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Résumé De nombreux problémes d’optimisation dans les réseaux peuvent
étre modélisés par des problémes de plus courts chemins. Ce probléme a
été largement étudié et peut étre résolu en temps polynomial lorsque la
configuration du réseau est fixe. Cependant, dans les applications réelles,
le réseau peut étre sujet a des fluctuations. Celles-ci peuvent étre la
conséquence de pannes mais aussi de parametres économiques. En effet,
les opérateurs de télécommunications peuvent étre amenés a étendre ou
réduire leur réseau.

Pour prendre en compte ces changements, nous modélisons cette situa-
tion par une séquence de réseaux, chacun représentant I’état du réseau
a un instant ¢t. L’objectif consiste alors & trouver une séquence de plus
courts chemins, un par état. Cependant, changer un chemin peut induire
des perturbations locales (déconnexion temporaire de certains clients).
Pour les modéliser, nous introduisons deux coits supplémentaires sur
les liens, I'un correspondant au cotit de désinstallation de ce lien (s’il
était actif) et 'autre au colit d’installation (s’il n’était pas actif). Le
plus court chemin consiste alors & trouver les plus courts chemins suc-
cessifs qui minimisent la somme de chacun de ces chemins plus le coiut
des pertubations.

Nous montrons dans ce rapport que ce probléme est NP-complet méme
lorsque 'on considére uniquement deux états du réseau et que le premier
réseau est un chemin. Nous proposons une relaxation combinatoire et
une relaxation semidéfinie du probléme. Des résultats numériques sont
donnés sur des réseaux générés aléatoirement.

Abstract In real life applications, network structures are subject to un-
certainty due to arc failure or economical phenomena. In this paper, we
introduce a variant of the robust shortest path in which uncertainty is
also related to the network structure. Thus, network evolution is rep-
resented by scenarii. The problem consists in finding a path between a
given pair of nodes for each network state. Moreover, changing an ex-
isting path has a cost corresponding to deallocation and re-allocation
costs. We first show that this problem is NP-complete, then that it can
be formulated as a 0-1 quadratic program. We give a combinatorial and
a semidefinite relaxations. Numerical experiments are given on set of real
life networks instances.
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1 Introduction

Shortest path problem is one of the most fundamental problems in network de-
signs area. However, in this problem, the network configuration is deterministic
and known in advance, whereas risk and uncertainty both involve randomness.
This assumptions make the static model not adequate to model real life prob-
lems. Indeed, cost coefficients or network structure could vary due to physical
or economical phenomena. Problems under uncertainty are known as robust op-
timization problems.

The Robust Shortest Path problem has been studied widely the last decade.
Three mains models for dealing with uncertainty have been proposed. In the first
one, data is structured by taking weight as interval range defined by known upper
and lower bound and without assuming any probability distribution ( [9,13,14]).
In the second one, uncertainty is modelled by means of a discrete scenario set
( [4,11,22]). In this case, scenario represents a potential realization of the arc
weights which occurs with a given probability level. Finally, in the last one, arc
weights uncertainty is represented by fuzzy numbers and possibility models are
used ( [3,5,10,12,16-18]).

Typically, uncertainty in the network structure is led to the uncertainty in
the arc state. In Robust Shortest Path problem, the uncertainty is only related
to link weights and does not take into account the possible evolutions of the
network structure itself. Telecommunication network is based on the market
growing evolutions. Thus, it may increase and sometimes decrease when telecom
companies sell a part of their networks. An existing path between two endpoints
then may appear less profitable after adding new connections or nodes, and
may have to be reconsidered. Further costs may appear during this evolution,
especially for resource deallocation and re-allocation. In this paper, we introduce
a variant of the robust shortest path in which the uncertainty is directly related
to the network structure. Thus, the network evolution is represented by scenarii.
In this model, routing consists in finding an optimal sequence of paths taking
into account the network structure evolution. Moreover, changing existing path
may create local perturbation which can be formulated in terms of cost. Thus,
a sequence of paths will be optimal if it minimizes its total weight cost plus the
price of the number of perturbations. We call this problem Robust Routing in
Changing Topologies, RRCT for short.

