each region r to the set of cities belonging to that region. As we shall

see later, inverse functions play a crucial role in the evaluation of OLAP queries,
and provide the link between the formal model presented here and the Group-by
instruction of SQL.

4 Path Expressions and OLAP

Our definition of OLAP queries relies on the set of path expressions that one
can define over the dimensional schema. Consequently, in this section, we first



define a language of path expressions and then use it to define the OLAP query
language of our model.

4.1 The Language of Path Expressions

Intuitively, a path expression over a dimensional schema S is a well formed ex-
pression whose operands are arrows from S and whose operators are those of the
functional algebra. More formally, we have the following definition.

Definition 3 -The Path Expression Language
Let S be a dimensional schema. A path expression e over S is defined by the fol-
lowing grammar, where ”::=” stands for ”can be”, p and q are path expressions,
and source(e), target(e) are self-explanatory:

e::= f, where f : X → Y is an arrow of S; source(e) = X and target(e) = Y
q ◦ p, where target(p) = source(q); source(e) = source(p) and
target(e) = target(q)
p ∧ q, where source(p) = source(q); source(e) = source(p) and
target(e) = target(p) × target(q)
p/E , where E ⊆ source(p); source(e) = E and target(e) = target(p)
πX(e1 ∧ ... ∧ ej), X = {X1, .., Xr} ⊆ {target(e1), .., target(ej)} ;
source(e) = range(e1) × ... × range(ej), target(e) = X1 × ... × Xr

The set of all path expressions is called the path expression language of S.

For example, in the dimensional schema of Figure 3, g ∧ (h2 ◦ h) is a path
expression. In our discussions, we shall call dimensional expression any path
expression that involves only dimensional arrows and measure expression any
path expression that involves only measure arrows.

Now, the functions stored in a dimensional database represent information
about some application being modelled. By combining these functions we can
derive new information about the application. Specifying what kind of new in-
formation we need is done using a path expression; and finding the actual infor-
mation is done by evaluating the path expression.

Definition 4 -The Evaluation of a Path Expression
Let S be a dimensional schema and e a path expression over S. Given a database
δ over S, the evaluation of e with respect to δ, denoted eval(e, δ), is defined as
follows :

1. replace each arrow f in e by the function δ(f);
2. perform the operations of the functional algebra (as indicated in the expres-

sion);
3. return the result

Note that the result of the evaluation is obviously a function from the source
of e to the target of e.



We note that the path expression language just introduced allows defining
views as well, in much the way as this is done in the relational model. Intuitively,
a view of a dimensional database is again a dimensional database whose data is
derived from those of the original database. More formally, a view of a dimen-
sional schema is defined as follows:

Definition 5 View of a Dimensional Schema
Let S be a dimensional schema. A view over S is a dimensional schema S such
that every node of S is a node from S and every arrow v of S is defined by a
path expression e over S, i.e. an expression of the form v = e.

As an example, refer to Figure 3, and suppose that we wish to define a view
over S dealing only with monthly sales per City and Product. Such a view will
have the following dimensional schema S:

v1 : O → Month, v2 : O → City, v3 : O → Product, v4 : O → Sales
Here, v1 = f1 ◦ f , v2 = g1 ◦ g, v3 = h, v4 = m
In other words, S is a dimensional schema with ”custom-made arrows” to fit

some particular application. This intuition conforms to a widely used notion in
the data warehouse community, that of a data mart. A data mart is a subject-
oriented data warehouse whose data is derived from those of the ”central” data
warehouse.

As in the case of relational views, the data of a data mart are derived from
those of the data warehouse, by evaluating the path expressions defining the
arrows of the data mart schema. Moreover, this derived data may or may not be
stored -depending on the application. In other words, as in the case of relational
views, we may have virtual or materialized data marts.

We note that, as the cost for setting up a central data warehouse is usually
very high, several medium size enterprises start by setting up subject oriented
data warehouses, i.e. (materialized) data marts. The advantage of this approach
is that one can get acquainted with data warehouse technology, at low cost,
before embarking on full scale data warehousing. The disadvantage is having
to integrate two or more data marts into a single, ”central” warehouse, if the
enterprise decides to invest in that direction at some later time.

