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ABSTRACT
This paper presents some first results on how to perform uni-
form random walks (where every trace has the same proba-
bility to occur) in very large models. The models considered
here are described in a succinct way as a set of communi-
cating reactive modules. The method relies upon techniques
for counting and drawing uniformly at random words in reg-
ular languages. Each module is considered as an automaton
defining such a language. It is shown how it is possible
to combine local uniform drawings of traces, and to obtain
some global uniform random sampling, without construction
of the global model.

Keywords
model-based testing, random walk, modular models, model
checking, randomised approximation scheme, uniform gen-
eration

1. INTRODUCTION
Model based testing has received a lot of attention for

years and is now a well established discipline (see for in-
stance [25, 8]). Most approaches have focused on the de-
terministic derivation from a finite model of some so-called
checking sequence, or of some complete/exhaustive set of
test sequences, that ensure conformance of the implementa-
tion under test (IUT ) with respect to the model. However,
in very large models, such approaches are not practicable
and some selection strategy must be applied to obtain tests
of reasonable size. A popular selection criterion is transition
coverage. Other selection methods rely upon the statement
of some test purpose.

With the emergence of model checking, several sophisti-
cated techniques for the representation and the treatment of
models and formulas have been proposed and used for devel-
oping powerful verification tools for large models. Among
them, one can cite: symbolic model checking, partial-order
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reduction methods, reactive modules, symmetry reduction,
hash compaction and bounded model checking.

In this area, several authors have recently suggested the
use of random walks in the state space of very large models
in order to get good approximate checks in cases where ex-
haustive check is too expensive [29, 18, 16, 28]. This is in
the line of testing methods developed earlier in the area of
communication protocols [31, 26, 24, 9].

A random walk [1] in the state space of a model is a se-
quence of states s0, s1, . . . , sn such that si is a state that
is chosen uniformly at random among the successors of the
state si−1, for i = 1, . . ., n. It is easy to implement and only
requires local knowledge of the model. In [31] West reported
experiments where random walk methods had good and sta-
ble error detection power. In [26], Mihail and Papadimitriou
identified some class of models that can be efficiently tested
by random walk exploration: the random walk converges to
the uniform distribution over the state space in polynomial
time with respect to the size of the model. These were first
evidence of the interest of such approaches for dealing with
special classes of large models.

However, as noted by Sivaraj and Gopalakrishnan in [29],
random walk methods have some drawbacks. In case of ir-
regular topology of the underlying transition graph, uniform
choice of the next state is far from being optimal from a
coverage point of view. Moreover, for the same reason, it is
generally not possible to get any estimation of the test cov-
erage obtained after one or several random walks: it would
require some complex global analysis of the topology of the
model. One way to overcome these problems has been pro-
posed by Gouraud et al. for program testing in [15, 11]. It
relies upon techniques for counting and drawing uniformly
at random combinatorial structures, as described by Flajo-
let et al. in [14] and implemented in [30]. The idea in [15,
11] is to give up the uniform choice of the next state and to
bias this choice according to the number of elements (traces,
or states, or transitions) reachable via each successor. Con-
sidering the number of traces makes it possible to ensure a
uniform probability on traces. Considering elements, such
as states or transitions, makes it possible to maximise the
minimum probability to reach such an element.

For addressing very large models, it seems interesting to
study how to combine this improved version of random walk
with the representation techniques developed for struggling
against combinatorial state explosions. In this paper we
present some first results on how to uniformly sample traces
in models described as a set of interacting transition sys-



tems, using the so-called “reactive modules” notation. This
language, defined by Alur and Henzinger in [3] is used as
input of the Mocha model checkers and its variants [2, 4].

In the probabilistic model checking community, it is the
input language of the PRISM [27, 23] and APMC [5] model
checkers. It is similar to communicating extended state ma-
chines, where transitions can be labelled by probabilities.
We propose some way, inspired from [11], for uniformly ran-
dom sampling traces in systems described by reactive mod-
ules, without constructing the global model. This method
opens interesting perspectives for random model based test-
ing, for model checking, and for simulation methods.

The paper is organised in two parts.
In Section 2, we first describe in 2.1 the reactive modules

notation; then, in 2.2, we show how to implement classical
random walk in systems described by reactive modules; in
2.3 we give an approximation of the detection power of such
methods.

In Section 3 we address the computation of probabilities
for improving random walk by uniformly drawing traces in
models given as a set of such modules: 3.1 and 3.2 recall
some results on automata and on counting and drawing
uniformly at random words of a given length, in regular lan-
guages; we generalise these techniques to shuffles of such lan-
guages; 3.3 and 3.4 deal with uniform generation of traces for
systems described by reactive modules, without, and then
with, synchronisation.

2. RANDOM WALKS IN “REACTIVE MOD-
ULES"

Our approach is based on a rather classical kind of model
in testing, namely transition systems where transitions are
labelled by atomic actions of a given language Act.

Definition 1. An action-labelled transition system
(ALTS) is a structure M = (S, T, s0, Act) where S is a set
of states, s0 the initial state, T ⊆ S × Act × S a transition
relation and Act a set of actions.

In this paper we consider finite ALTS. Note that, with
this definition, ALTS may be non deterministic: the tran-
sition relation may associate several target states to a given
state and a given action.

2.1 Reactive Modules
In this paper, we use the Reactive Modules language [3]

for describing ALTS. This language is used in the proba-
bilistic model checking community for modeling programs
and protocols as transition systems. Two model checkers
are using a subset of it as input language: PRISM [23, 27]
and APMC [5].

