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Abstract

Iterating over the elements of an abstract collection is usually done in ML using a higher-order
function provided by the data structure. This article introduces a new paradigm of iteration, using
step-by-step iterators similar to those used in object-oriented programming languages, but based
on persistent data structures to allow backtracking. Several ways to iterate over binary trees are
examined and close links with Gérard Huet’s Zipper are established.

1 Introduction

The ML programmer is used to iterate over the elements of an abstract collection using a higher-order
function. A data structure implemented as an abstract datatype t, representing a collection of elements
of a given type elt, is naturally equipped with a function®

fold : (elt > aa - a) >t - a — «

whose behavior is to build a value of type « starting from an initial value (its third argument) and
repeatedly applying a function (its first argument) to all elements of the collection (its second argument)
and to the value being built. If we are considering a collection of integers s, the type elt then being
int, we can sum up all the elements of s as simply as

fold (fun x n — n+x) s O

When the function passed to fold is used only for its side-effects, we can use a degenerated version of
fold:

iter : (elt — unit) — t — unit

This way we can print all the elements of s as simply as iter (fun x — Printf.printf "}d\n" x) s.
Such higher-order functions iterating over the elements of a data structure are called iterators and their
use is probably the most idiomatic feature of functional programming languages. The seasoned ML
programmer uses them widely, appreciates their clarity and conciseness, and does not imagine any nicer
way to proceed.

There are however some (uncommon) situations where the use of such iterators is not convenient, or
even impossible. If the datatype is not abstract, there is usually a most immediate way to iterate over
the elements. But if the datatype is abstract and we are only given a higher-order iterator, then we may
be in a situation where there is no simple or efficient way to implement the desired algorithm.

The first example is the case of an enumeration that must be stopped before the end is reached. If for
instance we try to check whether there exists an element in our collection s satisfying a given property
p: int — bool, one solution could be the following:

fold (fun x b — p x || b) s false

IThis article is illustrated with source code written in OBJECTIVE CAML [2] (OcaML for short), but could be easily
adapted to any other functional programming language.



But this is not efficient in the framework of a strict language such as OCAML, since all the elements will
be necessarily visited, even if we quickly encounter an element verifying p and despite the laziness of the
|| operator (since it is applied here to a value and not to a program expression). One solution here is
to use an exception to interrupt the iteration. We can write an efficient version of our search using the
predefined exception Exit:

try iter (fun x — if p x then raise Exit) s; false with Exit — true

Of course, a data structure implementing a collection is usually providing a function exists : (elt
— bool) — t — bool which does exactly this kind of search, but we always end up in the situation
where the search we want to implement is not provided as a primitive. Even if it is efficient, the use of
an exception is not always convenient — when a value has to be returned, one needs to defined a custom
exception or to use a reference — and is rarely elegant.

This is where the JAVA or C++ programmer is pushing forward his or her way to operate. In such
programming languages, iterators do not appear as higher-order functions but as data structures able
to produce the elements of the enumeration one at a time. In JAVA, for instance, the iteration over the
elements of a collection t is written as the following idiom:

for (Iterator i = t.iterator(); i.hasNext(); ) {
. visit i.next()

}

The method iterator of the data structure t builds a new iterator over the elements of t and then the
two methods hasNext and next of this iterator respectively tell if there are still elements to iterate over
and which is the currently visited element. It is crucial here to understand that the iterator is a mutable
data structure: one call to next returns the current element and moves the iterator to the next element
in the iteration by a side-effect. In the following, we call this a step-by-step iterator to distinguish it from
a higher-order iterator.

In most cases of ML programming, such a step-by-step iterator would be less convenient to use
compared to its higher-order counterpart, and much less elegant due to the hidden side-effects. However,
it provides a nice solution to the issue of the premature interruption. If we assume an OCAML step-by-step
iterator i over our collection s, we can easily check for an element satisfying the property p:

let rec test () = has_next i && (p (next i) || test ()

Unfortunately, there is (at least) another situation where neither the higher-order iterators nor the
step-by-step iterators can help: when we need to come back to a previous state in the iteration, that
is when the iterator is involved in a backtracking algorithm. As an example, let us assume that we can
to check whether our set of integers s contains a subset whose sum is 100. If the set s would be given
concretely as a list of integers, it would be really easy to write a program performing this test?:

let rec sum n = function

| 1 — n =100

| x :: r — sum (n+x) r || sum n r
in
sum O s

But if the set s is implemented by an abstract datatype that only provides higher-order or step-by-step
iterators, then such a backtracking algorithm (that is to try with the current element involved in the
sum and then without it in case of failure) is no more possible. We could consider building the list of all
the elements using the iterator at our disposal and then applying the algorithm above, but this is clearly
inefficient as space is concerned.