In Section 2, we introduce the problem and show that it is NP-complete even
with simplified assumptions in Section 3. We give a simple n-approximation,
where n is the number of considered scenarii. In Section 4, we give its mathe-
matical formulation, a combinatorial and a semidefinite relaxations. In Section 5,
numerical results are given on set of real like networks instances. Finally, we draw
a conclusion and address some open questions in Section 6.
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2 The Robust Routing in Changing Topologies Problem

2.1 Definition

We consider a set G of s weighted digraphs G; = (V;, E;), where V; denotes
the set of vertices, and E; C V; x V; the set of edges. Moreover, we assume
that V; C Vi1 and E; C E;41. To simplify, we say that G; C Giy1, i.e., G; is
sub-graph of G;;1. We define F as F; and V as V; for G,.

Beside its weight, an edge has an installation cost and an uninstallation cost.
Formally, we definew : E - N, v : E - Nand é : E — N as the weight function,
the installation cost function and the uninstallation cost function respectively.
The problem considered is to find a path X; in each graph G; between two given
vertices o and d (note that o and d belong to V; for all 7). This sequence of paths
(Xi)ieq1,....s}, called X, has to minimize the total cost, i.e., the transition plus
weight costs. The transition cost is composed of uninstallation cost of the subset
of arcs of X; \ X;4+1 plus installation cost of the subset of arcs of X;4+1 \ X;.

Any cost function ¢ € (w,t,d) on the arcs of G is clearly additive. We define
c(X) = > ,ex c(z) for any set of arcs X.

Formally, we have to minimize the function:

PX) = 3 wlX0) +0X0) + 3606\ Xopt) + X\ X)) (1)

To establish the complexity of this problem, we formulate it as a decision
problem:

Robust Routing in Changing Topologies Decision Problem (RRCTd)
Instance:
s graphs G; = (V;, E;) such that G; C G411
w:E—-N1:E—-N§:E—N
two vertices o and d; and an integer b
Question:

Does there exist a sequence X of s paths between o and d
such that p(X) < b?

We call RRCT the corresponding optimization problem. We give an example
of this problem.

2.2 Example

In this section, we give an example of RRCT problem with only two graphs.
Let G1 and G2 be the graphs defined by Vi = {0,a,d}, E1 = {(0a), (ad), (od)},
Vo ={o0,a,b,d} and E; = {(0a), (ad), (od), (0b), (bd)}. Each edge is defined by
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Figure 1. Example with 2 graphs

a triplet (w,t,d) representing its weight cost, its installation and uninstallation
costs respectively. Thus, (oa) = (ad) = (4,1,10), (od) = (10,1,1) and (ob) =
(bd) = (1,1,1). Figure 1 illustrates these graphs.

For the sake of simplicity, we note C; the path ((od)), C2 the path ((oa), (ad))
and C3 the path ((ob), (bd)). Let us evaluate the cost of each solution. If X; = Cy
and Xy = Cy, X1 \ Xo = X; and X5 \ Xi = Xs. Then, the uninstallation
cost is equal to 0(X; \ X2) = §(X1) = 1. In the same way, installation cost
is equal to ¢(X2 \ X1) = «(X2) = ¢((0a)) + ¢((ad)) = 2. Thus p((X1,X2)) =
u(X1) + w(X1) + 6(X1 \ Xa) + ¢(X2 \ X1) + w(X2) = 22. Each solution cost is
reported in the table 1.

X1 | Xo|w(X1) + o(X1)[0(X1 \ Xo)|w(X2) (X2 \ X1)|p(X1, X2)
Ci|Ch 11 0 10 0 21
C1|Co 11 1 2 22
C1|Cs 11 1 2 16
C2|Ch 10 20 10 1 41
C2|Co 10 0 0 18
C>|Cs 10 20 2 34

Table 1. Costs of all solutions

We show that the optimal solution is (Cy,Cj3) although the shortest path
of graph G is C2. In the next section, we focus on the complexity of RRCTd
problem.
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3 Problem Complexity

In this section, we focus on the complexity of RRCTd. We show that it is NP-
complete even with only two scenarii and when the first graph is a path. The
reduction is done from the Hamiltonian Circuit problem [6].