In this language, transition systems are represented by
modules that can interact together. Each module is com-
posed of local variables and guarded commands. The global
state of the system is given by the local states (i.e. the val-
ues of the local variables) of the modules. More precisely,
at any moment the global state of the system is represented
by a vector containing the values of all the variables of the
system. A guarded command is a description of an atomic
transition. It is written as

[sync] guard -> act1 + ... + actk ;

where guard is a propositional formula over the variables
of the system and where each action (act1,...,actk) defines

a new assignment of some local variables. The choice of the
action to be activated is done non deterministically among
those with a valid guard.

Basically, to compute an execution of the whole system,
the algorithm is the following (when there is no synchroniza-
tion):

1. Choose non deterministically one of the modules.

2. Check all the guards of the modules, keep a list of the
valid guards.

3. If there is no valid guards, no action can be executed,
then the execution is stopped (to avoid livelock situa-
tion).

4. Choose non deterministically among the valid guards,
execute non deterministically one of the corresponding
actions.

5. Modify the local state, thus inducing a modification of
the global state.

6. Go to step 1.

Moreover, one can see that there is a specific field in the
guarded command: [sync]. This field is used to synchro-
nize modules. By putting a synchronization between guards
of different modules, we force the actions associated to the
guards to be done together (this is a way to describe suc-
cinctly a complex behaviour). Basically, we have to main-
tain, together with the valid guards, the corresponding syn-
chronisations. At the step 2 of the computation, a guard g
synchronised by s in a module m is considered valid if and
only if the guard is true and if there exists, in each module,
at least one guard which is true and synchronised by s. If
g is picked at the step 4, then in each module one of the
actions corresponding to one (choosen non determinitically)
of the synchronised valid guard is executed together with
the one of actions of g.

In the following, we give an example of a simple Reactive
Modules system composed of three modules. All the mod-
ules act together via synchronization. The figure 1 summa-
rizes the example.

module timer

t : [0..1] init 0;

[tic] t=0 -> t’=1;

[tac] t=1 -> t’=0;

endmodule

module on_tic

state1 : [0..1000] init 0;

[tic] state1<1000 -> state1’=(state1+2);

[tic] state1>=1000 -> state1’=0;

endmodule

module on_tac

state2 : [1..1001] init 1;



[tac] state2<1000 -> state2’=(state2+2);

[tac] state2>=1001 -> state2’=1;

endmodule

We now explain quickly the short example. To compute
executions of the model, one has to first pick one of the mod-
ules, for instance module on tic. Then the algorithm checks
the valid guards. At the beginning, the variable state1 is
lower than 1000, so only the first guard is valid. We have
to activate the first guard, but one can see that there is
a synchronization on it: tic. So we have to made each
module acting with the two others via a guard synchronised
with tic. It means that the only valid execution is to ac-
tivate the first guard of the timer and the module on tic
(there are no guards synchronised with tic in the third
module). So the system starts from the initial state (0, 0, 1).
It goes from global states of the form (0, state1, state2) to
(1, state1 + 2, state2), and from global states of the form
(1, state1, state2) to (0, state1, state2 + 2). After a while,
state1 (resp. state2) is set to 0 (resp. 1) and the system
restart from the initial state (0, 0, 1).

More informations about Reactive Modules can be found
in the paper of Alur and Henzinger [3], that gives a full
account of the semantics, and some correspondence between
modules and transition systems.

The Reactive Modules notation, makes it possible to de-
scribe huge transitions systems via synchronised product
([6]). In practice, this notation allows to manipulate large
systems without being subject to the exponential blowup of
the state space (for instance systems with more than 1030

states, see [18]).
Most of the very large models come from the product of

several times the same module. This is the case with clas-
sical distributed algorithms ([17]), real systems/protocols
([12, 10, 21]).

2.2 Classical random walks
An execution path, or a trace in an ALTS, is a finite or

infinite sequence σ = (si, ai, si+1) of transitions satisfying:
for all i ≥ 0, there exists ai ∈ Act such that (si, ai, si+1) ∈ T .

For performing random walk in a ALTS M, it is suffi-
cient to have a succinct representation of it, that we call
diagramM, that allows to generate algorithmically, for any
state s, the set of successors of s.

The size of such a diagram can be substantially lower than
the size of the corresponding ALTS. Typically, for Reactive
Modules, the size of diagramM is poly-logarithmic in the
size of M.

The following function Random Walk1 uses such a suc-
cinct representation to generate a random path of length k
and to check if this path leads to the detection of some con-
formance error. We make the simplifying assumption that
there is a reliable verdict that detects an error when a fault
is reached during the execution of the random walk by the
implementation under test (IUT).

1This classical algorithm actually defines a so-called “pre-
set” random walk. For the distinction between preset and
adaptive checking sequences see [25]. We give some hints on
how to cope with adaptative random walks in the conclu-
sion.

Random Walk
Input: diagramM, k
Output: samples a path π of length k and check
conformance on π

1. Generate a random path π = (s0, . . . , sk)
such that for i = 0, . . . , k − 1, we choose
uniformly si+1 among the successors of si.

2. Submit π to the IUT. If π detects some con-
formance error then return 1 else 0

A drawback of this approach is that we don’t know the
probability distribution that it induces on the paths of the
model. However, it is possible to approximate the error de-
tection probability using approximation techniques for count-
ing problems [22].