Fortunately there exists a better solution. It consists in a step-by-step iterator implemented using a
persistent data structure®, that is where the move to the next element does not modify the iterator but
rather returns a new one. Let us assume that such an iterator is provided as an abstract data type enum
equipped with two functions start and step:

21t is easy to improve this code, but this is not the point here.
3The qualifier “persistent” is to be preferred to “purely functional” or “immutable” that are too restrictive. The precise
meaning of “persistent” is here “observationally immutable”, as explained in Okasaki’s book [5].



type enum
val start : t — enum
val step : enum — elt X enum

The start function builds a new iterator for the whole collection which is given as argument. One can
see it as pointing to the “first” element. The step function returns the element pointed to by the iterator
together with a new iterator pointing to the next element. We assume that step is raising the Exit
exception when the iteration is over. Then we can rewrite the backtracking algorithm above as follows:

let rec sum n i =

try
let x,i = step i in sum (n+x) i || sum n i
with Exit —
n = 100
in

sum 0 (start s)

The code is highly similar to the one above, apart from lists being replaced by iterators of type enum.
We can notice that, when the type t is actually the type int list, we can define type enum = int
list, the start function as the identity and the step function as the destructuring function for the
constructor ::.

In this article, we focus on these step-by-step iterators implemented using persistent data structures,
which we call persistent iterators in the following. This is not an original technique. Such iterators
are known from some ML programmers (they are used for instance to implement the comparison over
binary search trees in OcAML and SML standard libraries). However, the solutions are often ad-hoc
and the persistence of the iterator is usually not exploited (it is not really mandatory, but imperative
programming is simply not considered). The goal of this article is a more systematic study of these
iterators, in several situations.

This article is organized as follows. Section 2 shows how to implement iterators for several traversals
over binary trees. Then Section 3 establishes deep connections with Gérard Huet’s Zipper [4]. Section 4
briefly explores another implementation technique based on continuation passing style. Finally, Section 5
quickly compares the performances of all these implementations. The OCAML source code corresponding
to what is described in this article is freely available online at http://www.lri.fr/~"filliatr/pub/
enum.ml.

2 Iterators for binary trees

In the following of this article, we assume that the data structure to be iterated over is a binary tree
containing integers on nodes:

type t = E | Nof t X int X t

The generalization to balanced trees — thus containing more information within nodes — or trees
containing elements of another type is immediate since only the traversals matter here.

This section describes the implementation of persistent step-by-step iterators for various traversals
of binary trees, with the common following signature:

type enum
val start : t — enum
val step : enum — int X enum

As indicated in the introduction, the step function is assumed to raise the Exit exception when the
enumeration is over.

2.1 Inorder traversal

We start with inorder traversal, which is the most natural traversal when trees are binary search trees.
In inorder traversal, the left subtree is visited first, then the element at the node and finally the right
subtree. A higher-order iterator inorder is thus written as follows:



let rec inorder f = function
| E— O
| N (1, x, r) — inorder f 1l; f x; inorder f r

A persistent iterator corresponding to this traversal can be found in the “literature” (the OCAML and
SML standard libraries for instance). Since the iteration must begin with the leftmost element in the
tree, we start writing a function going left in the tree and building the list of elements and right subtrees
encountered meanwhile. We can define a custom list datatype for this purpose:

type enum = End | More of int X t X enum

and a left function implementing the left descent from a given tree t and an enumeration e representing
the elements to be visited after the ones of t:

let rec left t e = match t with
| E — e
| N (1, x, r) — left 1 (More (x, r, e))

