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Eulerian subgraph containing given vertices

Zhao ZHANG,∗ Hao LI†

Abstract

A vertex set S ⊆ V (G) is k-weak-edge-connected if for every C ⊂ S and x ∈ S−C

there are min{k, |C|} edge-disjoint (x,C)-paths in G. For a graph G and a k-weak-

edge-connected vertex set S ⊂ V (G) with k ≥ 3 and 4 ≤ |S| ≤ 2k, we show that G

has an eulerian subgraph containing all vertices in S.

1 Introduction

All graphs considered in this paper are undirected and simple. A graph is eulerian if it

is a connected even graph, i.e., each vertex has even degree. A graph is supereulerian if

it contains a spanning eulerian subgraph. Since a 3-regular graph is supereulerian if and

only if it is hamiltonian, and the hamiltonian problem is NP-complete even for 3-regular

graphs, the problem of determining whether a graph is supereulerian is NP-complete

[8, 9, 13]. So, it is interesting to ask what is the maximum order of an eulerian subgraph

in a given graph [12, 14]. In this paper we study a more general problem as follows: for

a given vertex set S ⊆ V (G), is there an eulerian subgraph of G containing all vertices

in S. Note that in the particular case of S = V (G), G contains an eulerian subgraph

containing all vertices in S if and only if G is supereulerian.
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We begin by introducing some results on cycles containing a given subset of vertices

Two basic and classic results due to Dirac are the followings.

Theorem 1. [4] : If G is a 2-connected graph on n ≥ 3 vertices, then c(G) ≥ min {n, 2δ},
where c(G) is the circumference of G.

Theorem 2. [3] If G is a k-connected graph then it has a cycle through any k vertices.

Flandrin et al. [6] generalized Theorem 2 by limiting the connected condition of the

graph to a connected condition on the subset of vertices considered. Let G be an arbitrary

graph and S ⊆ V (G) be a set of at least two vertices. S is k-connected if any two vertices

of S can not be seperated in G by deleting at most k − 1 vertices.

Theorem 3. [6] If S is a k-connected subgraph of G, then G has a cycle through any k

vertices of S.

The above theorems are sharp (see for example the complete bipartite graphs Kk,k+1).

It has been proved by Győri and Plummer [10] and independently Favaron and Jackson

[7] that 3-connected K1,3-free graphs are 9-cyclable, i.e. any nine vertices is in a cycle.

For K1,4-free graphs, Flandrin et al. obtained

Theorem 4. [5] Let G be a K1,4-free graph and S be a k-connected subset of vertices in

G with k ≥ 4 and 4 ≤ |S| ≤ 2k. Then there exists a cycle containing S.

Corollary 1. Let G be a k-connected K1,4-free graph and S be a subset of vertices in G

such that k ≥ 4 and 4 ≤ |S| ≤ 2k. Then there exists a cycle containing S.

Let C be a vertex set in G, and x a vertex in G−C. A path P is called an (x, C)-path

if the two ends of P are x and y respectively, where y is the only vertex in P ∩ C, which

will be called the attachment of P on C. A vertex set S ⊆ V (G) is k-weak-edge-connected

if for every C ⊂ S and x ∈ S − C there are min{k, |C|} edge-disjoint (x,C)-paths in

G. By Menger’s Theorem, if G is k-edge-connected, then every vertex set of V (G) is k-

weak-edge-connected. Conversely, if |V (G)| ≥ k +1, then V (G) is k-weak-edge-connected
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implies that G is k-edge-connected. For k ≤ 2, k-weak-edge-connectedness is equivalent

to k-edge-connectedness when |S| ≥ k + 1. The case k = 1 is trivial. In the case k = 2,

for any three vertices in S, there are two edge disjoint paths between one of them and the

other two, hence they are 2-edge-connected. When k ≥ 3, k-weak-edge-connectedness is

indeed ’weaker’ than k-edge-connectedness, as can be seen from the graph in Figure 1,

where S is the set of the blackened vertices.
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Figure 1

Let G be a graph, k ≥ 3 an integer, and S a k-weak-edge-connected subset of V (G)

with 4 ≤ |S| ≤ 2k. The main result of this paper is that G has an eulerian subgraph

containing all vertices in S. We will give a proof of this result in the next section. As a

consequence of the main theorem, we have

Corollary 2. Let G be a graph and S a k-edge-connected subset of V (G) with k ≥ 3 and

|S| ≤ 2k. Then G has an eulerian subgraph containing all vertices of S.

