
Endpoint Extendible Paths in Dense Graphs

Guantao Chen ∗

Department of Mathematics and Statistics

Department of Computer Science

Georgia State University

Atlanta, GA 30303

Faculty of Mathematics and Statistics

Huazhong Normal University

Wuhan, China

Zhiquan Hu †

Faculty of Mathematics

Central China Normal University

Wuhan 430079, P. R. China

Hao Li‡

L.R.I., UMR 8623 du CNRS-UPS

Bât. 490, Universite de Paris-sud

91405-Orsay CEDEX, France

November 30, 2005

Abstract

Let G be a graph of order n. A path P of G is extendible if it can be extended to
a longer path from one of its two endvertices, otherwise we say P is non-extendible.
Let G be a graph of order n. We show that there exists a threshold number s such
that every path of order smaller than s is extendible and there exists a non-extendible
path of order t for each t ∈ {s, s + 1, · · · , n} provided G satisfies one of the following
three conditions:

• d(u) + d(v) ≥ n for any two of nonadjacent vertices u and v.

• G is a P4-free 1-tough graph.

• G is a connected, locally connected, and K1,3-free graph.

1 Introduction

We generally follow the notation of Chartrand and Lesniak [1]. All graphs considered in
this paper are simple finite graphs, i.e., graphs with finite number of vertices, without
loops, and without multiple edges. Let G be a graph. The vertex set and the edge set
of G are denoted by V (G) and E(G), respectively. We write G = (V (G), E(G)). For
convenience, we write V instead of V (G) and E instead of E(G) if the referred graph G
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is well understood. We call |G| = |V (G)| the order of G. In this paper, we reserve n for
the order of G. We define that

NH(v) = {w ∈ V (H) : vw ∈ E(G)} and dH(v) = |NH(v)|,

where v ∈ V and H is a subgraph of G. For convenience, let N(v) = NG(v), d(v) = dG(v),
δ = min{d(v) : v ∈ V } the minimum degree of G, and

σ2(G) = min{d(u) + d(v) : uv 6∈ E}.

Moreover, we define N [v] := N(v) ∪ {v} and name it the close neighborhood of v for
each v ∈ V (G). A subgraph H of G is called an induced subgraph of G if there exists an
X ⊆ V (G) such that H = G[X]. Let G − X = G[V − X]. For any two vertices u, v ∈ V
and an induced subgraph H of G, let uHv denote an arbitrary shortest path connecting
u to v in G[V (H) ∪ {u, v}] if it is connected.

For any positive integer k, let Pk denote a path of order k. A graph G is traceable if
it contains a hamiltonian path. Ore [13] proved that a graph G of order n is traceable if
σ2(G) ≥ n− 1. A graph G is path extendible if for every path Pk with k < |G| there exists
a path Pk+1 such that V (Pk) ⊆ V (Pk+1). Clearly, if a graph is path extendible then it is
traceable. Hendry [6] showed that most known sufficient conditions for traceable graphs
are also sufficient for extendible. In particular, he showed that a graph G of order n is
path extendible if σ2(G) ≥ n − 1.

A path P of a graph G is called a maximum path if |P | ≥ |Q| for all paths Q in
G. However, there are two different versions of maximal paths: vertex version and edge
version. A path P is vertex-maximal if there does not exist a path Q such that V (P )
is a proper subset of V (Q). A path P is called edge-maximal if there does not exist a
path Q such that E(P ) is a proper subset of E(Q). Clearly, all vertex-maximal paths are
edge-maximal paths. On the other hand, not all edge-maximal paths are vertex-maximal
paths. If G is a traceable graph, all vertex-maximal paths are hamiltonian paths. However,
many nontrivial problems arise naturally for edge-maximal paths. In this paper, we will
only consider edge-maximal paths. To avoid cumbersome notation, we simply call them
maximal paths. We notice that the following statements are equivalent:

• P is a maximal path.

• P cannot be extended from one of its two endvertices.

• No path contains P as a proper subpath.

For any graph G, we let S(G) = {|P | : P is a maximal path of G} and call it the
maximal-path spectrum of G. We also say that G realizes S(G). A set S of positive integers
is called a path spectrum if there exists a connected graph G such that S(G) = S. Note
that the condition of connectivity is important. Otherwise, all positive integer sets would
be path spectra.

The ultimate goal is to establish an efficient algorithm to determine whether a set S
of positive integers is a path spectrum. So far, there have been very little progress on this
direction. Connected graphs G with |S(G)| = 1 are investigated by Thomassen [14] and,
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independently, by Jacobson et al [9, 10]. Jacobson et al [8] show that all pairs of positive
integers are path spectra. Chen et al [2] show that there are infinitely many k-sets of
positive integers which are not path spectra for each integer k ≥ 3. Chen et al [3] studied
path spectra for trees.

In this paper, we investigate graphs G such that S(G) consists of consecutive positive
integers. A graph G is called a string path spectrum graph (SPS-graph) if there exists a
positive integer s such that S(G) = {s, s+1, . . . , n}, where n is the order of G. Clearly, all
SPS-graphs are traceable. The property of SPS-graphs are much stronger than traceable
graphs. We will show some well-known sufficient conditions for traceable graphs are
sufficient for SPS-graphs. The following one is an Ore-type result.