We initialize the enumeration with the “empty list” End:
let start t = left t End

and the step function is simply returning the element in front of the list and calling left with what
was the right subtree of this element in the initial tree:

let step = function
| End — raise Exit
| More (x, r, €) — x, left r e

2.2 Preorder traversal

In preorder traversal, the element at the node is visited first, then the elements of the left subtree and
finally the elements of the right subtree:

let rec preorder f = function
| E— O
| N (1, x, r) — f x; preorder f 1; preorder f r

It is exactly a depth-first traversal of the tree and thus the iterator can be simply implemented as a
stack, that is a list of trees:

type enum = t list
The iterator is initialized with a one element list containing the initial tree:
let start t = [t]

The step function examines the element in first position in the list and, when it is a node, it returns its
value while pushing the right and left subtrees on the stack:

let rec step = function
| [ — raise Exit
| E:: e — step e
| N 1, x, r) :: e >x%x,1 ::1r :: e

We can slightly optimize this code to avoid pushing empty trees on the stack:

let start = function E — [1 | t — [t]
let step = function
[l — raise Exit

|

| N (E, x, E) :: e — x, e

| N (E, x, r) :: e > X, T e

| N (1, x, E) :: e — x, 1 e

| N (1, x, r) :: e — x, 1 e
|

_ — assert false



On this example, we can see that the iterator is nothing else than the reification of the call stack.
Incidentally, it illustrates another benefit of persistent iterators: to avoid a stack overflow. Even if in
the case of balanced binary trees it is unlikely that the depth of a tree can be responsible for a stack
overflow, the case of other data structures, such as graphs for instance, can be more problematic for
iterators simply written as recursive functions. Of course, it is always possible to make the stack explicit,
even in the case of usual higher-order iterators.

2.3 Postorder traversal

In postorder traversal, we visit the element at the node after having visited the elements of the two
subtrees. Surprisingly, postorder traversal is more difficult to implement than preorder traversal. Of
course, we could reuse the idea of making the call stack explicit and pushing trees as well as elements.
But it would not be an efficient solution. More subtly, we can reuse ideas from the inorder traversal since
the first element to be visited is also the leftmost element in the tree. Thus we reuse the same iterator
type and the left and start functions:

type enum = End | More of int X t X enum
let rec left t e = match t with

| E — e

| N (1, x, r) — left 1 (More (x, r, e))
let start t = left t End

Only the step function needs to be updated. It must now consider the right subtree r before the element
x:

let rec step = function
| End — raise Exit
| More (x, E, e) — x, e
| More (x, r, e) — step (left r (More (x, E, e)))

Pushing the empty tree E together with x on the last case is not very elegant. We can refine this
solution by introducing a custom constructor Morel to handle this particular case:

type enum = End | More of t X int X enum | Morel of int X enum
let rec left t e = match t with
| E — e
| N (1, x, E) — left 1 (Morel (x, e))
| N (1, x, r) — left 1 (More (r, x, e))
let start t = left t End
let rec step = function
| End — raise Exit
| Morel (x, e) — x, e
| More (t, x, e) — step (left t (Morel (x, e)))

2.4 Breadth-first traversal

We end this section devoted to binary trees with breadth-first traversal. It is usually implemented using
a queue containing trees. The whole tree is inserted into an initially empty queue and then, for each tree
popped out of the queue, we visit the element at the node and insert the two subtrees into the queue
(the left one and then the right one). Writing the usual higher-order iterator using the Queue module
from OCAML standard library is immediate:

let bfs £ t =
let q = Queue.create () in
Queue.push t q;
while not (Queue.is_empty q) do match Queue.pop q with
| E— O
| N (1, x, r) — f x; Queue.push 1 q; Queue.push r q
done



To implement the corresponding persistent iterator, we simply need to substitute persistent queues
to imperative queues. It happens that it is quite easy to implement persistent queues using a pair of
lists while keeping good performances [5]. The code is given in appendix as a module Q implementing
as abstract datatype a t for persistent queues containing elements of type a. The persistent iterator is
then directly implemented as a persistent queue containing trees:

type enum = t Q.t

The start function builds the queue containing only one element, namely the whole tree:
let start t = Q.push t Q.empty

and the step function applies the same algorithm as above:

let rec step e =
try match Q.pop e with
| E, e — step e
| N (1, x, r), e — x, Q.push r (Q.push 1 e)
with Q.Empty —
raise Exit

Note: as we did for the preorder traversal, it is possible to slightly optimize this code by avoiding pushing
empty trees in the queue. This remark also applies to the imperative algorithm, of course.