Theorem 1. Problem RRCTd is NP-complete even for a sequence of two graphs
and when the first graph is a simple path.

Proof. Tt is easy to see that RRCTd belongs to NP. Indeed, the total cost of a
given sequence of paths (X1, X») is computed in polynomial time. To prove the
NP-completeness, we reduce Hamiltonian Circuit problem into RRCTd problem.

Hamiltonian Circuit Problem (HC)
Instance:
a graph G = (V, E)
Question:

Does G contain a Hamiltonian Circuit

(i.e. a simple circuit which passes through every vertex exactly once)?

Let G = (V, E) be an instance of Hamiltonian Circuit problem. We derive
two graphs G = (V1, E1) and Gy = (V3, E») from G. Let n and m denote the
number of vertices and the number of arcs of G.

The construction is depicted in Fig 2. We associate an arc s; of weight 0
to each vertex vp of V. Denote head(sy) and tail(sy), origin and tail of sy
respectively. For each k € {1...n}, we add an arc e; of weight n from head(sy)
to tail(sg+1)- Finally, we add an arc s{ of weight 0 such that tail(s}) = head(e,,).
We call o the head of s; and d the tail of s{. This achieves the construction of
the graph G, which is a simple path.

sl el s2 e2 s3 e3 sz ez s'l
O —p > »—yp—pp—p -------- —_— » d
graph G1
sl el s2 e2 s3 e3 sz ez s'l d
o — —pp — —P »— -------- —»\;—P
f1 f3 m
f2
graph G2

Figure 2. Scenarii for NP-completeness
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The graph G2 is obtained from G; by adding an arc f; of weight 0 from
head(sy,) to tail(s,) if £ # 1 and an arc linking vertex vy, to vertex v, exists in G.
If £ =1, we add an arc f; of weight 0 from head(sy,) to tail(s}). Let b be equal
to n2. All transition costs are equal to zero except the uninstallation cost of arc
s; which is equal to n2.

edge type
ei|si| fi
w [(n|0] 0
0
5 |0|n? 0

Table 2. Installation and uninstallation costs

Note that this construction can be done in polynomial time. Let (X7, X3) be
a solution of the RRCTd problem. According to ( 1), the cost of this solution
is:

p((X1,X2)) = w(X1) + w(Xz) + o(X1) +6(X1 \ Xo) + (X2 \ X1)  (2)

As path X; is composed of n arcs s and n arcs e; (recall that s; is repeated),
its weight cost w(X1) is equal to n?. Moreover, installation cost of arcs (e;)1<j<n
and (Sk)lgkgn is zero:

w(X1) + o(X1) = n?

Let n. be the number of arcs (e;)i1<j<n used in the path X, and n; be the
number of arcs (sg)1<k<n not used in X,. Thus, weight w(X>) is equal to ne X n.
Installation cost of path X, is zero by construction and uninstallation cost is
equal to ngyn? (recall that §(s;) = n?). Thus, we have:

U)(XQ) + (5(X1 \XQ) + L(X2 \ Xl) =Nen + nsn2

Therefore, the total cost of two paths sequence is given by:

o((X1,X2)) = nen + (1 +ng)n”

This cost is less than or equal to b if and only if n, and ngs are equal to
zero. This means that path X, passes through every arcs (si)1<k<n and no arc
(ej)1<j<n- Then, path X, is only composed of some arcs (f;)1<i<m and every
arc (sk)1<k<n-