4.2 The OLAP Language of a Dimensional Schema

The definition of an OLAP query is based on what we call an ”OLAP pattern”,
which specifies what part of the dimensional schema is to be used for carrying
out analysis tasks.

Definition 6 - OLAP Pattern
Let S be a dimensional schema. An OLAP pattern over S is a pair 〈u, v〉 ,
where u is a dimensional expression, v a measure expression and source(u) =
source(v) = O.

In our discussions below, we shall assume that:



– target(u) = DL1 × DL2 × ... × DLdl, for some integer dl ≥ 1, where
DL1, DL2, ..., DLdl, are dimensional levels; and we shall refer to the product
DL = DL1 × DL2 × ... × DLdl, as the aggregation level of the pattern

– target(v) = ML1 × ML2 × ... × MLml, for some integer ml ≥ 1, where
ML1,ML2, ..., MLml, are measure levels; and we shall refer to the product
ML = ML1 × ML2 × ... × MLml, as the measure level of the pattern

For example, in Figure 3, the following is an OLAP pattern: 〈g∧ (h2 ◦h),m〉
; here, u = g ∧ (h2 ◦ h) and v = m. The aggregation level of this pattern
is DL = Store × Supplier, and its measure level is ML = Sales. In all our
discussions, it is important to remember that both expressions of a pattern, u
and v, have O as their common source.

Intuitively, each pattern 〈u, v〉 provides a setting where data analysis tasks
can be performed. To see concretely what kind of analysis tasks one can perform,
consider again the pattern 〈g ∧ (h2 ◦ h), m〉 . Here, u = g ∧ (h2 ◦ h) and v = m
(refer to figures 3 and 4):

– Compute the inverse (g ∧ (h2 ◦ h))−1 to partition O into groups of objects;
here, range(g∧(h2◦h)) = {(St1, Sup1), (St1, Sup2), (St3, Sup2), (St2, Sup1)},
so the groups of objects obtained by the inversion are as follows:

(g ∧ (h2 ◦ h))−1((St1, Sup1)) = {1, 4, 6, 8}
(g ∧ (h2 ◦ h))−1((St1, Sup2)) = {2, 7}
(g ∧ (h2 ◦ h))−1((St3, Sup2)) = {3}
(g ∧ (h2 ◦ h))−1((St2, Sup1)) = {5, 9}
Note that all objects of a group map to the same Store × Supplier-value.

– Within each group, use m to compute the tuple of images of all objects in
the group:

{1, 4, 6, 8} → 〈200, 400, 300, 400〉
{2, 7} → 〈300, 500〉
{3} → 〈200〉
{5, 9} → 〈400, 500〉
Note that each tuple of images gives the sales figures for the objects in the
corresponding group.

– Assuming that we are interested in ”total sales” by store and supplier, we
apply the operation ”sum” to each tuple of images, to obtain the following
results:

〈200, 400, 300, 400〉 → 1300
〈300, 500〉 → 800
〈200〉 → 200
〈400, 500〉 → 900

So now each Store×Supplier-value yi, is associated with a total-sales figure,



call it RESyi)

– Return each group (g∧ (h2 ◦h))−1(yi) of objects together with its associated
pair (yi, RESyi):

{1, 4, 6, 8} → ((St1, Sup1), 1300)
{2, 7} → ((St1, Sup2), 800)
{3} → ((St3, Sup2), 200)
{5, 9} → ((St2, Sup1), 900)

So now each group of objects is associated with a pair of items; the first item
is the Store×Supplier-value to which all objects in the group map, and the
second item is the sum of sales for that Store × Supplier-value. This final
outcome of the computations is shown in Figure 4(b).

Note that one could have specified that the total sales are needed only for
stores supplied by supplier number 1, in which case only the first and the last
pair should be returned; such a specification is possible by restricting the domain
of definition of h2 to its subset {Sup1}. Also note that any operation other than
”sum” (but applicable over Sales) could have been applied on each tuple of
images. For example, one could have applied the operation ”avg” on each tuple
of images to obtain the average sales by Store and Supplier.

The above considerations lead naturally to the definition of OLAP query
and its answer. In the following definition, we denote by πu the partition of O
induced by the dimensional expression u, i.e. πu = {u−1(y)/y ∈ range(u)}.