3 Connections with the zipper

In this section, we investigate the connections between the persistent iterators and Gérard Huet’s Zip-
per [4]. More precisely, we show how persistent iterators can be discovered in a systematic way using
the Zipper.

3.1 The zipper

We introduce the Zipper for the reader who would not be familiar of this data structure. The Zipper
is to the purely applicative data structure what the pointer is to a mutable data structure: a way to
designate a piece of the structure and to modify it. In the case of a purely applicative data structure,
“to modify” of course means building a new value but this does not simplify the issue. Let us assume
we are visiting the nodes of a binary tree looking for some node satisfying a given property and, once
it has been found, we want to perform a local modification. With an imperative data structure, it is
immediate. But with an applicative data structure, we need to maintain the path from the root of the
tree to the visited node, to be able to rebuild the corresponding nodes. That is precisely what the Zipper
does, with the greatest elegance.

Such a path from the root is represented in a bottom-top way, as a list going from the visited node
to the root, the direction followed at each step being indicated. The OCAML type for this path is the
following:

type path = Top | Left of path X int X t | Right of t X int X path
The Zipper is then the pair of the subtree which is “pointed to” and of the path to the root:
type location = t X path

The construction can be generalized to any algebraic datatype, each constructor being duplicated into
several variants (in our case, the constructor N is duplicated into Left and Right).
We create a Zipper pointing to the root of a tree t by associating it to the empty path:

let create t = (t, Top)

Then we can build navigation functions allowing to move in the tree represented by the Zipper. To
descend to the left subtree, when there is one, we simply need to extend to path with the Left constructor,
which records the value at the node and the right subtree, and then to take the left subtree as the new
designated tree:



let go_down_left = function
| E, - — invalid_arg "go_down_left"
| N (1, x, r), p — 1, Left (p, x, 1)

Symmetrically, we can define a function to descend to the right subtree:

let go_down_right = function
| E, - — invalid_arg "go_down_right"
| N (1, x, r), p — r, Right (1, x, p)

Similarly, we can define functions to move from a tree to its left or right sibling, when they exist:

let go_left = function
| -, Top | -, Left - — invalid_arg "go_left"
| r, Right (1, x, p) — 1, Left (p, x, r)

let go_right = function
| -, Top | _, Right _ — invalid_arg "go_right"
| 1, Left (p, x, r) — r, Right (1, x, p)

Finally, we can define a function to move up in the tree:

let go_up = function
| _, Top — invalid_arg "go_up"
| 1, Left (p, x, r) | r, Right (1, x, p) — N (1, x, r), p

Tterating this function until we reach the empty path Top is a way to retrieve the whole tree represented
by the Zipper. The local modification, which was the motivation for the Zipper, is trivially implemented
as a replacement of the designated subtree with a new one:

let change (., p) t = (¢, p)

We note that all these operations are implemented in constant time and space.

3.2 Persistent iterators derived from the zipper

We now show how the Zipper can be used to retrieve the persistent iterators over binary trees introduced
in Section 2.

3.2.1 Inorder traversal

Let us start with the inorder traversal. The persistent iterator is directly represented by a Zipper and
the start function sets the Zipper to the root of the tree:

type enum = location
let start t = (t, Top)

The step function is then implemented by combining the navigation functions provided by the Zipper
and the local modification function to get rig of the visited elements one at a time. If the whole tree is
empty, then the iteration is over:

let rec step = function
| E, Top — raise Exit

If the designated subtree is a node, then we must keep descending to the left, using the Zipper primitive
go_down_left, and call step recursively. If we expanse go_down_left, we get:

| N (1, x, r), p — step (1, Left (p, x, r))

Finally, when we reach the empty tree E, the element x right above is the one to visit and we can replace
the designated node by its right sibling. This is achieved by a combination of the primitives go_up and
change. Once expansed, we get the following code:



| E, Left (p, x, v) — x, (r, p)
To sum up, the step function is only three lines long:

let rec step = function
| E, Top — raise Exit
| E, Left (p, x, r) — x, (r, p)
| N (1, x, r), p — step (1, Left (p, x, r))