2.3 Randomised approximation scheme
Many enumeration and counting problems are known to

be strongly intractable. For example, counting the number
of elementary paths between two given nodes in the graph of
a transition system is ]P -complete. We recall that ]P is the
complexity class of functions associated with counting the
numbers of solutions of NP decision problems. A classical
method to break this complexity barrier is to approximate
counting problems.

We show that we can approximate the error detection
probability with a simple randomised algorithm. A prob-
ability problem is defined by giving as input a succinct rep-
resentation of a transition system, a property x and as out-
put the probability measure µ(x) of the measurable set of
execution paths satisfying this property. We adapt the no-
tion of randomised approximation scheme [22] to probability
problems.

Definition 2. A randomised approximation scheme for
a probability problem [18] is a randomised algorithm A that
takes an input x and a real number ε > 0 and produces a
value A(x, ε, δ) such that for any x, ε > 0, and δ > 0:

Pr
`
|A(x, ε, δ)− µ(x)| < ε

´
≥ 1− δ.

If the running time of A is polynomial in |x|, 1
ε

and log( 1
δ
),

A is said to be fully polynomial.

Let Pathsk(s0) be the set of execution paths of origin s0
and of depth k. We generate random paths in the associated
probabilistic space and compute a random variable A which
approximates the error detection probability on the paths of
depth k, Probk[error]. Consider now the random sampling
algorithm GAA designed for the approximate computation
of Probk[error]:

Generic approximation algorithm GAA
Input: diagramM, k, ε, δ
Output: approximation of Probk[error]
N := ln( 2

δ
)/2ε2

A := 0
For i = 1 to N do
A := A+ Random Walk(diagramM, k)
Return A/N

Our approximation will be correct with confidence (1− δ)
after a number N of samples polynomial in 1

ε
and log 1

δ
.

This result is obtained by using Chernoff-Hoeffding bounds
[20] on the tail of the distribution of a sum of independent
random variables.



Module timer
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tic
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state1=0
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tictic

Figure 1: Scheme of the example

Theorem 1. The generic approximation algorithm GAA
is a fully polynomial randomised approximation scheme for
computing p = Probk[error] whenever p ∈]0, 1[.

The property of existence of conformance error detection
is monotone: if it is true for a finite path σ, then it is also
true for every infinite extension of this path. Let Prob[error]
be the error detection probability in the probabilistic space
associated to the set Paths(s0) of infinite execution paths
of origin s0. Then the sequence (Probk[error])k converges
to the limit Prob[error].

We can obtain a randomized approximation of Prob[error]
by increasing k.

Corollary 1. The fixed point algorithm defined by iter-
ating the approximation algorithm GAA is a randomised ap-
proximation scheme for the probability problem p = Prob[ψ]
whenever p ∈]0, 1[.

The main interest of this randomised approximation scheme
is that it allows some quantification of the error detection
power of a random walk without construction and analysis
of the global system.

3. IMPROVING RANDOM WALK COVER-
AGE

In this section we study how to improve random walk by
changing the random choice of the successors in such a way
that traces are uniformly distributed. After some prelimi-
naries, we first address the case of systems described by a set
of concurrent, non synchronised reactive modules, and then
we consider the case where there is some synchronisation. In
both cases, we analyse the (intractable) complexity of explic-
itly building the product [6] of the models corresponding to
the modules. Then we propose a much more efficient alter-
native, based on the representation of the modules, hence
without explicitely constructing the whole system.

3.1 From reactive modules to automata

We briefly recall that a finite state automatonA is denoted
as a 5-tuple A = 〈X,Q, q0, F,∆〉 where X is the alphabet,
Q is the finite set of states, q0 is the initial state, F is the
set of final states and ∆ : Q × X → Q is the state transi-
tion relation. A finite state automaton A defines a regular
language L on the alphabet X.

Let M1,M2, . . .Mr be a set of reactive modules, each one
standing for an ALTS. Each of the Mi’s can be represented
in a straightforward way by a finite-state automaton Ai =
〈Xi, Qi, q

0
i , Fi,∆i〉 where

• each state of Qi corresponds to a state of Mi,

• any two different transitions are labelled by two dif-
ferent letters of Xi (hence the cardinality of Xi equals
the numbers of transitions in Ai),

2

• all states are final states (hence Fi = Qi).

• the Xi’s are pairwise disjoint.

Consequently, each of the Ai’s defines a regular language
Li where each word is in one-to-one correspondence with a
trace in the reactive module.

3.2 Combinatorial and algorithmic prelimi-
naries

3.2.1 Automata and word counting
Let L be a regular language and let `(n) be the number of

words of L of length n. According to a well known result (see
e.g. [13, Theorem 8.1]), there exist an integer N1, a finite
set of complex numbers ω1, ω2, . . . , ωk and a finite set of
polynomials R1(n), R2(n), . . ., Rk(n) such that

n ≥ N1 → `(n) =

kX
j=1

Rj(n)ωn
j . (1)

2This is just a way to identify transitions in order to use
their numbers in the following developments. This has no
consequence on the kind of model considered, deterministic
or not.



The number N1, as well as the ωj ’s and the Rj ’s, can be
computed from an automaton of L, with an algorithm of
polynomial complexity according to the size of the automa-
ton. Technical details are given in Appendix 1.