Definition 7 - OLAP Query and its answer
Query: Let S be a dimensional schema. An OLAP query over S is a pair Q =
(P, op), where P = 〈u, v〉 is a pattern over S and op is an operation applicable
over the measure level of P .
Answer: Let δ be a database over S. The answer to Q with respect to δ is a
function ansQ,δ: πu → DL × ML defined as follows:
For each y ∈ range(u), let By = u−1(y) = {o1, o2, ..., or} ∈ πu, let t(By) =
〈v(o1), v(o2), .., v(or)〉 and let RESy = op(t(By)); then define ansQ,δ(By) =
(y, RESy)

In our previous computations, the OLAP query was Q = (〈g ∧ (h2 ◦ h), m〉,
sum), the database δ was the one shown in Figure 4(a), and the answer, ansQ,δ,
is the one shown in Figure 4(b). Here are two more examples of queries, from
our running example:

– Q = (〈f ∧ (h1oh),m〉, avg), asking for the average sales by date and category
– Q = (〈f ∧ g,m〉, min), asking for the minimal sales by date and store

In several practical applications the following simplifying conditions are present,
and lead to a more convenient notation for OLAP queries:

– the dimensional schema is a tree



– there is only one measure arrow in the schema, hence only one measure level
– restrictions are allowed only at the aggregation level

Under these conditions, the dimensional expression u can be specified by sim-
ply giving the dimensional levels DL1, DL2, ..., DLdl; the measure expression v
can be specified by simply giving the (unique) measure level, say M ; and the re-
strictions can be specified by giving subsets of DL1, DL2, ..., DLdl. In this case,
an OLAP query can be specified as follows:

Select DL1, DL2, ..., DLdl op(M) as RES
Having E1, E2, ..., Edl

Here, E1, E2, ..., Edl are subsets of DL1, DL2, ..., DLdl, respectively. This con-
struct is to be interpreted as follows:
Let Pi be the unique path with source O and target DLi, and ui be the ex-
pression obtained by composition of all arrows along Pi, i = 1, ..., dl; then u =
u1 ∧u2 ∧ ...∧udl is the dimensional expression of the query; the unique measure
arrow with target M is the measure expression; op is the operation; and RES is
a (user given) name for the result (technically, RES is the co-domain of op).

As an example, the query Q = (P, sum), where P = 〈g ∧ (h2 ◦ h, m〉, and
where the result is needed only for supplier number 1, can be specified as follows:

Select Store, Supplier sum(Sales) as RES
Having Supplier= {Sup1}

An interesting class of OLAP queries is obtained when u =⊥, that is, when u
is the unit arrow (and v any measure expression). Such queries have the form
Q = (〈⊥, v〉, op). As the unit arrow is associated with a constant function in
any dimensional database, its inversion returns just one aggregate, namely the
set O of all objects. Hence the answer associates the whole of O with the pair
(⊥, RES⊥). In our running example, the answer of the query Q = (〈⊥,m〉, sum)
will associate O with the pair (⊥, 3200). Here, 3200 represents the total sales
(i.e. for all dates, stores and products).

We end this section with a few remarks concerning the definition of an OLAP
query and the evaluation of its answer.

1. The answer to an OLAP query requires the following computational steps:
Step 1 Evaluate the expressions u and v with respect to the database δ
Step 2 Compute the inverse u−1(y), for each y ∈ range(u);

let By = u−1(y) = {o1, o2, .., or}
Step 3 Compute the tuple of images t(By) = 〈v(o1), v(o2), .., v(or)〉
Step 4 Compute the result RESy = op(t(By))
Step 5 Define ansQ,δ(By) = (y, RESy)

Of these five steps, the first three depend only on the OLAP pattern (and
on the database), while the last two depend on the operation. Therefore, the
evaluation of two or more queries with the same pattern requires steps 1, 2



and 3 to be executed only once (for all queries), while steps 4 and 5 will be
executed once for each query. In other words, two or more queries over the
same pattern can actually share computations. In fact, in this case one can
use the notation Q = (P, op1, op2, .., opn), as a more convenient notation for
a set of OLAP queries sharing the same pattern P .