Theorem 1 Let G be a graph of order n. If σ2(G) ≥ n, then G is an SPS-graph.

A vertex set X of a graph G is a cut if G − X has more components than G does. A
cut X of G is minimal if there does not exist a cut Y of G such that Y is a proper subset
of X. A minimal cut X of G is called a skew-cut if G−X is a union of two disjoint cliques
A and B such that N(x) ⊃ V (B) for each x ∈ X and NA(x)’s, for all x ∈ X, form a
partition of A. Notice that, in the above definition, d(a) + d(b) = n − 1 for each a ∈ A
and b ∈ B. Clearly, if X is a skew-cut of G then it is the unique skew-cut of G. A graph
G is named a skew-joint graph if it has a skew-cut. An example of a skew-joint graph is
shown in Figure 1.

A X B

Figure 1: A Skew Joint Graph with |X| = 3

Theorem 2 Let G be a graph of order n. If σ2(G) ≥ n−1, then G is either an SPS-graph
or a skew-joint graph.

Some skew-joint graphs are SPS-graphs while others are not. We believe it is very
difficult to character these skew-joint graphs which are SPS-graphs. In the following, we
will discuss path spectra of some special skew-joint graphs. Let G be a skew-joint graph
of order n, X be the skew-cut of G, and A and B be the two disjoint cliques of G − X
such that N(x) ⊃ V (B) for each x ∈ X and NA(x)’s, for all x ∈ X, form a partition of A.
Let a = |A|, b = |B|, and s = |X|. Clearly a ≥ s. We will only consider the case that X is
an independent set, b ≥ s+1 ≥ 4, and |NA(x)| ≥ 3 for every x ∈ X. Let x1, x2, · · ·, xs be
a list of all vertices of X such that dA(x1) ≤ dA(x2) ≤ · · · ≤ dA(xs). For convenience, let
a1 = dA(x1) and a2 = dA(x2), i.e. a1 is the smallest value of dA(x) and a2 is the second
smallest value of dA(x) for all x ∈ X. Notice that a2 = a1 may happen. We assume that
a1 ≥ 3. Let P [u, v] be a maximal path of G. We observe the following facts:
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• If u ∈ A and v ∈ A, then |V (P )| ≥ |N [u] ∪ N [v]| ≥ a + 1.

• If u ∈ A and v ∈ X, then V (P ) ⊇ N [u] ∪ N [v] ⊇ A ∪ B ∪ {v}. Since P − v is
connected, V (P ) ∩ X 6= {v}. So, |V (P )| ≥ a + b + 2.

• If u ∈ A and v ∈ B. then V (P ) ⊇ N [u]∪N [v] = A∪X∪B = V (G), so that|V (P )| =
n.

• If u ∈ X and v ∈ X, then V (P ) ⊇ NA(u) ∪ NA(v) ∪ B ∪ {u, v}. Since P − u − v is
connected, there exists a vertex w ∈ X ∩ (V (P )−{u, v}) so that NA(w)∩V (P ) 6= ∅.
So, |V (P )| ≥ a1+a2+b+4. On the other hand, since G[A] is a clique and N(x) ⊇ B
for each x ∈ X, there exists a maximal path P [u, v] such that u ∈ X and v ∈ X and
|V (P )| = ℓ for each ℓ ≥ a1 + a2 + b + 4 as shown in Figure 2.

A X B

u

v

Figure 2: A maximal path connecting u ∈ X and v ∈ X

• If u ∈ X and v ∈ B, then V (P ) ⊇ NA(u) ∪ X ∪ B. Since P − u is connected, there
exists a vertex w ∈ V (P ) ∩ A that is adjacent to some vertex of X − {u}. Clearly,
w /∈ NA(u). So, |V (P )| ≥ a1 + s + b + 1.

• If u ∈ B and v ∈ B, then V (P ) ⊇ N [u] ∪ N [v] ⊇ X ∪ B, so that |V (P )| ≥ s + b.
Moreover, since N(x)’s form a partition of A, |V (P ) ∩ A| ≥ 2 if V (P ) ∩ A 6= ∅. So,
|V (P )| 6= b + s + 1. On the other hand, there is a maximal path P [u, v] such that
|V (P )| = ℓ for ℓ = b + s or ℓ ≥ s + b + 2 as shown in Figure 3.

u

v

u

v

AA XX BB

Figure 3: Maximal paths connecting u ∈ B and v ∈ B

If a1 + a2 ≤ min{s− 4, a− b− 3}, then S(G) = {a1 + a2 + b+4, a1 + a2 + b+5, · · · , n},
which implies that G is an SPS-graph.
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If a1 + a2 ≥ s + b, S(G) = {s + b, s + b + 2, s + b + 3, · · · , n}, which shows that G is
not an SPS-graph.