If the instance of Hamiltonian Circuit Problem is satisfiable, we can find
a path between s and t in graph G, using only arcs (f;)i<i<m and all arcs
(sk)1<k<n; arcs (ej)i<j<n are not used. Thus, the parameters n. and n, are
equal to zero and the instance of RRCTd is satisfiable.
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Conversely, assume that the instance of problem RRCTd is satisfiable. Then,
there exists a path in G5 using only subset of arcs (f;)i<i<m and every arc
(sk)i<k<n- We can see that the arcs used in X, gives a Hamiltonian Circuit in
graph G. Indeed, it gives a path using only the arcs of the graph G and going
through every vertex (si)i<k<n of graph G. O

Note that G2 may not be simple. This can be easily avoided by adding new
vertices in Gy, splitting the edges of type e into two, preserving the same global
cost of the initial solution.

We consider the general case of sequence of s scenarii. One could consider
large transition. In this case, if X7 denotes the shortest path of graph G, solution
S = (X5,..., X7) is a feasible solution of RRCT problem. Indeed, X; belongs
to each graph G; for i € {1,...,s}. Moreover, S is optimal. This remark leads
to the following lemma.

Lemma 1. The solution S that consists in taking (X5,...,X7) provides a s-
approzimation for the RRCT problem.

Proof. Let S = (X1,...,X,) be the optimal solution of the RRCT problem and

p(S) its cost. Clearly, we have:

> w(X7) + (X7)
o(S) = w(X7)

5
N
[
»
X

g
(s
+
>

-

O

Generally, this bound is tight. To illustrate it, we construct a sequence of s
graphs in which all transition costs are equal to zero. The length of the shortest
path of the first graph is equal to a constant k. The shortest path of the following
graphs is always the same and has a length equals to 1. Thus, the cost of the
solution obtained by this way is equal to sk. The optimal solution is composed
of the shortest path of the first graph and the shortest path of the following
graphs. Its cost is equal to k + s — 1.

4 Mathematical formulations

As shown before, RRC'T'd is NP-complete. We focus on the associated optimiza-
tion problem, called RRCT problem. We first formulate RRCT as a quadratic
program. Then, we provide a combinatorial relaxation of RRCT. Finally, we
propose a semidefinite relaxation of this problem. All these formulations will be
used in Section 5.
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4.1 Mathematical formulation of RRCT

In this section, we give a 0 — 1 quadratic programming formulation of RRCT
problem.

Let a:fj be a binary variable equals to 1 if the arc from node i to j of graph Gy,
belongs to path X, and 0 otherwise. The objective function can be formulated
as:

Y2
P1 ~ ~ ~
~ ~ ~ s
p(X) = Z (wij+Lij)lej+Z Z Wizl +
(4,5)€E1 k=2 (i,j)€Es
»3 ®a
s—1 [ ~ - ~ - -\ ~
Yol 2 dueli-afh 4 D0 w1 -aly) 3)
k=1 \ (4,j)€Ex (3,3) € Er+1

where ; corresponds to the weight cost plus the installation cost of path Xi;
2 is the weight cost of paths (X;)2<i<s; 3 is the uninstallation cost of the arcs
of path X}, which are not in path X;_;. In the same way, 4 is the installation
cost of arcs of path Xj11 which are not in Xj. To express that the solution is
composed by a path for each graph of the sequence, we define F*(u,v) the flow
conservation constraints between nodes v and v in Vi by:

F¥(u,v) : Z a:fj— Z xfi—bzo

J:(i,5)EER J:(§,0)EE
lifi=u,
where b= —1ifi=v, Vi€ V}

0 otherwise

Problem RRCT can be formulated as:

rmingo(X)
s. t.
F¥(o,d) Vke{l...n} (4)
(RRCT)q Yo <1 VieV, Vke{l...s} (5)
ak F*(o,p) Vp,q€ Vi Vke{l...s} (6)
ak F*(q,d) Vp,qeVy Vke{l...s} (7)
| 2k €{0,1} Vi,jeV; Vke{l...s}

Constraints (4) represent the flow conservation constraints. They ensure that
for each scenario k in {1,...,n} there is a path between o and d. Constraints
(5) limit the degree of each node of the path to 1 to avoid potential cycles.
Constraints (6) and (7) ensure that the obtained solution is acyclic. Indeed,
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without these constraints, we show in the next section that the solution could
contain independent cycles. We now provide a combinatorial relaxation of RRCT
problem.