Given an eulerian cycle, we can start from any vertex, traverse every edge exactly once,

and then come back to the starting point. So, for an eulerian cycle, we can associate with

it a direction. Let x, y be two vertices in an eulerian cycle C. Denote by xCy the segment

from x to y traversed in the previously fixed direction, and xCy the segment from x to y

traversed in the reversing direction. Similar notation is used for paths. Furthermore, for

a path P and a vertex x on P , xP denotes the segment of P from x to its end, and Px

denotes the segment of P from its initial to x.

For simplicity, we will use the graph itself to denote its vertex set. We follow [1] or [2]

for notations or terminology not defined here.
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2 Main Result

Similar to the result of exercise 6.42 in [11], which concerns with vertex-disjoint paths,

we have the following lemma dealing with edge-disjoint paths.

Lemma 1. Let M be a vertex set in a graph G, and x a vertex in G−M . Suppose there

are ` edge-disjoint (x,M)-paths Q1, ..., Q` and `+r edge-disjoint (x,M)-paths P1, ..., P`+r.

Then there are ` edge-disjoint (x,M)-paths R1, ..., R` and r integers 1 ≤ j1 < ... < jr ≤
` + r, such that

(i) Ri has the same attachment as Qi (i = 1, ..., `), and

(ii) R1, ..., R`, Pj1 , ..., Pjr are edge-disjoint.

Proof. Let R = {R1, ..., R`, ..., Rt} be a set of edge-disjoint paths such that

(1) Ri has the same attachment as Qi (i = 1, ..., `), and

(2) subject to (1), |( ⋃
R∈R

E(R)) ∩ (
`+r⋃
i=1

E(Pi))| is as large as possible.

Note that such R exists by the existence of Q1, ..., Q`.

Claim. If the begining edge of Pj is different from any begining edge of Ri (i = 1, ..., `),

then Pj is edge-disjoint from {Ri}`
i=1.

Suppose the claim is not true. Let yz be the first edge on Pj which also belongs to some

path in {Ri}`
i=1, say Ri0 . Replace xRi0y with xPjy, and denote byR′ the new set of paths.

ThenR′ is also a set of edge-disjoint paths satisfying (1). But |( ⋃
R∈R′

E(R))∩(
`+r⋃
i=1

E(Pi))| >

|( ⋃
R∈R

E(R)) ∩ (
`+r⋃
i=1

E(Pi))|, which contradicts (2).

The existence of j1, ..., jr follows from the above claim and the observation that there

are at least r paths in {Pj}`+r
j=1 whose begining edges are different from those of {Ri}`

i=1.

As a corollary, we have

Lemma 2. Suppose G is a graph, k is an integer with k ≥ 2, S is a k-weak-edge-connected

subset of V (G), M is a vertex set in G with M ∩ S = C, x is a vertex in S −M , Q1, Q2

are two edge-disjoint (x,M)-paths with attachments x1 and x2 respectively. Then there
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exist c = min{k, |C|} edge-disjoint (x,M)-paths P1, ..., Pc with attachments y1, ..., yc such

that {x1, x2} ⊆ {y1, ..., yc}.

Proof. Since S is k-weak-edge-connected, there are c edge-disjoint (x, C)-paths R1, ..., Rc

in G. Suppose the directions of these paths are from x to C. Denote by zi the first vertex

of Ri in Ri ∩M . Set R′
i = Rizi. Then R′

1, ..., R
′
c are c edge-disjoint (x, M)-paths and the

result follows from Lemma 1.

The following is our main result:

Theorem 5 (the main theorem). Let G be a graph of order at least 3, and S a subset

of vertices in G. Then G has an eulerian subgraph containing all vertices of S if one of

the following conditions is satisfied:

(1) For k = 2, 3, S is k-edge-connected with |S| ≤ k and

(2) For k ≥ 3, S is a k-weak-edge-connected subset of V (G) with 4 ≤ |S| ≤ 2k.