Let F be a graph. A graph G is F -free if G does not contain F as an induced subgraph.
The toughness of a non-complete graph G is defined by Chvátal [4] as

t(G) = min{
|S|

ω(G − S)
: S is a cut of G},

where ω(G− S) is the number of components of G− S. For a complete graph Kn, define
t(Kn) = ∞. A graph G is t-tough if t(G) ≥ t. Clearly, if G is hamiltonian, then G is
1-tough. However, the converse is not true. Chvátal [4] conjectured there is a universal
constant t0 such that all t0-tough graphs are hamiltonian. Although the conjecture is still
open, many results have been obtained along this direction. Jung [11] proved a complicated
result on hamiltonian graphs, which implies the following result.

Theorem 3 (Jung) If G is a P4-free and 1-tough graph of order n ≥ 3, then G is
hamiltonian.

We will prove a similar result as follows.

Theorem 4 If G is a P4-free and 1-tough graph, then G is an SPS-graph.

Another classic result for hamiltonian graphs involving forbidden subgraphs is due to
Oberly and Sumner [12].

Theorem 5 (Oberly and Sumner) If G is a connected, locally connected, and K1,3-
free graph, then G is hamiltonian.

We obtain a similar result as follows.

Theorem 6 If G is a connected, locally connected, and K1,3-free graph, then G is an
SPS-graph.

Due to lengths of those proofs, the proofs of Theorems 2, 4 and 6 will be placed to
sections 2, 3 and 4, respectively. Let P = P [u, v] be a path of G. We always assume
P [u, v] has an orientation from u to v. For any x ∈ V (P [u, v]), let x+ denote the successor
of x along P if x 6= v, and x− be the predecessor of x along P if x 6= u. Let x++ = (x+)+

if x 6= v, or v− and x−− = (x−)− if x 6= u, or u+. For an S ⊆ V (P [u, v]), we define

S+ = {x+ : x ∈ S} if v 6∈ S,

S− = {x− : x ∈ S} if u 6∈ S.

2 Proof of Theorem 2

Let G be a graph of order n such that σ2(G) ≥ n − 1. Suppose, to the contrary, G is
neither an SPS-graph nor a skew-joint graph. Since σ2(G) ≥ n − 1, G is connected. If
the connectivity κ(G) = 1, then G is a union of two cliques with exactly one vertex in
common, so it is a skew-joint graph, a contradiction. Therefore, G is 2-connected.
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Since G is not an SPS-graph, there exists a positive integer p such that G contains
a maximal path P = P [u, v] of order p and G does not contain a maximal path of order
p+1. Since G is traceable, p ≤ n−2. Let H = G−V (P ) and h = |V (H)|. Since h+p = n,
we have the following claim.

Claim 1 h ≥ 2.

Let

Y1 = {y ∈ V (H) : dP (y) ≥ 1},

Y2 = {y ∈ V (H) : dP (y) ≥ 2},

X1 = NP (Y1) = {x1, x2, · · · , xs}, and

X2 = NP (Y2).

Clearly, Y2 ⊆ Y1, X1 = NP (H), and X2 ⊆ X1. Without loss of generality, we assume that
x1, x2, · · ·, xs are listed in the order along the orientation of P [u, v] from u to v. We will
show Y2 = ∅ by sequence of claims.

Since P [u, v] is a maximal path, we have N(u) ⊆ V (P [u, v]) and N(v) ⊆ V (P [u, v]),
so that u, v 6∈ X1. By the definition of x1, we have that NH(x−

1
) = ∅. Let y1 ∈ Y1 ⊆ V (H)

such that x1y1 ∈ E. We claim N(x−
1
) ∩ N−

P (y1) = ∅. Otherwise, suppose there exist a
w ∈ NP (y1) such that x−

1
w− ∈ E. Then, P [u, x−

1
]P−[w−, x1]y1P [w, v] is a maximal path

of order p + 1, a contradiction. Therefore,

dP (x−
1
) + dP (y1) = |NP (x−

1
)| + |N−

P (y1)| = |NP (x−
1
) ∪ N−

P (y1)| ≤ |V (P )|.

Since dH(x−
1
) = 0,

n − 1 ≤ d(x−
1
) + d(y1) = dP (x−

1
) + dP (y1) + dH(x−

1
) + dH(y1) ≤ p + h − 1 = n − 1.

Then, the above equalities hold, so that NP (x−
1
) = V (P )−N−

P (y1) and NH(y1) = V (H)−
{y1}. In particular, H is connected.

We claim that N(u) ∩ N−
P (y1) ⊆ {x−

1
}. Otherwise, let w ∈ N−

P (y1) − {x−
1
} such

that uw ∈ E. Path P−[x−
1
, u]P−[w, x1]y1P [w+, v] is a maximal path of order p + 1, a

contradiction. Then, similar to the previous paragraph, we can show that N [u]− {x−
1
} =

V (P ) − N−
P (y1).

Claim 2 h ≥ 3.

Proof: Suppose, to the contrary, h = 2. Let V (H) = {y1, y2}, where x1y1 ∈ E. Since
N(x−

1
) = V (P ) − N−

P (y1) and v 6∈ NP (y1), we have x−
1
v− ∈ E(G). If uv 6∈ E(G),

P [u, x−
1
]P−[v−, x1]y1y2 is a maximal path of order p+1, a contradiction. Thus, uv ∈ E(G).