If the automaton of L statisfies certain conditions (see
below), then there is an unique i such that |ωi| > |ωj | for
any j 6= i, and Ri(n) has degree zero, that is Ri(n) = C for
any n, where C is a constant. Thus, if we define ω = ωi, the
following formula holds, asymptotically:

`(n) ∼ Cωn. (2)

This gives a very good estimation of `(n) even for rather
small n since, according to Formulas (2) and (1), Cωn/`(n)
converges to 1 at an exponential rate.

A simple sufficient condition for Formula (2) to hold is:
the automaton is aperiodic and strongly connected. An au-
tomaton is aperiodic if, for any sufficiently large n, l(n) 6= 0.
Now, as stated in Section 3.1, all the states of any au-
tomaton which represents a reactive module are final states.
Thus any automaton which represents a reactive module
is aperiodic. Concerning strong connectivity, it is satisfied
as soon as there is a reset. Moreover, it is a sufficient yet
not mandatory condition. For instance, for satisfying For-
mula (2), in fact it suffices to have some unique biggest
strongly-connected component in the automaton. Hence,
most “natural” automata are such that this formula is sat-
isfied. Note that in the sequel we use Formula (2) for the
automata corresponding to the component modules.

3.2.2 Automata and word shuffling
The shuffle of two words w,w′ ∈ X∗, denoted w ∃ w′ is the

set w ∃ w′= {w1w
′
1...wmw

′
m|wi, w

′
i ∈ X∗, w=w1...wm, w

′=
w′1...w

′
m}. For example, ab ∃ cde = {abcde, acbde, acdbe,

acdeb, cabde, cadbe, cadeb, cdabe, cdaeb, cdeab}. The shuf-
fle operation is associative and commutative. It naturally
generalises for languages: the shuffle of two languages L1

and L2 is the set

L1

∃ L2 =
[

w1∈L1,

w2∈L2

w1

∃ w2

This easily generalises to any finite number r of languages.
And the following property holds: the shuffle of a set of
regular languages is a regular language. Indeed, let r > 0
and let L1, L2, . . . , Lr be r regular languages. Let Ai =
〈Xi, Qi, q

0
i , Fi,∆i〉 be an automaton of Li, for any 1 ≤ i ≤

r. Then the following finite state automaton recognises L:
A = 〈X,Q, q0, F,∆〉, where

• X = X1 ∪X2 ∪ . . . ∪Xr;

• Q = Q1 ×Q2 × . . .×Qr;

• q0 = (q01 , q
0
2 , . . . , q

0
r);

• F = F1 × F2 × . . .× Fr;

• ∆((q1, . . . , qi, . . . , qr), x)) =

(∆1(q1, x), . . . , qi, . . . , qr) if x ∈ X1

. . .
(q1, . . . ,∆i(qi, x), . . . , qr) if x ∈ Xi

. . .
(q1, . . . , qi, . . . ,∆r(qr, x)) if x ∈ Xr

We call this automaton a shuffling automaton of L1, L2, . . . , Lr.
Now let `i(k) be the number of words of length k belonging

to the language Li. If the Xi’s are pairwise disjoint, then
the number of words of length n belonging to L is:

`(n) =
X

k1+···+kr=n

 
n

k1, k2, . . . , kr

!
`1(k1)`2(k2) . . . `r(kr)

Now, suppose that, as in the previous section, all the Li’s
are such that

`i(k) ∼ Ciω
k
i (3)

where Ci and ωi are two constants. Then

`(n) ∼ C1C2 . . . Cr

X
k1+···+kr=n

 
n

k1, . . . , kr

!
ωk1

1 . . . ωkr
r

= C1C2 . . . Cr(ω1 + ω2 + . . .+ ωr)
n

(4)

3.2.3 Uniform random generation of words in a reg-
ular language

First discussed by Hickey and Cohen[19], the method for
generating words of regular languages has been improved
and widely generalized by Flajolet and al [14]. The principle
of the generation process is simple: Starting from state q0,
one draws a word step by step; at each step, the process
consists in choosing a successor of the current state and
going to it.

The problem is to proceed in such a way that only (and
all) words of length n can be generated, and that they are
equiprobably distributed. This is done by choosing succes-
sors with suitable probabilities. Given any state s of the
automaton, let gm(s) denote the number of words of length
m which connect s to any final state f ∈ F . Suppose that,
at any step of the generation, we are on state s which has
k successors denoted s1, s2, . . . , sk. In addition, suppose
that m > 0 transition remain to be done in order to get
a word of length n. Then the condition for uniformity is
that the probability of choosing state si (1 ≤ i ≤ k) equals
gm−1(si)/gm(s). In other words, the probability to go to
any successor of s must be proportional to the number of
words of suitable length from this successor to any f .

So there is a need to compute the numbers gi(s) for any
0 ≤ i ≤ n and any state s of the automaton. This can be
done by using the following recurrence relations:

g0(s) = 1 if s ∈ F
= 0 otherwise

gi(s) =
P

s→s′ gi−1(s
′) for i > 0

(5)

where s → s′ means that there exists an letter x ∈ X such
as (s, x, s′) ∈ ∆.

Now the generation scheme is as follows:

• Preprocessing stage: Compute a table of the gi(s)’s for
all 0 ≤ i ≤ n and all states.

• Generation stage: Draw the word according to the
scheme seen above.

Note that the preprocessing stage must be done only once,
whatever the number of words to be generated. Easy com-
putations show that the memory space requirement is n×|Q|
integer numbers, where |Q| stands for the number of states
in the automaton. The number of arithmetic operations
needed for the preprocessing stage, as well as for the gener-
ation stage, is linear in n.