4.2 Combinatorial Relaxation of RRCT problem

We call a combinatorial relaxation a new probem formulation composed of a
subset of original problem constraints. It provides easily lower bounds for the
original problem [15]. In this section, we present a combinatorial relaxation of
RRCT problem. Constraints (6) and (7) are removed from the model. We next
show that it provides a relaxation of RRCT problem. Let consider the following
program :

min p(X)

5. t.
F*(o,d) Vke{l...s} ()
af; €{0,1} Vi,je€Vi Vke{l...s}

(RRCTr)

Let’s show in the following that RRCT'r only provides a relaxation of our
problem. Let’s consider RRCT instance used in the proof of Theorem 1. It is
composed by G; and G2 which are simple path and general graph respectively.
In this case, all (a:,lj)(,-j)e g, are known ( all are equal to 1) and the objective
function is not any more a quadratic function, but a linear function:

o(X2) = E(i,j)eEl (wi; +Lij)lej+z(i,j)eE2 wz’jmz?j“‘Z(i,j)eEl (siszlj(l_m?j)"_
E(i,j)eEg Lingj(l - 37%])

p(Xo)= Y (wi+u)+ Y wgzhm+ Y G(l—ap)+ Y el

(i,j)€EE1 (4,7)EE2 (i,j)EE1 (i,j)EE>

Furthermore, all the constraints are linear and, since they represent flow
constraints, the associated matrix is totally unimodular. Thus, the RRCTr is
polynomially solvable.

Let us consider now the RRCT instance obtained from the proof of The-
orem 1, where the graph considered for the hamiltonicity test is given by Fig-
ure 3. Obviously, this graph is not Hamiltonian. The optimal solution of RRCT'r
problem is X» ={(5,6),(6,7),(7,8),(8,9),(9,10), (10,5) } U { (1,2), (2,11), (11,12),
(12,3), (3,4), (4,13), (13,14) } leading to the solution given by Fig 4.

According to the objective value and its expression in the original problem,
graph G5 would have been Hamiltonian, which is not true. Thus, RRCTr is
only a relaxation of RRCT problem and its resolution can only provide lower
bounds. Note that in this particular case, RRCT solves the longest cycle of the
graph G containing a given node (here a) whereas RRCT'r finds only a maximal
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Figure 3. corresponding solution in graph G

Figure 4. solution of RRCTr in graph G»

covering by cycles of G. Based on this, we note that the total cost of RRCT'r
is equal to 36 and RRCT total cost is equal to 144. It does not provide some
constant factor of approximation for the RRCT problem. However, we show in
Section 4.3 that this relaxation may be useful.

4.3 Relationship between RRCT and RRCTr

It is easy to see that Constraints 6 and 7 are redundant if the optimal solution
of RRCTr problem does not contain any independant cycle. In this case, the
RRCTr problem is sufficient to solve the original problem.

Theorem 2. If the optimal solution of RRCTr problem is composed of n paths
between s and t, then this solution is optimal for RRCT problem.

Proof. Let S be the optimal solution of RRCTr and S the optimal solution of
RRCT. Tt is easy to see that S is an upper bound of RRCT since it is a feasible
solution of RRCT problem. It is also a lower bound of RRCT since it is a feasible
solution of RRCT'r. O

Heuristically, if P; denotes the part of this solution which is a path between s
and t in graph G;, and C; denotes the part of the solution which is an independent
cycle in graph G;, the solution only composed of (P;);c1...n is optimal if all the
(Ci)ic1...n are empty sets.

However, this algorithm often gives very bad lower bounds. Therefore, RRCT
can be solved either by linearizing its quadratic terms or by using semidefinite
programing relaxation (SDP).