If dP (y1) ≥ 2, let xk 6= x1 ∈ NP (y1). If vx−
k ∈ E(G), G contains a maximal path

P [u, x−
1
]P−[v−, xk]y1P [x1, x

−
k ]v of order p + 1, a contradiction. Thus, vx−

k 6∈ E(G). Since
N [u] − {x−

1
} = V (P ) − N−

P (y1), uv− ∈ E(G). So P−[x−
k , u]P−[v−, xk]y1y2 is a maximal

path of order p + 1, a contradiction. Thus, dP (y1) = 1, so that y2xs ∈ E. Similarly,
we can show that dP (y2) = 1. Since h = 2, we have s = 2 and X1 = {x1, x2}. Since
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d(y1) = d(y2) = 2 and σ2(G) ≥ n − 1, X = X1 is skew-cut of G with A = {y1, y2} and
B = V (P ) − X, a contradiction. 2

Let ys ∈ Y1 ⊆ V (H) such that xsys ∈ E.

Claim 3 dP (y1) = 1 and dP (ys) = 1.

Proof: Suppose, to the contrary and without loss of generality, dP (y1) > 1. Let

NP (y1) = {xj1(= x1), xj2 , . . . , xjk
},

where j1 < j2 < · · · < jk and k ≥ 2. Let zi = x−
ji

and wi = x+

ji
for each i = 1, 2, . . ., k.

Since P is a maximal path, {y1}∪N−
P (y1) and {y1}∪N+

P (y1) are independent vertex sets
of G.

Since z1 = x−
1
, we restate some properties of x−

1
as follows.

d(z1) + d(y1) = n − 1, N(y1) ⊇ V (H) − {y1}, and N(z1) = V (P ) − N−
P (y1). (1)

In particular, we have that z1v, z1v
− ∈ E.

If uzi ∈ E for some i ≥ 2, then P−[z1, u]P−[zi, x1]y1P [xji
, v] is a maximal path of

order p+1, a contradiction. If ziv ∈ E for some i ≥ 2, then P [u, z1]P
−[v−, xji

]y1P [x1, zi]v
is a maximal path of order p + 1, a contradiction. Thus, ziu 6∈ E and ziv 6∈ E for each
i ≥ 2.

For each i ≥ 2, since zi 6∈ N(y1) and N(z1) = V (P ) − N−
P (y1), z1z

−
i ∈ E. Let

Q = P [u, z1]P
−[z−i , x1]y1P [xji

, v]. Since ziv /∈ E and ziu /∈ E, Q is a maximal path of
order p. We claim that N(zi) ∩ V (P [u, z1]) = ∅. Otherwise, let w ∈ V (P [u, z1]) such that
wzi ∈ E. Since ziu /∈ E, w 6= u. This together with N(z1) = V (P ) − N−

P (y1) implies
w−z1 ∈ E. Hence, P [u, w−]P−[z1, w]P−[zi, x1]y1P [xji

, v] is a maximal path of order p+1,
a contradiction. Thus, z−i is the first vertex along Q such that N(zi)−V (Q) 6= ∅. Then zi

plays the same role in G−V (Q) as y1 does in H, so that N(zi) ⊃ V (H)−{y1}. Therefore,
N(ys) ⊃ {z2, z3, · · · , zk}.

Since ziy1 6∈ E and ziys ∈ E for each i ≥ 2, we have ys 6= y1. Since ziys ∈ E,
xji

ys 6∈ E for each i = 1, 2, · · ·, k. Since xs is the last vertex along P [u, v] such that
N(xs) − V (P ) 6= ∅, xs ∈ P [wk, v].

Note that N(ys) ⊃ {z2, z3, · · · , zk, xs}. Similarly, considering path P−[v, u] and ys,
we have NH(xji

) = V (H) − {ys} for each i ≥ 2. Recall NH(zi) = V (H) − {y1}. Thus,
NH(xji

) ∩ NH(zi) = V (H) − {y1, ys}. Since h = |V (H)| ≥ 3, there exists a vertex
y∗ ∈ V (H) such that y∗xji

∈ E and y∗zi ∈ E for each i ≥ 2. Then, P [u, z2]y
∗P [xj2 , v] is

a maximal path of order p + 1, a contradiction. 2

Claim 4 Y2 = ∅, i.e. dP (y) ≤ 1 for each y ∈ V (H).

Proof: Suppose, to the contrary, Y2 6= ∅. Let i2 = min {i : xi ∈ NP (Y2)}, and let y ∈ Y2

such that yxi2 ∈ E and yxi3 ∈ E, where i3 6= i2. By Claim 3, 1 < i2 < i3 < s. Let
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z1 = x−
1
, z2 = x−

i2
, z3 = x−

i3
, and zs = x−

s . Moreover, Let P1 = P [u, z2], P2 = P [z+
2

, z3],

and P3 = P [z+
3

, v].

Since there does not exist a maximal path of order p + 1, we have the following
equalities.

N+

P1
(z2) ∩ NP1

(z3) = NP2
(z2) ∩ N+

P2
(z3) = NP3

(z2) ∩ N−
P3

(z3) = ∅.