3.3 Generating traces of a system of modules
without synchronisation.

Here we focus on the problem of uniformly (that is equiprob-
ably) generating traces of a given length n in a system of r
reactive modules. In a first step, we consider that there is
no synchronisation between the r reactive modules Mi.

Each one is represented by a finite state automaton Ai =
〈Xi, Qi, q

0
i , Fi,∆i〉. As stated in Section 3.1, each of the

Ai’s defines a regular language Li whose words correspond
to the traces within the corresponding module. Since there
is no synchronisation in the system, clearly there is a one-to-
one correspondence between the set of traces of the system
and the words of L = L1

∃ L2

∃ . . . ∃ Lr. Thus the problem
reduces to uniformly generating words of length n in L. We
present two different approaches for this problem and we
discuss their complexity issues.

3.3.1 Brute force method
This first approach consists in constructing the shuffling

automaton that has been defined in Section 3.2.2. Then the
classical algorithms for randomly generating words of a reg-
ular language can be processed, as described in Section 3.2.3.

Let C1 =
P

0≤i≤r Card(Xi) and C2 =
Q

0≤i≤r Card(Qi).
The worst-case complexities of the two main steps of the
algorithm are the following.

1. Constructing the automaton: This step is performed
only once, whatever the number of traces to be gen-
erated. Its worst-case complexity is C1C2 in time and
space requirements.

2. Generating traces: Using classical algorithms, gener-
ating one word requires nC1 time requirement, after a
preprocessing stage having worst-case complexity nC1C2

in time and space. This preprocessing stage is per-
formed once, whatever the number of traces to be gen-
erated.

Hence the worst case complexity for generating m traces of
length n is O(nC1C2 + mnC1) in time and O(nC1C2) in
space. This is linear in n, in m, in the total size of the
alphabets. Since C2 =

Q
0≤i≤r Card(Qi), the complexity

is exponential according to the number of modules. Thus
the algorithm will be efficient only for a small number of
modules.

3.3.2 “On line” shuffling method
Here we describe an alternative method which avoids con-

structing the above automaton. We recall that `i(k) is the
number of words of length k belonging to the language Li,
and `(k) is the number of words of length k belonging to the
language L. The method consists first in choosing at ran-
dom, with a suitable probability, the length ni of each word
wi of Li which will contribute to the word w of L to be gen-
erated. Then each wi is generated independently. Finally,
the shuffle operation is processed. We detail the method
just below.

1. Choose at random a r-uple (n1, . . . , nr) with probabil-
ity Pr(n1, . . . , nr) such that

Pr(n1, . . . , nr) =

`
n

n1,...,nr

´
`1(n1) . . . `r(nr)

`(n)
(6)

2. For each 0 ≤ i ≤ r, draw uniformly a random word
wi of length ni in Li, using the classical algorithm for
generating words of a regular language.

3. Shuffle the r words. This can be done with the follow-
ing algorithm:

Shuffling r words
Input: r words w1, . . . , wr, of length n1, . . . , nr

Output: word w of length n =
P

i ni and drawn uniformly
among the set of shuffles of w1, . . . , wr.
w ← ε
n←

P
i ni

while n > 0 do
choose an integer i between 1 and r with probability ni

n
add the first letter of wi at the end of w
remove the first letter of wi

ni ← ni − 1
n← n− 1

The word w has been generated equiprobably among all
the words of L of length n. Regarding complexity issues,
clearly the complexity of step 3 is linear in n. The complex-
ity of step 2 is linear in n, in the maximum of Card(Xi) and
in the maximum of Card(Qi), in time as well as in space re-
quirements. The main contribution to the total worst-case
time complexity is the computation of the suitable proba-
bilities by Formula (6). The space requirement is O(1) but
the number of terms in `(n) is exponential in n. However,
if the Li’s satisfy the hypothesis of Formula (3), then, by
Formula (4):

Pr(n1, . . . , nr) ∼
`

n
n1,...,nr

´
ωn1

1 ωn2
2 . . . ωnr

r

(ω1 + ω2 + . . .+ ωr)n
. (7)

There is an easy algorithm for choosing n1, . . . , nr with this
probability without computing it: take the set of integers
{1, . . . , r} and draw a random sequence by picking indepen-
dently n numbers in this set in such a way that the proba-
bility to choose i is Pr(i) = ωi

ω1+ω2+...+ωr
. Then take ni as

the number of occurrences of i in this sequence.
Well, one could argue that Formula (7) only provides an

asymptotic approximation of Pr(n1, . . . , nr) as n tends to
infinity. However, as noticed in Section 3.2, the rate of con-
vergence is exponential, so Formula (7) is precise enough
even for rather small n. And for really small n (at least
when n < N1 in Formula (1)), Pr(n1, . . . , nr) can be com-
puted exactly by Formulas (5) and (6).

In conclusion, for any large enough n, the algorithm gen-
erates traces of length n almost uniformly at random. Its
overall complexity is linear according to n, to the maximum
of Card(Xi) and to the maximum of Card(Qi), in time as
well as in space requirements.

3.4 Generating traces in presence of synchro-
nisation.

Now we suppose that each module contains exactly one
synchronised transition, denoted α. Thus, in the global sys-
tem all modules must take α at the same time.