4.4 Semidefinite Relaxation of RRCTr

Semidefinite relaxation is a particular case of convex programming. It consists
in optimizing a linear function subjet to linear constraints. Thus, it is a gener-
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alization of linear programming in which the vector of variables is replaced by a
semidefinite positive symmetric matrix.

The last decade, semidefinite programming made possible to obtain bounds to
NP-hard problems in polynomial time. The seminal work of Goemans [7] propose
a .87856-approximation algorithm for Max Cut problem based on semidefinite
program. Recents studies show that semidefinite programs could be useful for
solving quadratic 0-1 programming, as Quadratic Knapsack problem ( [8]). For
more details on the semidefinite programming, see [19,20].

Solve a semidefinite program could be done by using interior point or spectral
bundle method. The second way need to know a bound on the trace of the
solution to converge polynomially. There exists free solvers using interior point
method like [1,2].

A semidefinite program is defined by:

minC e X

s.t.
tr(A;X)=b;Vie {1,..,m}
X >0

SDP

where C, A; and X are n x n matrices and X is symmetric. X > 0 means X
is positive semidefinite matrix i.e. Vz € R", 2! Xz > 0 (see [21] for more details).
Operation e is the inner product of matrices and is defined by :

CeX = iicin,-j = TT(CX)
=1 i=1

We proposed a SDP relaxation for solving RRCTr. We note RRCTqp the
corresponding problem.
Let first write our problem in its matricial form.

min ztPx
s.t.
(RRCT)
Ak =ck Yk e {1,...,s}
z € REk=1"
where 2 = (Zlg,. .., Zp, py 15--->L52s-->Th, . 1), A" is the incidence ma-

trix of graph G and c* is a vector of R™ is defined by:

1 ifi=o
=< _1ifi=d

0 otherwise

and P is defined by:
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Wi — 5,-1- if i < myq
. . —1
Pii = § w;; — (51'3' — Lij fm+l<i< EZZI Nk
.- s—1
Wi — Lij if 4 > Zk:l ng

and

! ) I+1
—0;i — Lij _np <i < n
bij = ——= for Ef__ll . Elf_l M for2<i<s—1
2 =1 <J < Ek:l N

We can now formulate the semidefinite relaxation of our problem. It is given
as follows:

min Tr(WX)

.t.
(RRCT1)sap 4 ° i

t .t B W0
where X = e , W = ,
z 1 00

A}, is defined by:

and diag(B*) = (Li(AF),..., Ly, (A¥)) where L;(A¥) is the i‘" line of the
matrix A*.

Recall m; and n; are the number of edges and nodes of the graph G; re-
spectively. In the original problem, the number of variables is Z?:l m;. We also
have Y7, m; flow conservation constraints. In the (RRCT,qp) problem, the
number of variables is equal to (3", m;)?. The number of constraints is equal
to 231, m;. This formulation is used in Section 5.
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5 Numerical Results

In this section, we present the results of some numerical experiments. The frame-
work of the experiment is detailed in Section 5.1. We present the results for the
continuous relaxation in Section 5.2, and for the SDP relaxation in Section 5.3.

5.1 Networks instances

The experimental data instances consist of a growing sequence of real like graphs
generated by the authors. The transition costs (installation and uninstallation)
are constant for all edges of all the graphs. The graphs parameters are given in
Table 3.

Moreover, we run our relaxations on problems composed of two and three
graphs respectively. The problem, formulated as a quadratic program, is solved
by CPLEX 8.1 for the continuous relaxation and by DSDP4.7 for semidefinite
relaxation. The tests have been carried out on PC Intel Pentium 4 (CPU 2.60
GHz) using C++ code.

5.2 Continuous relaxation on Real Life Graphs

In this section, we test the influence of the graph size on the quality of the
solutions. We focus on graphs of different sizes (see Table 3). Each instance
is composed by a set of (two or three) increasing size graphs. For example,
we associate net50 with net4, net10 and net20. Moreover, we calculate paths
between different sources o and destinations d in order to have various examples.
Finally, we run our relaxations on instances composed of two graphs and three
graphs respectively.