Note that N+

P1
(z2) ⊆ V (P1), N+

P2
(z3) ⊆ V (P2), and N−

P3
(z3) ⊆ V (P3) ∪ {z3}.

dP (z2) + dP (z3)

= |N+

P1
(z2)| + |NP2

(z2)| + |NP3
(z2)| + |NP1

(z3)| + |N+

P2
(z3)| + |N−

P3
(z3)|

≤ |(N+(z2) ∪ N(z3)) ∩ V (P1)| + |(N(z2) ∪ N+(z3)) ∩ V (P2)| +

+|(N(z2) ∪ N−(z3)) ∩ V (P3)| + |{z3}|

≤ |V (P )| + 1 = p + 1

From the definition of xi2 , we have z2 6∈ X2, so that (N(z2) ∩ N(z3)) ∩ V (H) = ∅. Since
d(z2)+d(z3) ≥ n−1, we have dH(z2)+dH(z3) ≥ h−2. Combining this inequality and the
fact that y, ys 6∈ N(z2) ∪ N(z3), we obtain that N(z2) ∪ N(z3) ⊇ V (H) − {y, ys}. Thus,
y1 ∈ N(z2)∪N(z3). Since dP (y1) = 1, z2 = x1. Moreover, we have N(xs)∩V (H) = {ys}.
Similarly, N(x1) ∩ V (H) = {y1}.

For each w ∈ V (P ) − X1, since d(y1) + d(w) ≥ n − 1 and dP (y1) = 1, N [w] = V (P ).
So N [u] = N [z1] = N [v] = V (P ). In particular, z1z3 ∈ E and vx1 ∈ E.

If x1v
− ∈ E, then P [u, z1]P

−[z3, xi2 ]yP [xi3 , v
−]x1v is a maximal path of order p + 1,

a contradiction. Thus, x1v
− 6∈ E. Since d(x1) + d(ys) ≥ n − 1 and dP (ys) = 1 = dH(x1),

we have dP (x1) ≥ |V (P )| − 2, so that x1x
+

i2
∈ E. Then P [u, z1]P

−[z3, x
+

i2
]x1xi2yP [xi3 , v]

is a maximal path of order p + 1, a contradiction. 2

Since each vertex in H has at most one neighbor on P [u, v], we have dP (y) ≤ 1 for
each y ∈ V (H). On the other hand, since d(u) + d(y) ≥ n − 1 and NH(u) = ∅, we have
dP (y) ≥ 1. Thus, dP (y) = 1 for each y ∈ V (H). Applying σ2(G) ≥ n − 1 again, we get
both V (H) and V (P ) − NP (H) are cliques, and N [w] = V (P ) for each w ∈ V (P ) − X1.
Then, X1 is a skew-cut of G and G is a skew-joint graph, a contradiction. 2

3 Proof of Theorem 4

3.1 A Lemma

Let G be a traceable graph and let B ⊆ V (G). It is not difficult to see that ω(G − B) ≤
|B| + 1, where ω(G − B) is the number of components of G − B. We call B ⊆ V (G) a
cutter if ω(G − B) = |B| + 1. Note that ∅ is a cutter of G by the definition. A cutter
B is maximum if |A| ≤ |B| for every cutter A. A hamiltonian path P of G is called an
x-H-path if x is one of two endvertices of P . If G is hamiltonian, then G contains an
x-H-path for each x ∈ V (G).

Lemma 1 Let G be a P4-free traceable graph and B be a maximum cutter of G. Then,
for every x /∈ B
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(1) G contains an x-H-path, and

(2) if B 6= ∅, then for any hamiltonian path P [u, v] , G contains an x-H-path such that
the other end-vertex is either u or v.

Proof: If B = ∅, then G is 1-tough. By Theorem 3, G is hamiltonian. Then, G contains
an x-H-path. So we assume B 6= ∅.

Let P [u, v] be a hamiltonian path of G and let B = {b1, b2, . . . , bs}. Assume that
b1, b2, . . ., bs are listed in the order along the orientation of P [u, v]. Since ω(G − B) =
|B| + 1, B does not contain two consecutive vertices of P [u, v], u 6∈ B, and v 6∈ B. Let
A0 = V (P [u, b1)], Ai = V (P (bi, bi+1)) for each i = 1, 2, . . ., s − 1, and As = V (P (bs, v]).
Since ω(G − B) = |B| + 1, Gi := G[Ai] is a component of G − B for each i = 0, . . ., s.
So, E(Ai, Aj) = ∅, for all 0 ≤ i 6= j ≤ s, where E(Ai, Aj) = {ab : a ∈ Ai, b ∈ Aj}.
Assume x ∈ Ai0 , where 0 ≤ i0 ≤ s. Since B is a maximum cutter, G[Ai0 ] is 1-tough. By
Theorem 3, G[Ai0 ] contains an x-H-path Q[x, y].

We claim that N(bi) ⊇ Aj if NAj
(bi) 6= ∅ for each pair i and j. Otherwise, since G[Aj ]

is connected, there exist uj , vj ∈ Aj such that ujvj ∈ E and biuj ∈ E and bivj 6∈ E. Then,
either b−i biujvj (if i ≤ j) or path b+

i biujvj (if i > j) is an induced P4, a contradiction. In
particular, we have N(bi) ⊇ Ai ∪ Ai−1 for each 1 ≤ i ≤ s.