Let A1, . . . , Ar be r automata, with alphabets X1, . . . , Xr,
all containing a common synchronisation symbol α, such
that

∀i, j ∈ 1 . . . r, i 6= j,Xi ∩Xj = {α}.
Let S1, . . . , Sr be the respective languages recognised by
A1, . . . , Ar. Here, any trace can be represented by a word
belonging to the language S defined as follows: S is the set
of words w ∈ X1 ∪ . . . ∪Xr such that

w = w0αw1α . . . wm−1αwm



where the projection of w onto any Xi belongs to Si. The
number m is the number of synchronisations during the pro-
cess: each of the projections contains exactly m letters α
(and, equivalently, there is no α in any of the wi.)

3.4.1 Again the brute force approach.
Here the approach consists in constructing the synchro-

nised product of A1, A2, . . . , Ar, as follows. Let Xi,α = Xi \
{α}. The synchronised product [6] of A1, A2, . . . , Ar with
{α} as synchronisation set is the finite automaton A =<
X,Q, q0, F, δ >, where

• X = X1 ∪X2 ∪ . . . ∪Xr;

• Q = Q1 ×Q2 × . . .×Qr;

• q0 = (q01 , q
0
2 , . . . , q

0
r);

• F = F1 × F2 × . . .× Fr;

• δ is as follows:

∆((q1, . . . , qi, . . . , qr), x)) =
(∆1(q1, x), . . . , qi, . . . , qr) if x ∈ X1,α,
. . .
(q1, . . . ,∆i(qi, x), . . . , qr) if x ∈ Xi,α,
. . .
(q1, . . . , qi, . . . ,∆r(qr, x)) if x ∈ Xr,α.

∆((q1, . . . , qi, . . . , qr), α)) =
δ1(q1, α), . . . , δi(qi, α), . . . , δr(qr, α))

This automaton accepts the language S of synchronised traces.
Once it has been built, the generation process is exactly as
in Section 3.3.1, with the same time and space requirements.

3.4.2 “On line” generation of synchronised traces
Here we sketch an algorithm for almost uniformly gener-

ating random synchronised traces of length n, avoiding the
construction of the synchronised product. The approach is
similar to the one we described in Section 3.3.2, although
we must be more careful because of the synchronisations.
Given that each automaton Ai contains a unique transition
labeled by α (the synchronised transition), let qi,1 and qi,2

be the states just before and juste after this transition, re-
spectively. Now let us define, for each Si, the four following
languages:

• The beginning language: Bi is the set of words corre-
sponding to the paths which start at the initial state
of Ai, which do not cross the α transition, and which
stop at qi,1.

• The central language: Ci is the set of words corre-
sponding to the paths which start at qi,2, which do
not cross the α transition, and which stop at qi,1.

• The ending language: Ei is the set of words corre-
sponding to the paths which start at qi,2, which do
not cross the α transition, and which stop anywhere.

• The non-synchronised language: Ti is the set of words
which start at the initial state of Ai, which never cross
the α transition, and which stop anywhere.

For any i, the language Si can be defined according to Bi,
Ci, Ei and Ti:

Si = Bi.(α.Ci)
∗.α.Ei ∪ Ti .

Thus, if we define B = ∃ r
i=1Bi (resp. C = ∃ r

i=1Ci, E =

∃ r
i=1Ei, and T = ∃ r

i=1Ti), we have:

S = B.(α.C)∗.α.E ∪ T . (8)

Now let s(n) (resp. si(n), b(n), bi(n), c(n), ci(n), e(n),
ei(n), t(n), ti(n)) be the number of words of length n in
S (resp. Si, B, Bi, C, Ci, E, Ei, T , Ti). Additionally,
let s(n,m) be the number of words of S of length n which
contain α exactly m times. Let w be one of these words.
If m > 0, then w writes w = w0.α.w1.α. . . . .α.wm where
w0 ∈ B, wi ∈ C for any 1 ≤ i < m, and wm ∈ E. Finally,
let s(n,m, i0, im) be the number of such words such that the
length of w0 equals i0 and the length of wm equals im. Then
we have

s(n) =

nX
i=0

s(n, i) , (9)

where

s(n,m) =

8><>:
t(n) if m = 0,

n−mX
i0+im=0

s(n,m, i0, im) otherwise,
(10)

and, for m > 0,

s(n,m, i0, im) = b(i0)e(im)
X

i1+...+im−1=

n−m−i0−im

c(i1)c(i2) . . . c(im−1) . (11)

Now suppose that all the the Bi’s, the Ci’s, the Ei’s and
the Ti’s satisfy Formula (2), that is:

bi(k) ∼ Cb,iω
k
b,i ,

ci(k) ∼ Cc,iω
k
c,i ,

ei(k) ∼ Ce,iω
k
e,i ,

ti(k) ∼ Ct,iω
k
t,i .

Then, similarly to Formula (4), we have:

b(k) ∼ Cb,1 . . . Cb,r(ωb,1 + . . .+ ωb,r)
k , (12)

c(k) ∼ Cc,1 . . . Cc,r(ωc,1 + . . .+ ωc,r)
k , (13)

e(k) ∼ Ce,1 . . . Ce,r(ωe,1 + . . .+ ωe,r)
k , (14)

t(k) ∼ Ct,1 . . . Ct,r(ωt,1 + . . .+ ωt,r)
k . (15)

Consequently, for m > 0,

s(n,m, i0, im) ∼
(Cb,1 . . . Cb,r)(Cc,1 . . . Cc,r)

m−1(Ce,1 . . . Ce,r)
(ωb,1 + . . .+ ωb,r)

i0

(ωc,1 + . . .+ ωc,r)
n−m−i0−im

(ωe,1 + . . .+ ωe,r)
im .