2. Although the answer to an OLAP query is a function associating each group
u−1(y) of objects with the pair (y, RESy), only the pair (y, RESy) is actually
of interest in practice. Thus, in our previous example, it is the total sales by
Store and Supplier that are of interest to the analyst, and not the groups
u−1(y) of objects used in the calculations. Nevertheless, keeping the groups
of objects is useful for optimization purposes, in two important cases:

– When two or more OLAP queries share the same pattern P = 〈u, v〉, then
the groups of objects created by u will be the same for all evaluations,
therefore they can be re-used (see also our previous remark).

– When the dimensional expression u of an OLAP query Q contains sub-
expressions of the dimensional expression of another query Q′ (that has
already been evaluated), then the properties of our functional algebra
(as expressed in Proposition 2) can be applied, to generate the groups
of objects of Q by re-using the groups of objects of Q′.

We note that query optimization issues lie outside the scope of the present
paper, and are treated in a separate paper [16].

3. As we have seen, the dimensional expression of an OLAP query is actually the
result of pairing a set of dimensional paths with targets DL1, DL2, ..., DLdl.
Each of these paths, once evaluated, returns a function, and these functions
have DL1, DL2, ..., DLdl as targets. Therefore we can view the answer to
an OLAP query as a ”cube” of dl dimensions, each cell of which holds the
value of the calculated measure. This way of viewing the answer to an OLAP
query shows clearly that our model can serve as a formal basis for the cube
model and multidimensional OLAP (MOLAP). In the following section, we
shall see how our model can serve as a formal basis for relational OLAP
(ROLAP) as well.

4. In data warehouse applications, when one and the same OLAP query is asked
periodically to the data warehouse it is referred to as a ”continuous query”,
or as a ”temporal query”. For example, it is conceivable that a query asking
the total monthly sales per store and product is asked to the data warehouse
at the end of each month. Such a query is a continuous or temporal query.
In view of our previous remarks, the results of such queries can be visualized
on a screen, in the form of a cube or some other visual presentation; they
can also be used as input to a so called report generation module, where
the data is rearranged into appropriate cross-tabulations called ”reports”.
These are actually tables, indexed by the aggregation levels present in the
query, and in which each cell contains the measure(s) corresponding to the
coordinates. In our previous example of continuous query, the coordinates
would be Month, Store and Product, and the values placed in the cells would
be total sales.



5 Relational OLAP (ROLAP)

In this section we discuss how a dimensional database can be represented as a
relational database, so that one can take advantage of relational technology for
the evaluation of OLAP queries. The main tools that we use for this represen-
tation are the definition of dimensional schema and database, on the one hand,
and the basic properties of our functional algebra (as expressed in Proposition
1) on the other. The driving idea here is to use our dimensional schema as an
interface, through which the analyst can formulate OLAP queries, then to use
the relational representation for evaluating such queries.

Throughout this section, in order to simplify the presentation, we assume
that the dimensional schema S is a tree (as in our running example). As a
consequence, all dimensional and measure paths will be denoted by their targets.

The first thing to note is that the objects of the origin O should be represented
as tuple identifiers. However, tuple identifiers are not ”visible” in the relational
model, i.e. they are not treated as ”first class citizens”. As a consequence the
objects of O are not ”visible” in the relational representation either. Nevertheless,
the dimensional constraint (see Definition 2) provides a good solution to this
problem. Indeed, as f1 ∧ ...∧ fn is a one-to-one function, every measure function
mj : O → Mj , j = 1, 2, .., k, induces a function m′

j as follows(see Proposition 1):

• m′
j : range(f1∧...∧fn) → Mj , such that m′

j = mjo(f1∧...∧fn)−1, j = 1, 2, .., k

The pairing of all functions m′
j , in turn, induces the following function ϕ:

• ϕ: range(f1∧...∧fn) → range(m1∧...∧mk), such that ϕ(〈f1(o), .., fn(o)〉) =
〈m1(o), .., mk(o)〉

Intuitively, it is the graph of ϕ that constitutes the basis for the representation
of a dimensional database as a relational database. The following definition sum-
marizes our discussion so far, by defining the graph of ϕ as a relational table,
called the ”fact table”.