Remark 1. The requirement that k ≥ 3 in (2) is necessary, as can be seen from G =

K2,2n+1 (n ≥ 2), where S is the partite set containing 2n + 1 vertices which is 2-weak-

edge-connected but not 3-weak-edge-connected. The requirement |S| ≥ 4 in (2) is also

necessary, as can be seen from K2,3, where S is the partite set containing three vertices

which is k-weak-edge-connected for any k.

Proof of the main theorem:

Let C be an eulerian subgraph of G with |C∩S| as large as possible. By our discussion

after the definition of k-weak-edge-connectedness, S is 2-edge-connected, and thus |C ∩
S| ≥ 2 by Menger’s Theorem. As a consequence, the theorem holds when |S| ≤ 2. So,

suppose |S| ≥ 3 in the following.

Assume that this theorem is not true, we shall derive a contradiction by showing

that C is ‘augmentable’, i.e., there is another eulerian subgraph C ′ of G containing more

S-vertices than C. Let x be a vertex in S − C.
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If S satisfies condition (1) with k = 3, then |C ∩ S| = 2, and there are three edge

disjoint (x,C)-paths Q1, Q2, Q3 with attachments x1, x2, x3 on C, where x1, x2, x3 lie on C

in this order. For each i, there is at least one S-vertex in (xi, xi+1) (’+’ is comprehended

as modulo 3) since otherwise C can be augmented by setting C ′ = xQi+1xi+1CxiQix. But

then |C ∩ S| ≥ 3, a contradiction.

Next we assume that S is a k-weak-edge-connected subset of V (G) with k ≥ 3 and

|S| ≤ 2k. In this case,

|C ∩ S| < |S| ≤ 2k. (1)

Since S is k-weak-edge-connected, there are c = min{k, |C ∩ S|} edge-disjoint (x,C)-

paths Q1, ..., Qc with attachments x1, ..., xc, where x1, ..., xc lie on C sequentially in this

order. Denote by X = {x1, ..., xc}. Call the segments (xi, xi+1) (i = 1, ..., c) on C as

X-segments, where ‘+’ is comprehended as modulo c. Similar to the above, we have

Claim 1. For each i, there is at least one S-vertex in (xi, xi+1). ¤

If |C∩S| = 2, since |S| ≥ 4, we have yi ∈ S−{x}, 1 ≤ i ≤ 3 such that y1 ∈ x1Cx2 and

y2 ∈ x2Cx1. Then there are three edge disjoint (y3, {x, y1, y2})-paths, and hence three

edge disjoint (y3, C ∪ Q1 ∪ Q2)-paths with attachments zi (1 ≤ i ≤ 3) respectively. It is

easy to verify that if |{z1, z2, z3} ∩ (Q1 ∪ x1Cy1 ∪ x2Cy2)| ≥ 2, there will be an eulerian

subgraph containing at least three S-vertices, a contradiction. So |{z1, z2, z3} ∩ (Q1 ∪
x1Cy1∪x2Cy2)| ≤ 1. Similarly |{z1, z2, z3}∩ (Q2∪y1Cx2∪y2Cx1)| ≤ 1. But this is again

a contradiction. Therefore we may assume that |C ∩ S| ≥ 3.

Claim 2. There is an X-segment containing exactly one S-vertex.

In fact, if c < k, then each X-segment contains exactly one S-vertex. Whereas when

c = k, the claim follows from the hypothesis that C contains less than 2c S-vertices. ¤

Suppose, without loss of generality, that (x1, x2) is an X-segment which contains

exactly one S-vertex y. By taking M = x2Cx1 ∪ Q1 ∪ Q2 in Lemma 2, we obtain c

edge-disjoint (y, M)-paths P1, ..., Pc with attachments y1, ..., yc lying sequentially on C, in

which y1 = x1 and y2 = x2.
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Claim 3. P1, ..., Pc are vertex-disjoint from Q1, ..., Qc except that P1 ∩ Q1 = {x1} and

P2 ∩Q2 = {x2}.

First, it can be seen from the choice of M that P2 is vertex-disjoint from Q1 and

internally disjoint from Q2, P1 is vertex-disjoint from Q2 and internally disjoint from Q1.