(16)

Note that computing s(n,m, i0, im) requires O(nr) arith-
metic operations.

Now we can sketch the algorithm for generating a trace of
length n.

1. Using Formula (16), compute s(n,m, i0, im) for all m
such that 1 ≤ m ≤ n and for all pairs (i0, im) such
that 0 ≤ i0 + im ≤ n−m. This requires O(n3× rn) =
O(rn4) arithmetic operations. Then compute s(n,m)
for all m such that 1 ≤ m ≤ n, using Formula (10)
and, additionally, Formula (15) when m = 0. Finally
compute s(n) by Formula (9). It is worth noticing that



this preliminary stage has to be done only once, what-
ever the number of traces of length n to be generated.
Its overall arithmetic complexity is O(rn4).

2. Choose m, the number of synchronisations, with prob-
ability

Pr(m) =
s(n,m)

s(n)
.

Computing these probabilities requiresO(n) arithmetic
operations in the worst case.

3. If m = 0, then generate uniformly at random a word
of length n in T , with the same algorithm as in Sec-
tion 3.3.2.

4. If m > 0, then:

(a) Choose the length of w0 and the length of wm by
picking at random a pair (i0, im) with probability

Pr(i0, im) =
s(n,m, i0, im)Pn−m

k0+km=0 s(n,m, k0, km)
.

Computing these probabilities requiresO(n2) arith-
metic operations in the worst case.

(b) Choose the lengths of w1, w2, . . . , wm−1 by pick-
ing at random a (m−1)-uple (i1, i2, . . . im−1) with
probability

Pr(i1, . . . im−1) =
c(i1)c(i2) . . . c(im−1)P
P c(k1)c(k2) . . . c(km−1)

.

where P stands for:

k1 + k2 + · · ·+ km−1 = n−m− i0 − im.

Using Formula (13), this reduces to

Pr(i1, . . . im−1) ∼ 1`
n−2−i0−im

m−2

´ (17)

and, similarly to Section 3.3.2, there is a simple
algorithm for picking (i1, i2, . . . im−1) at random
with this probability. This algorithm is linear ac-
cording to n and m. The algorithm and the proof
of Formula (17) are given in Appendix 2.

(c) Now we have got the whole sequence (i0, i1, . . . , im)
with a suitable probability. It remains to gener-
ate the words w0 ∈ B, w1, w2, . . . , wm−1 ∈ C
and wm ∈ E, each wk having length ik. Each of
these words is simply a shuffle of the r languages
(Bi)i=1...r if k = 0, (Ci)i=1...r if 1 ≤ k < m,
(Ei)i=1...r if k = m. For each of the wk’s, the
shuffling algorithm given in Section 3.3.2 can be
used.

As remarked above, the first step of the algorithm, in
O(rn4) operations, has to be done only once. After that, the
overall complexity of generating any random trace of length
n is quadratic according to n. And, as in Section 3.3.2, it
is linear according to the maximum of Card(Xi) and to the
maximum of Card(Qi), in time as well as in space require-
ments. Thus we have defined an efficient way for approx-
imating the uniform coverage in presence of one synchon-
isation for any sufficiently large n. The case where there
are several synchronisations labelled by different symbols is
more complex but we think it can be addressed with similar
techniques and simplifications. This is the subject of some
ongoing work.

4. CONCLUSION AND PERSPECTIVES
One of the main interest of classical random walk is that

it can be performed on large models with a local knowledge
only. However, it presents some drawbacks, mainly related
to the difficulty to estimate, without analysing the global
topology, the test coverage for a given number of random
walk of some given lengths. In Section 2, we have shown
how it is possible to approximate it via a randomised ap-
proximation scheme.

In the rest of the paper we have described how to per-
form globally uniform random walks in very large models
described as sets of concurrent, smaller, models. By glob-
ally uniform random walk, we mean that the choice of the
successor at every step is biased in such a way that all traces
of the global model have equal probability to be traversed.

A brute force approach is to count the number of paths of
the desired length starting from each successor and to adjust
its probability accordingly. This is feasible via techniques
for counting and drawing uniformly random combinatorial
structures. However, the complexity of this approach is lin-
ear in the number of states of the considered model. This
makes it feasible for moderately-sized models only.

Then, we have shown how to use local uniform drawings
to build globally uniform random walks, with a complexity
that is linear in the size of the biggest component model.
We use an estimation of the number of words, but as soon
as the length of the random walks is sufficient, it is a very
good approximation as seen in 3.2 (formulas (1) and (2)).

This method can be used for random testing, model-checking,
or simulation of protocols that involve many distributed en-
tities, as it is often the case in practice. It ensures a balanced
coverage of all behaviours, even if the topology of the un-
derlying model is irregular.

This work is a first step only. First, we plan a campaign
of experiments of the method and of some variants of it. For
instance, instead uniform coverage of traces, it is possible to
consider uniform coverage of states, or of transitions as it is
done in [11] for testing C programs.

Moreover, results on counting and generating combinato-
rial structures are not limited to words of regular languages.
They open numerous perspectives in the area of random
testing. A possibility that is worth to explore is the test
of non deterministic systems via uniform generation of tree-
like behaviours, i.e. some notion of adaptive random walk
inspired from the classical notion of adaptive checking se-
quences [25]. It would be also interesting to study how the
approach presented here for descriptions by reactive mod-
ules could be transposed to other succinct representations
of large models such as OBDD, symmetry reduction, etc.
Acknowledgement. We thank Radu Grosu for interesting
discussions that have motivated this work.