We notice that the Zipper constructor Right has not been used and thus can be eliminated:

type path = Top | Left of path X int X t
type enum = t X path

Consequently, we obtain ezactly the datatype introduced in Section 2, that is a list of pairs composed of
elements and their associated right subtrees. The 1left function from the initial solution has disappeared:
it is now encoded directly by the step function. The behavior is slightly different, though: some calls
to left in the initial solution are now suspended in the first component of the Zipper and will only be
performed on the next call to step. If we stop an iteration on a node with no left subtree and a huge
right subtree (to the left) then we save the descent to the left in this huge tree. As a consequence, the
solution inspired by the Zipper is slightly more efficient.

3.2.2 Preorder traversal

We keep implementing the persistent iterator directly as the Zipper and the start function is unchanged,
as is the termination case of the iteration:

let rec step = function
| E, Top — raise Exit

If the visited subtree is a node, then we return its element and we move the Zipper to the left subtree
(go_down_left):

| N (1, x, ©), p — x, (1, Left (p, %, 1))

Finally, when the iteration reaches the leftmost element, we immediately jump to the right subtree since
the element at the node has already been visited:

| E, Left (p, -, r) — step (r, p)
Putting all together, we get the following code:

let rec step = function
| E, Top — raise Exit
| E, Left (p, -, r) — step (r, p)
| N (1, x, ), p — x, (1, Left (p, x, 1))

Once again we note that the constructor Right is useless, and so is the element stored in the constructor
Left. Thus we can simplify the definition of the iterator into

type path = Top | Left of path X t
type enum = t X path

We find again ezactly the same datatype as in the initial solution, namely a list of trees (with a particular
case for the first element, represented as a pair). As far as efficiency is concerned, this solution inspired
by the Zipper is intermediate between the two solutions proposed in Section 2, since it avoids pushing
some empty trees on the stack, but not all of them.



3.2.3 Postorder traversal

The persistent iterator datatype, the start function and the termination case for step are still un-
changed:

let start t = (t, Top)
let rec step = function
| E, Top — raise Exit

If the tree pointed to is a node, we need to descend into its left subtree:
| N (1, x, r), p — step (1, Left (p, x, r))

If the iteration is done with a left subtree, it must now consider its right sibling:
| E, Left (p, x, r) — step (r, Right (E, x, p))

Finally, if the iteration reaches the rightmost element, it simply needs to return this element and to
suppress the corresponding node:

| E, Right (., x, p) — x, (E, p)
We get the following code for step:

let rec step = function
| E, Top — raise Exit
| E, Left (p, x, r) — step (r, Right (E, x, p))
| E, Right (., x, p) — x, (E, p)
| N (1, x, r), p — step (1, Left (p, x, r))

Here, both Zipper’s constructors Left and Right are used but we notice that the first argument of Right
is not used. Thus we can slightly simplify the definition of the persistent iterator into

type path = Top | Left of path X int X t | Right of int X path
type enum = t X path

Once again, we find out a datatype isomorphic to the one introduced in Section 2 (Left corresponding
to More and Right to Morel).

3.2.4 Breadth-first traversal

The case of breadth-first traversal is more complex. Indeed, using only the navigation primitives provided
by the Zipper to move from one node to the next node in the breadth-first traversal is quite difficult:
one needs to come back to an upper node in the tree and then to move down following another branch,
in a way that depends on the global structure of the tree.

As usual with breadth-first traversals, we need to generalize the problem to forests (see for in-
stance [6]), that is to lists of trees. Indeed, it is therefore possible to represent the list of all the subtrees
of a same level and then to move from one node to its right sibling in this forest.