Suppose that Pj ∩ (Q1 ∪ Q2) 6= ∅ for some j ≥ 3. That is to say, without loss of

generality, yj ∈ Q1. But then C is augmentable to C ′ = xQ2x2Cx1P1yPjyjQ1x (see

Figure 2). So Pj ∩ (Q1 ∪Q2) = ∅ for any j ≥ 3.
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Figure 2

Suppose Qi∩(
⋃c

j=1 Pj) 6= ∅ for some i ≥ 3. Let u be the first vertex of Qi which also be-

longs to
⋃c

j=1 Pj, say u ∈ Pj. Then C is augmentable by taking C ′ = xQiuPjyP2x2Cx1Q1x

if j 6= 2 and C ′ = xQiuP2yP1x1Cx2Q2x if j = 2 (see Figure 3). ¤
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Figure 3

Set Y = {y3, ...yc}. As a consequence of Claim 3, Y ⊆ C and Y ∩X = ∅. Moreover,

we have the following

Claim 4. For each pair of vertices u, v ∈ X ∪ Y , there is at least one S-vertex between

them.

It has been shown in Claim 1 that {u, v} 6⊆ X. If there is a Y -segment (yi, yi+1) not

containing any S-vertex, then C is augmentable by setting C ′ = xQ2x2CyiP iyPi+1yi+1Cx1
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Q1x. So {u, v} 6⊆ Y .

Next, suppose u = xi ∈ X and v = yj ∈ Y . Without loss of generality we as-

sume that x2, u, v, x1 are in this order on C. Then C is augmentable by setting C ′ =

xQixiCx2P2yPjyjCx1Q1x if there is no S-vertex in xiCyj (see Figure 4). ¤

t
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t t
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Qi
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u = xiv = yj

x1 x2

Figure 4

Claim 5. c = k < |C ∩ S|.

By the definition of c, we have c = |C ∩ S| or c = k. If c = |C ∩ S|, then c ≥ 3. But

by Claim 4, |C ∩ S| ≥ |X|+ |Y | = 2c− 2 > c, a contradiction. So, c < |C ∩ S|, and thus

c = k. ¤

Claim 6. There is only one X-segment on C containing exactly one S-vertex.

Suppose S∩(x`Cx`+1) = {z} for some ` 6= 1. By taking M = (C−(x1Cx2∪x`Cx`+1))∪
Q1∪Q2∪Q`∪Q`+1∪P1∪P2 in Lemma 2, we obtain c edge-disjoint (z, M)-paths R1, ..., Rc

with attachments z1, ..., zc lying on C sequentially, and z` = x`, z`+1 = x`+1.

Subclaim 6.1. R1, ..., Rc are vertex disjoint from Q1, ..., Qc and P1, ..., Pc, except for the

obvious common ends.

First, by the choice of M , we see that R` and R`+1 are vertex-disjoint from P1, P2, Q1, Q2

and internally disjoint from Q`, Q`+1. Suppose Ri intersects P1∪P2∪Q1∪Q2∪Q`∪Q`+1

for some i 6= `, ` + 1. If Ri comes across Q` or Q`+1 first, say Q`, then zi ∈ Q`,

and C ′ = xQ`+1x`+1Cx1P1yP2x2Cx`R`zRiziQ`x is an augmentation of C (see Figure

5 (a)). If Ri comes across P1, P2, Q1 or Q2 first, say P1, then zi ∈ P1, and C ′ =

xQ`x`Cx2P2yP1ziRizR`+1x`+1Cx1Q1x is an augmentation of C (see Figure 5 (b)). So,

Ri ∩ (P1 ∪ P2 ∪Q1 ∪Q2 ∪Q` ∪Q`+1) = ∅ for any i. Suppose Pj ∩ Ri 6= ∅ for some j ≥ 3

and some i. Let u be the first vertex on Pj which also belongs to some Ri. Then C can

be augmented by setting C ′ = xQ`+1x`+1Cx1P1yPjuRizR`x`Cx2Q2x if i 6= ` (see Figure
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5 (c)) or C ′ = xQ`x`Cx2P2yPjuR`zR`+1x`+1Cx1Q1x if i = ` (see Figure 5 (d)). Similar

contradiction arises if some Qj intersects some Ri. ¤
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Figure 5

Set Z = {z1, ..., z`−1, z`+2, ..., zc}. It follows from Subclaim 6.1 that Z ⊆ C and

Z ∩ (X ∪ Y ) = ∅.