Definition 8 - Fact Table
Given a dimensional schema S and a dimensional database over S, define the
fact table of S, denoted FT (S), or FT for short, to be the relational table whose
attributes, dependencies and tuples are defined as follows:
Attributes:
For each dimensional arrow fi : O → Di, i=1,.., n, define Di to be an attribute
of FT with the same domain as in S; and for each measure arrow mj : O → Mi,
j=1,.., k, define Mj to be an attribute of FT with the same domain as in S. As
a result, the table FT has the following n + k attributes: D1, .., Dn,M1, .., Mk.
Keys:
The only functional dependency of FT is {D1, .., Dn} → {M1, .., Mk}; this de-
pendency is actually the representation of the function ϕ (therefore the set
{D1, .., Dn} is the only key and FT is in Boyce-Codd Normal Form).
Tuples:



For each o in O, the tuple 〈f1(o), .., fn(o),m1(o), ..,mn(o)〉 is in FT .

For example, referring to Figure 3, the fact table of S will have the following
schema: FT (Date, Store, Product, Sales), with the first three attributes making
up the key. Each tuple of this table describes the number of products sold in a
given store, at a specific day, and this is seen as the basic fact of concern to the
enterprise (hence the name ”fact table”); dimensional levels and measure levels
are seen as auxiliary parameters for analysing the data of the fact table.

The fact table FT actually embeds the image of each object o of O, under
the dimensional functions and the measure functions. Once the fact table has
been created, the dimensional functions f1, .., fn, and the measure functions
m1, .., mk, can be recovered from this table using the basic property expressed
by Proposition 1: fi(o) = πDi(FT (o)) and mj(o) = πMj (FT (o)), where FT (o) =
〈f1(o), .., fn(o),m1(o), ..,mn(o)〉. In other words, we have the following:

• The dimensional functions and the measure functions of the dimensional
database are represented by the projections πDi and πMj of the fact table,
in the relational representation, i = 1, 2, .., n and j = 1, 2, ..k.

It remains now to see how the non-dimensional and non-measure functions
can be represented in the relational representation (i.e. those functions whose
domain of definition is not O). In principle, we could define one binary table
for each non-dimensional and each non-measure arrow of S. The resulting set of
tables together with the fact table would then constitute a relational represen-
tation of S. However, as we have seen, the evaluation of OLAP queries requires
several function compositions along paths, and several function pairings. These
operations would require several joins in the relational representation, each time
an OLAP query is submitted to the system.

Therefore it seems natural to represent all paths of a given dimension in a
single table. This table will contain all joins concerning that dimension, which
in this case can be calculated just once (or so to speak ”pre-calculated”), at the
time when the relational representation is created; and similarly for all paths of
a given measure. These observations lead to the definition of one relational table
per dimension, and one relational table per measure.

Definition 9 - Dimension Tables and Measure Tables
Given a dimensional schema S, and a dimensional database over S, we call D-
dimension table of the relational representation of S, denoted DT (S), or DT for
short, the relational table whose attributes, dependencies and tuples are defined
as follows:
Attributes: For each dimension Di of S, define a table DTi with attributes all
levels of Di (each of these attributes with the same domain as in S), i = 1, .., n;
and for each measure Mj of S, define a table MTj with attributes all levels of
Mj (each of these attributes with the same domain as in S), j = 1, .., k.
Functional dependencies:
For each dimension Di, each arrow L → L′ between levels of Di becomes a func-
tional dependency of the table DTi in the relational representation, i = 1, .., n;



and for each measure Mj , each arrow L → L′ between levels of Mj becomes
a functional dependency of the table MTj in the relational representation, j =
1, .., k. As a result, each dimension Di is the only key of the table DTi, and each
measure Mj is the only key of the table MTj , i = 1, .., n, j = 1, .., k.
Tuples:
For each dimension Di, perform a relational join between all function graphs
assigned to arrows between levels of Di in the dimensional database over S, and
assign the result to the table DTi of the relational representation, i = 1, .., n
(and similarly for each measure Mj , j = 1, .., k).

The fact table, together with all the dimensional and all the measure tables thus
defined, constitutes a representation of the dimensional database as a relational
database. In our running example, this relational representation consists of the
following tables:

Fact table: FT (Date, Store, Product, Sales)
Table of dimension Date: DateT (Date, Month)
Table of dimension Store: StoreT (Store, City, Region)
Table of dimension Product: ProductT (Product, Category, Supplier)

Note that as there is only one measure, and it has no non-base levels, there is no
measure table (Sales is an attribute in the fact table). Also note that the base
level of every dimension is an attribute in both the fact table and the correspond-
ing dimension table. In fact, each of the base levels, Date, Store and Product,
is a key in its dimension table, and all three of them, collectively, constitute the
key of the fact table. Finally, note that the following referential constraint holds,
for each dimensional table DTi: πDi(FT ) ⊆ πDi(DTi)

The above representation of a dimensional schema as a relational schema
consisting of a fact table, a set of dimensional tables and a set of measure tables,
is known as the star-join schema, or star schema for short [13].