If i0 = 0 then Q[x, y]P [b1, v] is a hamiltonian path of G. If i0 = s then Q[x, y]P−[bs, u]
is a hamiltonian path. We assume 0 < i0 < s.

We will recursively define a sequence of vertices bi0 , bi1 , · · ·, bit ∈ B which will help
us to find an x-H-path. If N(bi0) ⊇ ∪i≥i0Ai, let t = 0 and stop. Otherwise, let i1 be the
smallest i such that NAi

(bi0) = ∅. Since G is P4-free, NAi0−1
(bi1) 6= ∅. If N(bi1) ⊇ ∪i<i0Ai,

let t = 1 and stop. Otherwise, let Ai2 be the largest i < i0 such that NAi−1
(bi1) = ∅. Since

G is P4-free, NAi1+1
(b2) 6= ∅. If N(bi2) ⊇ ∪i≥i1Ai, let t = 2 and stop. Otherwise,

let i3 be the smallest i such that NAi
(bi2) = ∅. Since G is P4-free, NAi2−1

(b3) 6= ∅.
Continuing in this manner, since G is finite, we obtain a finite sequence i0, i1, i2, · · ·, it
with i0 < i1 < i3 < · · · < i2ℓ+1 < · · · and i0 > i2 > i4 > · · · > i2ℓ > · · · such that

N(bi0) ⊇ Ai0 ∪ Ai0+1 ∪ · · · ∪ Ai1−1

N(bi1) ⊇ Ai0−1 ∪ Ai0−2 ∪ · · · ∪ Ai2

N(bi2) ⊇ Ai1 ∪ Ai1+1 ∪ · · · ∪ Ai3−1

N(bi3) ⊇ Ai2−1 ∪ Ai2−2 ∪ · · · ∪ Ai4

...
...

...

and

N(bit) ⊇

{

∪i≥it−1
Ai if t is even,

∪i<it−1
Ai if t is odd.

If t = 0, Q[x, y]P [bi0+1, v]P−[bi0 , u] is a hamiltonian path from x to u in G.
If t > 0 is even, G contains a hamiltonian path from x to u as follows.

Q[x, y]P [bi0+1, b
−
i1

]P−[bi0 , b
+

i2
]P [bi1 , b

−
i3

] · · ·P [bit−1
, v]P−[bit , u].
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x ybi0 bi0+1 bi1bi2u v

Figure 4: The case of t = 2

The case t = 2 is illustrated in Figure 4.
If t is odd, G contains a hamiltonian path from x to v as shown below:

Q[x, y]P [bi0+1, b
−
i1

]P−[bi0 , b
+

i2
] · · ·P−[bit−1

, u]P [bit , v].

The case t = 3 is illustrated in Figure 5. So, in each case, G has an x-H-path. 2

x ybi0 bi0+1 bi1bi2 bi3u v

Figure 5: The case of t = 3

3.2 Proof of Theorem 4

Suppose, to the contrary, there is a P4-free and 1-tough graph G such that G contains a
maximal path P = P [u, v] of order p and G does not contain a maximal path of order
p + 1, for some p ≤ n − 2. Let H be a component in G − V (P [u, v]).

Claim 5 For each x ∈ V (P [u, v]), either NH(x) = ∅ or NH(x) = V (H).

Proof: Suppose, to the contrary, there is a vertex x ∈ V (P ) such that ∅ 6= NH(x) 6=
V (H). Clearly, x 6= u. Further, we assume that x is the one closest to u on P with the
above property. Since H is connected, there are y, z ∈ V (H) such that yz ∈ E, xy ∈ E,
and xz 6∈ E. Since G does not contain a maximal path of order p + 1, x−y 6∈ E. By our
choice of x, we have NH(x−) = ∅. So, x−xyz is an induce P4, a contradiction. 2

Claim 6 NP (H) does not contain two consecutive vertices of P for each component H of
G − V (P ).

Proof: Suppose, to the contrary, there are two consecutive vertices w, x ∈ V (P ) such that
NH(w) 6= ∅ and NH(x) 6= ∅. By Claim 5, N(w) ∩ N(x) ⊃ V (H). Then, P [u, w]yP [x, v] is
a maximal path of order p + 1, where y ∈ V (H), a contradiction. 2

Since G is P4-free, Claim 6 implies the following claim.
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Claim 7 NP (G−V (P )) does not contain two consecutive vertices of P for each maximal
path P of order p.

Let NP (H) = {x1, x2 . . . , xs}, where x1, x2, . . ., xs are listed in the order along the
orientation of P [u, v]. Since G is 1-tough, G is 2-connected, so that s ≥ 2. Since P [u, v]
is a maximal path, x1 6= u and xs 6= v. Let

A0 = V (P [u, x1)) and G0 = G[A0],

Ai = V (P (xi, xi+1)) and Gi = G[Ai] for i = 1, 2, · · · , s − 1,

As = V (P (xs, v]) and Gs = G[As].

Let y denote an arbitrary vertex of H in the remainder of the proof. Since G does not
contain an induced P4, the following results hold.