Subclaim 6.2. For every pair of vertices u, v in X ∪ Y ∪ Z, there is at least one S-vertex

between them.

In view of Claim 4 and by symmetry, we only show the case that u = yi ∈ Y and v =

zj ∈ Z. Suppose there is no S-vertex between them. We assume by symmetry that yi, zj ∈
x`+1Cx1. Then i 6= 2 and j 6= `. Set C ′ = xQ`+1x`+1CzjRjzR`x`Cx2P2yPiyiCx1Q1x if zj

precedes yi on C (see Figure 6 (a)), and C ′ = xQ`+1x`+1CyiPiyP2x2Cx`R`zRjzjCx1Q1x

if yi precedes zj on C (see Figure 6 (b)). Then C can be augmented to C ′. ¤
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It follows from Subclaim 6.2 and Claim 5 that |C∩S| ≥ |X|+|Y |+|Z| = 3c−4 = 3k−4.

By inequality (1), this happens only when c = k = 3 and G has a sub-structure as in

Figure 7 (a) or (b), where the blackened vertices are in S.
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Figure 7

Let w be the S-vertex between y3 and z1 (as indicated in Figure 7). For simplicity,

we only consider the case that G has a sub-structure in Figure 7 (a). By taking M =

x3Cz1 ∪ y3Cx1 ∪Q1 ∪Q2 ∪Q3 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪R2 ∪R3 in Lemma 2, we have three

edge-disjoint (w,M)-paths T1, T2, T3 with attachments z1, t2 and y3 respectively. Similar

to the above arguments, T1, T2, T3 are disjoint from Q1∪Q2∪Q3∪P1∪P2∪P3∪R1∪R2∪R3

except for the obvious common ends (see Figure 8).
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Figure 8. By the choice of M , T1 and T3 obviously satisfies our require-
ment. If T2 first comes across (a) Q1, (b) P1, (c) P2, (d) Q2, (e) P3, then
C can be augmented to the blackened eulerian subgraph. By symmetry,
the cases that T2 first comes across Q3, R3, R2, R1 are similar.

It follows that t2 ∈ x3Cz1 ∪ y3Cx1. Suppose by symmetry that t2 ∈ y3Cx1. Then C

can be augmented as indicated in Figure 9. ¤
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Figure 9

By Claim 5, Claim 6, and inequality (1), we see that c = k, and for each i 6= 1,

there are exactly two S-vertices in (xi, xi+1). Denote them by ui and u′i (ui precedes

u′i on C). By Claim 4, there are at least c − 2 X-segments, such that for each such

a segment (xi, xi+1) there is a Y -vertex between ui and u′i. So, we may suppose that

(x2, x3) is such a segment. Let y3 be the Y -vertex lying between u2 and u′2. By taking

M = (C \ (x1, y3)) ∪ P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 in Lemma 2, we obtain c edge-disjoint

(u2,M)-paths R1, ..., Rc with attachments z1, ..., zc, such that z2 = x2 and z3 = y3. By

the choice of M , R2 and R3 are internally disjoint from P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2. Write

C ′′ = xQ2x2R2u2R3y3Cx1Q1x. Then y is a vertex in S−C ′′ with two Y -segments (x1C
′′x2

and x2C
′′y3) on C ′′ having exactly one S-vertex each. Since |C ′′ ∩ S| = |C ∩ S|, Claim 6

is also applicable to y and C ′′, which incurs a contradiction. ¤
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[6] E. Flandrin, H. Li, A. Marczyk, M. Woźniak, A generalization of Dirac’s theorem on

cycles through k vertices in k-connected graphs.

[7] O. Favaron and B. Jackson, personal communication.

[8] M.R. Garey, D.S. Johnson and R.E. Tarjan, The planar hamiltonian circuit problem

is NP-complete. SIAM J. Comp. 5 (1976) 704-714.

[9] M.R. Garey and D.S. Johnson, Computers and Intractability. W.H. Freeman and

Company, New York (1979).
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