Summarizing our discussion so far, we have seen how a dimensional database
can be represented as a relational database over a star schema. Let us see now
how an OLAP query over a dimensional database can be evaluated in the star
schema representation. The basic tool for doing this is an obvious extension of
Proposition 1 that we shall explain now.

Consider a set of r functions with common source X, say w1 : X → Y1, ..., wr :
X → Yr, and a subset of s functions, say wi1, ..., wis. Then wi1 ∧ ... ∧ wis =
πYi1,..,Yis ◦ (w1 ∧ ... ∧wr), i.e. any sub-pairing wi1 ∧ ... ∧wis of w1 ∧ ... ∧wr can
be reconstructed from w1 ∧ ... ∧ ...wr by projection of Y1 × ... × Yr over the set
{Yi1, ..., Yis}.

Now, if we join the fact table and a dimensional table DTi, then we obtain
a table that contains the (representations of) the following functions:

– all functions of the dimension Di, and all measure functions
– all compositions of functions along a path with origin Di and all pairings of

such compositions



Therefore any path expression whose target Yi1 × ... × Yis consists only of
levels of dimension Di is represented by the projection πYi1,..,Yis of the join be-
tween FT and DTi. Arguing in a similar way, one can extend this fact as follows:
any path expression whose target Yi1 × ... × Yis consists of levels belonging to
two dimensions Dj1 and Dj2 is represented by the projection πYi1,..,Yis of the
join between FT , DTj1 and DTj2 (the extension to more than two dimensions
is obvious). In particular, the unit function of the dimensional database is rep-
resented by the projection πφ of the fact table FT over the empty set. Note
that projection over the empty set always returns the empty tuple, thus πφ is
a constant function, as required for the representation of the unit function (see
Definition 2).

We are now ready to define the evaluation of an OLAP query over a dimen-
sional schema S, using the star schema representation of S. Let Q = (〈u, v〉, op)
be an OLAP query over a dimensional schema S, and suppose that the aggre-
gation level of Q is Y1 × ...× Ys and the measure level of Q is Z1 × ...× Zp (i.e.
target(u) = Y1 × ... × Ys and target(v) = Z1 × ... × Zp). Then the evaluation of
Q in the star schema representation of S is done as follows:

Step 1 Take the join of the fact table FT with each dimension table containing at
least one non-base level among Y1, ..., Ys, and each measure tables containing
at least one non-base level among Z1, ..., Zp. Call the result of this join J .

Step 2 Compute the projection πY1..Ys(J); this projection represents u
Step 3 Compute the inverse projection π−1

Y1..Ys
: Y1 × ...×Ys → J ; the result is a set

of pairs {〈y, By〉/y ∈ Y1 × ... × Ys}, where By = π−1
Y1,..,Ys

(y)
Step 4 Let Y = {Y1, ..., Ys} and Z = {Z1, ..., Zp}. For each y ∈ Y1 × ...× Ys, do the

following:
4.1 Let By = {t1, .., tny}. Form the tuple Ty = 〈πZ(t1), .., 〈πZ(tny)〉; this

tuple contains the projections over Z of all tuples in By (and note that
each πZ(ti) is the measure associated with πY (ti))

4.2 Apply the operation op on the tuple Ty, let RESy be the result, and
define ansQ,δ(By) = (y, RESy).

To illustrate these evaluation steps, consider once more the OLAP query
Q = (〈g∧(h2 ◦h,m〉, sum) of our running example, which asks for the total sales
by store and supplier. The aggregation level of this query is Store × Supplier
(which is the target of g ∧ (h2 ◦ h)), the measure level is Sales (which is the
target of m), and the operation is sum. Applying the above steps we proceed as
follows:

Step 1 Compute the join J = FT ◃▹ ProductT
Step 2 Compute the projection πStore,Supplier(J)
Step 3 Compute the inverse π−1