There happens to be a Zipper for variadic arity trees and thus for forests. In the original paper
introducing the Zipper [4] the case of variadic arity trees is even considered before the particular case of
binary trees. The Zipper is defined as follows:

type path = Top | Node of t list X path X t list
type location = t X path

The three arguments of the Node constructor represent a position within a forest, the first list containing
the trees on the left in reverse order and the second list the trees on the right. The navigation primitives
that are of interest here are the following:



let go_left = function
| t, Node (1 :: 11, p, r) — 1, Node (11, p, t :: T)
| - — invalid_arg "go_left"

let go_right = function
| t, Node (1, p, r :: rr) — r, Node (t :: 1, p, rr)
| - — invalid_arg "go_right"

As with the previous traversals, the persistent iterator is directly represented by the Zipper and the
start function sets the Zipper on the root of the tree:

type enum = location
let start t = t, Node ([], Top, [1)

As previously, the step function is implemented using the navigation primitives and removing the ele-
ments as soon as they are visited. The case of the empty forest terminates the iteration:

let rec step = function
| E, Node ([1, -, [1) — raise Exit

If the designated tree is a node, we return the corresponding element and we replace this tree by its left
and right subtrees, pushed onto the left list. In order to avoid considering too many particular cases, we
replace the designated tree by an empty tree:

| N (1, x, r), Node (11, p, rr) — x, (E, Node (r :: 1 :: 11, p, rr))
If the designated tree is precisely an empty tree, then we move right into the forest:
| E, Node (11, p, r :: rr) — step (r, Node (11, p, rr))

Finally, if it is no more possible to move right, we need to come back to the leftmost position in the
forest (to move to the next level). This amounts to applying the go_left function repeatedly as much
as possible, which results in the reversing of the left list into the right list (in the efficient way, that is
using an accumulator which is here the right list). Thus we can use List.rev directly:

| E, Node (11, p, [1) — step (E, Node ([], p, List.rev 11))
Putting all together, we get the following code:

let rec step = function
| E, Node ([], p, [1) — raise Exit
| E, Node (11, p, [1) — step (E, Node ([], p, List.rev 11))
| E, Node (11, p, r :: rr) — step (r, Node (11, p, rr))
| N (1, x, r), Node (11, p, rr) — x, (E, Node (r :: 1 :: 11, p, rr))
| _, Top — assert false

We immediately notice that the Zipper is always of the kind Node(_,Top,_). Thus we can suppress
the Top and Node constructors and represent here the Zipper by a pair of lists. We can also put the
designated subtree in head position of the right list, which gives the final code below:

type enum = t list X t list
let start t = [1, [t]
let rec step = function
| 0, [ — raise Exit
| 11, [1 — step ([], List.rev 11)
| 11, E :: rr — step (11, rr)
| 11, N (1, x, r) :: rr — x, (r :: 1 :: 11, rr)

This is exactly the solution given in Section 2.4, except that the code for persistent queues using pairs of
lists (see the appendix) is here inlined in the step function. Incidentally, we have retrieved the efficient
coding of persistent queues while using the Zipper to perform a breadth-first traversal.
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4 Continuation passing style

In this section, we briefly explore another implementation of persistent iterators using some kind of
continuation passing style (CPS). The persistent iterator is represented directly as a function giving the
next element together with the new iterator?:

type enum = unit — int X enum
Therefore the step function is simply an application of this function:
let step k =k O

As a consequence, all the algorithmic complexity is moved to the start function, which must build a
single closure containing all the forthcoming computation. It is useful to define a more general function,
called run here, which takes a continuation as argument and to initiate the computation with the “empty”
continuation that raises the Exit exception to signal the end of the iteration:

let run t k =

let start t run t (fun () — raise Exit)

Defining the run function for inorder, preorder and postorder traversals is rather straightforward:

Inorder traversal

let rec run t k = match t with
| E — k
| N (1, x, r) - run 1l (fun () — x, run r k)

Preorder traversal

let rec run t k = match t with
| E — k
| N (1, x, r) — (fun ) — x, run 1 (run r k))

Postorder traversal

let rec run t k = match t with
| E —- k
| N (1, x, r) - runl (fun ) — run r (fun ) — x, k) )

Though this solution seems somewhat systematic, it has several drawbacks. First, it is less efficient
than the previous approaches, mostly because closures and their applications are using much more time
and space than custom data structures (some benchmarks are presented in the next section). By the
way, the approaches of sections 2 and 3 can be seen as reified (or defunctionalized) versions of this CPS
implementation. Second, the CPS solution does not extend nicely to other iterations such as breadth-first
traversal (even if theoretically feasible).