Name |Nodes|Edges|Density (%)

net4 4 6 50
netl0| 10 45 50
net20| 20 | 190 50

net50 | 50 | 1219 49.75
net100| 100 | 4826 48.74
net150| 150 (10724 47.98
net200| 200 |18587 46.70
net250| 250 (28827 45.88

Table 3. Size of graphs
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Results on the instances of two real life graphs. We test the quality of the
solution obtained by a continuous relaxation of the integer quadratic program.
Results are presented in Table 4. The first column gives the data instances. The
second column corresponds to the average gap while the third column contains
the maximal gap. Both gaps are obtained with respect to feasible integer solu-
tions given by CPLEX. The last column presents the CPU Time. The results
are given according to the maximal size of the two graphs. Recall that if the size
of the largest graph is 50, this means that it has been associated with graphs of
size 4, 10 and then 20.

Name of the largest graph|Average Gap (%)|Maximum Gap (%)|CPU Time (s)
net20 10.87 13.02 0.06
net50 9.42 16.15 0.91
net100 7.17 16.38 12.76
net150 5.76 16.43 117.53
net200 4.81 16.49 334.98
net250 4.13 16.53 839.96

Table 4. Average Gap and Maximum Gap with a continuous relaxation on two graphs

As illustrated in Table 4, the maximum gap for a continuous relaxation varies
according to the maximal size of the two graphs. For real life graphs, the maximal
gap goes from 13% up to 16.53%. The average gap decreases for large instances
and goes from 10.87% down to 4.13%.

Results on instances of three real life graphs. We now test the impact of
the number of graphs on the quality of the solution. These results are presented
by Table 5. They are given according to the maximal size of the three graphs. As
for instances of two graphs, we associate each graph to the other smaller graphs.
For example, we put a graph of 50 nodes with graphs of 4 and 10 nodes, 4 and
20 nodes and finally 10 and 20 nodes. The columns of Table 5 give the average
and the maximal gaps with the integer solution given by CPLEX and the CPU
Time.

In the Table 5, we show that the maximum gap with a continuous relaxation
varies according to the maximal size of the three graphs. For three real life
graphs, the maximal gap goes from 11.06% up to 14.78%. The average gap
decreases for large instances and goes from 8.89% down to 7.28%. Our results
show that the maximal gap obtained for tests composed of two graphs is less
than the one composed of three graphs.
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Name of the largest graph|Average Gap (%)|Maximum Gap (%)|CPU Time (s)
net50 8.89 11.06 2.34
net100 8.51 14.50 40.16
net150 7.67 14.73 250.29
net200 7.28 14.78 1043.12

Table 5. Average Gap and Maximum Gap with a continuous relaxation on three real
life graphs

5.3 Semidefinite relaxation on Real Life Graphs

The results obtained by a semidefinite relaxation of problem RRCTr are given
in Table 6.

Name of the largest graph|Average Gap (%) Maximum Gap (%)|CPU Time (s)
net10 0.00 0.00 21.95
net20 0.53 3.21 520.90

Table 6. Average Gap and Maximum Gap with a semidefinite relaxation on two graphs

DSDP algorithm is based on interior point method and so, does not support
a large number of variables. Here, DSDP can only solve instances of less than
50 nodes. However, we can note that the maximal gap is samll and the average
gap is less than 1%, which out performs linear relaxation.

6 Conclusion

In this paper, we show that the Robust Routing in Changing Topologies problem
is NP-complete and present a formulation based on 0-1 quadratic program as
well as a combinatorial and a semidefinite relaxations of this problem. We have
proposed numerical results on different graphs with up to 250 nodes.

However, some questions remain open. Indeed, the problem is polynomial
when the transition costs are equal to zero or infinite. On the other hand, we
have seen in Theorem 1 that the problem becomes difficult when the transition
costs have a large amplitude. Further research are going on the impact of the
transition functions on the complexity of the problem, e.g., when these functions
are constant.
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