Claim 8 For any two integers i = 1, 2, . . . , s and j = 0, 1, . . . , s,

1. N(xi) ⊃ Ai−1 and N(xi) ⊃ Ai, and

2. N(xi) ⊇ Aj if NAj
(xi) 6= ∅.

For each Gi, let Bi be a maximum cutter of Gi and Ci = Ai − Bi. Note that Bi = ∅
may happen. By the definition of cutter, Gi − Bi contains exactly |Bi| + 1 components.

Claim 9 For each vi ∈ Ci, there exists a vertex wi ∈ Ai such that Gi contains a hamilto-
nian path from vi to wi and N(vi) ∪ N(wi) ⊆ V (P [u, v]).

Proof: By Lemma 1, Gi contains a vi-H-path Q[vi, wi]. We only need to show that
N(vi) ∪ N(wi) ⊆ V (P [u, v]). Suppose, to the contrary, there exists an integer i such that
N(vi) ∪ N(wi) 6⊆ V (P [u, v]).

If i 6= 0 and i 6= s, P ∗ = P [u, xi]Q[vi, wi]P [xi+1, v] is a maximal path of order p.
By Claim 7, NP ∗(G − V (P )) does not contain two consecutive vertices of P ∗. Since
xi, xi+1 ∈ NP ∗(H), we have N(vi) ⊆ V (P ) and N(wi) ⊆ V (P ), a contradiction. Thus, we
may assume either i = 0 or i = s, say, without loss of generality, i = 0.

If G0 is not 1-tough, by Lemma 1, we may assume that w0 ∈ {u, x−
1
}. Since P is a

maximal path, N(u) ⊆ V (P ). Since N(x1)∩V (H) 6= ∅, N(x−
1
) ⊆ V (P ) by Claim 7. Thus,

N(w0) ⊆ V (P ) regardless w0 = u or w0 = x−
1
. Applying Claim 7 to the maximal path

Q−
0
[w0, v0]P [x1, v], we have N(v0) ⊆ V (P [u, v]), a contradiction. Thus, G0 is 1-tough.

By Theorem 3, G0 contains a hamiltonian cycle C. For each x ∈ V (C), let x−(C)
denote the predecessor of x on C. Then, P ′ = C[u, u−(C)]P [x1, v] is a maximal path.
Note that V (P ) = V (P ′). By Claim 7, either N(v0) ⊆ V (P ) or N(v−

0
(C)) ⊆ V (P ).

Suppose N(v−
0

(c)) ⊆ V (P ). Applying Claim 7 to maximal path C−[v−
0

(C), v0]P [x1, v], we
have N(v0) ⊆ V (P ). which implies Claim 9 is true with w0 = v−

0
(C). 2

Claim 10 E(Ci, Cj) = ∅ for each 0 ≤ i < j ≤ s.
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Proof: Suppose, to the contrary, there exist vi ∈ Ci and vj ∈ Cj with 0 ≤ i < j ≤ s such
that vivj ∈ E. For each ℓ = i, j, by Claim 9, there exists a hamiltonian path Qℓ[vℓ, wℓ] such
that N(vℓ) ∪ N(wℓ) ⊆ V (P [u, v]). Since x1 ∈ NP (H), N(x+

1
) ⊆ V (P [u, v]) by Claim 7.

Let y be an arbitrary vertex of H. By Claim 5, NP (y) = NP (H) = {x1, x2 . . . , xs}. Set

P ′ =















P [u, xi]yP−[xj , xi+1]Q
−
i [wi, vi]Qj [vj , wj ]P [xj+1, v], if i 6= 0 and j 6= s

Q−
0
[w0, v0]Qj [vj , wj ]P

−[xj , x1]yP [xj+1, v], if i = 0 and j 6= s
P [u, xi]yP−[xs, xi+1]Q

−
i [wi, vi]Qs[vs, ws], if i 6= 0 and j = s

P [x+
1
, xs]yx1Q

−
0
[w0, v0]Qs[vs, ws], if i = 0 and j = s.

Clearly, P ′ is a maximal path of order p + 1, a contradiction. 2

Let S = {x1, x2, . . . , xk} ∪B0 ∪B1 ∪ · · · ∪Bk, where Bi is a maximum cutter of Gi for
each i = 0, 1, · · ·, s. By Claim 9, we have N(V (P [u, v] − S)) ⊆ V (P [u, v]). This together
with Claim 10 implies that every segment of P [u, v] − S induces a connected component
in G − S. These components and the component H show that G − S has at least |S| + 2
components, which contradicts the assumption that G is 1-tough. This completes the
proof of Theorem 4. 2

4 Proof of Theorem 6

Suppose, to the contrary, there exists a connected, locally connected, and K1,3-free graph
G such that G contains a maximal path P = P [u, v] of order p and G does not contain a
maximal path of order p+1. Since G is traceable, p ≤ n−2. Let H = G−V (P ) and let y be
a vertex of H with NP (y) 6= ∅. Let NP (y) = {x1, x2 · · · , xs}, where x1, x2, . . ., xs are listed
in the order along the orientation of P [u, v]. Choose y so that min {|P [u, x1)|, |P [xs, v]| }
achieves the minimum. Without loss of generality, assume |P [u, x1]| ≤ |P [xs, v]|. Since
P [u, v] is a maximal path, x1 6= u, xs 6= v and

(

{x−
1
, x−

2
, · · · , x−

s } ∪ {x+
1
, x+

2
, · · · , x+

s }
)

∩
NP (y) = ∅.