5 Performances

In this section we quickly compare the efficiency of the various solutions proposed in this article. The
Figure 1 gathers the timings performed for the various kinds of traversals and the various implementa-
tions. Each implementation is tested against trees containing from 0 to 100000 elements for four kinds
of trees: random trees, left-linear trees, right-linear trees and full trees. The iterators introduced in
Section 2 are named “Section 2.1” to “Section 2.4” and “variant” refers to the optimizations (where we
do not push empty trees); “zipper” refers to the solutions introduced in Section 3; finally, “cps” refers
to the solutions introduced in the previous section.

4Such a type definition requires to set the -rectypes option of the OCAML compiler.
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traversal | implementation | random | left-linear | right-linear | full
inorder Section 2.1 1.07 0.86 0.11 | 0.25
zipper 1.14 1.12 0.11 | 0.27
cps 1.28 1.38 0.12 | 0.29
preorder | Section 2.2 1.01 0.76 0.10 | 0.26
— variant 0.91 0.08 0.07 | 0.21
zipper 0.99 0.99 0.11 | 0.27
cps 1.51 0.14 0.16 | 0.41
postorder | Section 2.3 1.26 0.86 1.04 | 0.28
— variant 1.20 0.69 0.87 | 0.29
zipper 1.42 1.08 1.06 | 0.35
cps 1.63 1.44 1.21 | 0.43
bfs Section 2.4 14.57 0.44 0.47 | 4.62
— variant 9.26 0.24 0.24 | 2.05
zipper 15.38 0.18 0.17 | 3.65

Figure 1: Compared performances of the various implementations

We notice that the persistent iterators described in Section 2 are slightly more efficient than the
versions derived from the Zipper. This is due to a slightly more immediate data structure (there is no
pair at the top of the data structure), but the difference is not significative. In the case of the breadth-first
traversal, we notice that the Zipper solution is sometimes more efficient, but this is due to the inlining of
the persistent queues implementation. Last, we notice that the “cps” solutions are always less efficient,
which is explained by larger data structures: closures are more expensive than ad-hoc data structures.

We also performed a similar comparison for the memory use, measuring the evolution in time of the
total size of the persistent iterator. Results are very similar to those of time performances: solutions
from Section 2 and those inspired by the Zipper use similar amounts of memory, and the “cps” solution
is using much more memory (but within a constant factor).

The results of these benchmarks can be reproduced using the source code available online.

6 Conclusion

In this article, we have introduced an alternative to the traditional higher-order iterators that can be
found in ML, as step-by-step iterators based on persistent data structures. These persistent iterators
allow the premature interruption of an iteration and, even better, the resumption on a previous state of
the iteration, which is useful when the iterator is involved in a backtracking algorithm.

Such iterators are known from some programmers, though their persistent feature is usually not
exploited. They are however not widely spread and deserve more advertisement. We had already done
a step in that direction in the OCAMLGRAPH [1, 3] library: some persistent iterators are provided for
depth-first and breadth-first graph traversals. We could proceed in this way by providing persistent
iterators for other usual data structures such as hash tables, queues, stacks, etc.

This article also pointed out the close connections with Gérard Huet’s Zipper: using the navigation
primitives provided by the Zipper, we could easily find out persistent iterators implementations for
various binary trees traversals. To complete this analysis, one should also study the connections with
the call/cc construct — even if this construct is not available in OcAML. This would complete the
connections diagram between persistent iterators, the Zipper and call/cc.

Acknowledgments. 1 am grateful to Sylvain Conchon, Benjamin Monate and Julien Signoles for

informal discussions related to this subject and for their comments regarding the first version of this
paper.
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Appendix: Persistent queues

We give here a simple but efficient implementation of persistent queues [5]. The idea is to represent a
queue as a pair of lists, one to insert the new elements (in head of the list) and the other to extract
the elements (also in head). We may have eventually to reverse the first list whenever the second one
becomes empty, but the amortized complexity of push and pop is still O(1).

module Q : sig
type o t
exception Empty
val empty : a t
val is_empty : a t — bool
val push : a - at — a t
val pop : ot - o X a t
end = struct
type @ t = a list X « list
exception Empty
let empty = [1, [
let is_empty = function [], [] — true | _ — false
let push x (i,0) = (x :: i, o)
let pop = function
| i, vy :: o — y, (i,0)
| [0, [1 — raise Empty
| i, [J — match List.rev i with
| x :: o — x, ([, o)
| [ — assert false
end
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