Store,Supplier(y), for each y ∈ range(πStore,Supplier)
Step 4 For each y ∈ range(πStore,Supplier), do the following:

4.1 Let By = {t1, .., tny}. Form the tuple Ty = 〈πSales(t1), .., 〈πSales(tny)〉;
this tuple contains the projections over Sales of all tuples in By (and note
that each πSales(ti) is the measure associated with πStore,Supplier(ti))



4.2 Apply the operation sum on the tuple Ty, let RESy be the result, and
define ansQ, δ(By) = (y,RESy).

Note that, as Store is a base level (therefore an attribute of the fact table),
the store table, StoreT, does not participate in the join of the first step; only the
product table participates, as Supplier is a non-base level contained in this table
(and not contained in the fact table). Also note that if the aggregation level and
the measure level of an OLAP query consist only of base levels, then step 1 will
be omitted altogether. Indeed, as all base levels appear in the fact table, no join
is needed in this case. For example, an OLAP query asking for the total sales by
store and product will not use step 1 in its evaluation.

Now, to carry out the above steps in the star schema representation, we need
inversions of projections, and such inversions are not possible in the relational
algebra. However, the Group-by instruction of SQL does support the inversion
of projections, and therefore it can support the evaluation of OLAP queries in
our model. To illustrate this, consider once again the OLAP query Q = (〈g ∧
(h2 ◦ h),m〉, sum) of our running example. The SQL instruction that represents
this query is the following:

Select Store, Supplier, sum(Sales) as RES
FromJoin FT, ProductT
Group by (Store, Supplier)

In the Select clause, the attributes Store and Supplier form the aggregation level;
sum(Sales) means that Sales is the measure level and sum is the operation to be
applied on Sales-values; and ”RES” is a (user given) name for the result (compare
also with a similar construct proposed in the previous section). The From clause
indicates that the tables FT and ProductT are to be joined. Finally the Group-
by clause indicates that this join is to be projected over the attributes Store and
Supplier (and the projection is to be inverted to partition the set of tuples in
the join). The restriction operation of our functional algebra is also supported
by the Having clause of SQL. In fact, SQL offers several other possibilities as a
supporting (commercial) language for our model. However, a detailed discussion
of this subject lies outside the scope of the present paper.

6 Concluding Remarks

We have presented a formal model for dimensional data analysis, offering a clear
separation between schema and data, as well as a simple yet powerful func-
tional algebra for data manipulation. We have also explained how our model can
serve as a formal basis for multi-dimensional OLAP (MOLAP) and for relational
OLAP (ROLAP).

Two important aspects of the model that are not treated in this paper are its
expressive power and the computational complexity of OLAP queries. Regarding
expressive power, we believe that one can gain useful insights by studying how



the operations of the relational algebra can be embedded in our functional alge-
bra. The case study presented in section 5 should prove useful in this respect. As
for computational complexity, the most appropriate context for its study seems
to be the lattice of partitions of the set O of all objects. Indeed, as we have seen,
during the evaluation of each OLAP query, the inversion of the dimensional
expression induces a partition of O, and this partition is the basis for all subse-
quent calculations. Work on computational complexity and optimization issues
is ongoing, based on previous work by the author [15], and will be reported in a
forthcoming paper [16].

A possible generalization of the model is based on the following observation.
Although the distinction between dimension arrows and measure arrows seems to
be necessary for OLAP applications, this distinction is not essential in principle.
However, what is essential in every case is the presence of a ”representation
constraint” allowing different objects to be differentiated, or ”separated” by
their coordinates.

Another generalization of the model concerns the existence of multiple busi-
ness applications in the same enterprise. In our example we have considered one
such application, concerning the sales of products over time in different stores; it
was modeled by a dimensional schema with origin O, whose objects represented
sales records. A different business application (in the same enterprise) may con-
cern investments; it will be modeled by a different dimensional schema with a
different origin O′, whose objects represent investment records. Although the
two dimensional schemas may share some of their attributes, they will not be
the same in general. Therefore the question arises how one does ”joint” analysis
in order to correlate results from both applications. Note that the need for two
different dimensional schemas may arise even within the same business applica-
tion, when one wants to consider the same data but from different perspectives
(each perspective corresponding to a different set of dimensions). In relational
terminology, this happens when the set of attributes has two or more different
keys.
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