Since G is K1,3-free, x−
i x+

i ∈ E(G) for all i = 1, 2, · · ·, s. Let x = x1, A = V (P ) −
NP (y), and B = V (H) ∪ NP (y).

Claim 11 NH(x−) = ∅ and NP (x−) ∩ NP (y) = {x}.

Proof: NH(x−) = ∅ directly comes from the definition of P and y. If x−xi ∈ E for some
i > 1, P [u, x−]xiyP [x, x−

i ]P [x+

i , v] is a maximal path of order p + 1, a contradiction. 2

Claim 12 Both G[NA(x)] and G[NB(x)] are complete.

Proof: Since G[NA[x] ∪ {y}] contains no induced K1,3, we have G[NA(x)] is complete.
Since G[NB[x] ∪ {x−}] contains no induced K1,3, G[NB(x)] is complete. 2

Since G is locally connected, there exist a ∈ NA(x) and b ∈ NB(x) such that ab ∈ E.

Claim 13 b /∈ V (H).
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Proof: Suppose, to the contrary, that b ∈ V (H). Then, a ∈ NP (H). Since G is K1,3-
free, a−a+ ∈ E. By the choice of y, we have a ∈ V (P [x+, v]). Since x−, a ∈ NA(x),
x−a ∈ E(G) from Claim 12. Then, P [u, x−]abP [x, a−]P [a+, v] is a maximal path of order
p + 1, a contradiction. 2

Assume b = xi for some i ≥ 2. Since x−x+ ∈ E and x−
i x+

i ∈ E, we have x−
i , x+

i /∈ N(x)
and x−, x+ /∈ N(xi). Otherwise, for example, xx−

i ∈ E, then P [u, x−]P [x+, x−
i ]xyP [xi, v]

id s maximal path of order p + 1, a contradiction. Since ax ∈ E and ab = axi ∈ E,
a /∈ {x−, x+, x−

i , x+

i }. Since a, x− ∈ NA(x), ax− ∈ E by Claim 12. We will consider the
following two cases to finish the proof.

Case 1 a 6= u, v.

Since G[{a, a−, a+, x}] is not an induced K1,3, {a−a+, a−x, a+x} ∩ E 6= ∅. We will
derive a contradiction by showing that G has a u− v path P ′ of order p + 1 with V (P ′) ⊇
V (P ), which is equivalent to that G ∪ {uv} contains a cycle C ′ of order p + 1 with
uv ∈ E(C ′) and V (C ′) ⊇ V (P ). Set C = P [u, v]u. Then, C is a cycle of order p
in G ∪ {uv}. Then, either a ∈ C(x+, x−

i ) or a ∈ C(x+

i , x−). Assume, without loss of
generality, that a ∈ C(x+, x−

i ) (the case of a ∈ C(x+

i , x−) is similar). Let

C ′ =







x−axiyC[x, a−]C[a+, x−
i ]C[x+

i , x−] if a−a+ ∈ E,
x−C[x+, a−]xyxiC[a, x−

i ]C[x+

i , x−] if a−x ∈ E,
x−C[x+, a]xiyxC[a+, x−

i ]C[x+

i , x−] if a+x ∈ E.

In each case, C ′ is a cycle in G ∪ {uv} with uv ∈ E(C ′) and V (C ′) = V (C) ∪ {y}. So,
C ′ − uv is a maximal path of order p + 1, a contradiction.

Case 2 a ∈ {u, v}.

Recall x = x1. From the minimality of |P [u, x1]|, we obtain that N(x−) ⊆ V (P ). If
a = u, then P−[x−, u]xiyP [x, x−

i ]P [x+

i , v] is a maximal path of order p+1, a contradiction.
Hence, a = v.

Recall x−a ∈ E(G). If N(v−) ⊆ V (P ), then P [u, x−]vxiyP [x, x−
i ]P [x+

i , v−] is a max-
imal path of order p + 1. Hence, N(v−) 6⊆ V (P ). From the minimality of |C[u, x1]|, we
have |P [u, x]| ≤ |P [v−, v]|. So, u = x−. This together with Claim 11 implies uxi /∈ E.
Since u, v ∈ NA(x), by Claim 12, we have uv ∈ E. Note that a 6= x+

i implies that xi 6= v−.
Hence, v, u, xi and v− are distinct vertices of G. Since G[{v, u, xi, v

−}] is not an induced
K1,3 and uxi 6∈ E, either uv− ∈ E or xiv

− ∈ E. Let

P ′ =

{

uP−[v−, x+

i ]P−[x−
i , x]yxiv, if uv− ∈ E,

uP [x+, x−
i ]P [x+

i , v−]xiyxv, if xiv
− ∈ E.

Then, P ′ is a maximal path of order p + 1, a contradiction. This completes the proof of
Theorem 6. 2
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