5. REFERENCES
[1] D. Aldous, An introduction to covering problems for

random walks on graphs, J. Theoret Probab. 4 (1991),
197-211.

[2] R. Alur, L. de Alfaro, Radu Grosu, T. A. Henzinger,
M. Kang, C. M. Kirsch, R. Majumdar, F.Y.C. Mang,
B-Y. Wang, jMocha: A model-checking tool that
exploits design structure. In Proceedings of the 23rd
Annual International Conference on Software
Engineering (ICSE), IEEE Computer Society Press,
2001, pp. 835-836.



[3] R. Alur and T. A. Henzinger. Reactive modules. Formal
Methods in System Design, vol. 15, pages 7-48, 1999.

[4] R. Alur, T. A. Henzinger, F.Y.C. Mang, S. Qadeer, S.
K. Rajamani, and S. Tasiran. Mocha: Modularity in
model checking. In Proceedings of the Tenth
International Conference on Computer-Aided
Verification (CAV), Lecture Notes in Computer Science
1427, Springer-Verlag, 1998, pp. 521-525.

[5] APMC Website. http://apmc.berbiqui.org

[6] A. Arnold, Finite Transition Systems, Prentice-Hall,
1994.

[7] J. Berstel and C. Reutenauer, Rational series and their
languages, Springer-Verlag, 1987.

[8] E. Brinksma and J. Tretmans. Testing Transition
Systems, an annotated bibliography. volume 2067 of
LNCS, pages 187-195, 2001.

[9] A. Cavalli and D. Lee and C. Rinderknecht and F.
Zaidi, HIT-OR-JUMP: an Algorithm for Embedded
Testing with Applications to IN Services, in Proc.
FORTE/PSTV, 1999.

[10] A. Demaille, T. Herault and S. Peyronnet.
Probabilistic verification of sensor networks. In Proc. of
the RIVF 2006 conference.

[11] A. Denise, M.-C. Gaudel et S.-D. Gouraud. A Generic
Method for Statistical Testing, In Fifteenth IEEE
International Symposium on Software Reliability
Engineering (ISSRE), pages 25-34, november 2004.

[12] M. Duflot, L. Fribourg, T. Herault, R. Lassaigne, F.
Magniette, S. Messika, S. Peyronnet and C. Picaronny.
Probabilistic model checking of the CSMA/CD
protocol using PRISM and APMC. In Proc. 4th Int.
Workshop on Automated Verification of Critical
Systems (AVoCS 2004), London, UK, Electronic Notes
in Theor. Comp. Sci., 2004.

[13] Ph. Flajolet and R. Sedgewick. Analytic
combinatorics: functional equations, rational, and
algebraic functions, INRIA Research Report RR4103
January 2001, 98 pages. Part of the book project
“Analytic Combinatorics”.
http://algo.inria.fr/flajolet/Publications/books.html.

[14] Ph. Flajolet and P. Zimmermann and B. Van Cutsem.
A Calculus for the Random Generation of Labelled
Combinatorial Structures, Theoretical Computer
Science, vol. 132, 1994, pages 1-35.

[15] S.-D. Gouraud, A. Denise, M.-C. Gaudel et B. Marre.
A New Way of Automating Statistical Testing
Methods, In Sixteenth IEEE International Conference
on Automated Software Engineering (ASE), IEEE
Computer Society Press, pages 5-12, november 2001.

[16] R. Grosu and S. A. Smolka. Monte Carlo Model
Checking. In Proc. of Tools and Algorithms for
Construction and Analysis of Systems (TACAS 2005),
volume 3440 of LNCS, pages 271–286. Springer, 2005.
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Appendix 1: Counting words of rational lan-
guages
Let L be a language on an alphabet X, and, for n ≥ 0, let
`(n) be the number of words of L of length n. The generating
series of L is defined as :

f(z) =
X
n≥0

`(n)zn .

This is a formal power series of one variable z where the
coefficient of zn equals the number of words of length n in
L. According to well-known results (see e.g. [7]), if L is a
regular language, then its generating series can be expressed
as a rational function

f(z) =
N(z)

D(z)



where N and D are two polynomials with integer coeffi-
cients. This function is a solution of a system of m linear
equations, wherem is the number of states of a deterministic
automaton which recognises L.

The number of words of size n mainly depends on the
poles of f(z), that is on the roots of its denominator D(z)
(see e.g. [13, Theorem 8.1]). Precisely, let α1, α2, . . . , αk the
poles of f(z) and let ωi = 1/αi for any i. Then there exist
an integer N1, and k polynomials R1(n), R2(n), . . ., Rk(n)
such that

n ≥ N1 → `(n) =

kX
j=1

Rj(n)ωn
j . (18)

where the degree of any Rj equals the multiplicity of its
corresponding pole αj , minus 1.

As a corollary of the Perron-Frobenius Theorem [13, The-
orem 8.5 and Corollary 8.1], if the automaton of L statisfies
some conditions, then its generating series has an unique
dominant pole, that is there exists i such that |αi| < |αj |
for any j 6= i, and this pole has multiplicity 1. Hence Rj(n)
has degree zero, say Rj(n) = C where C is a constant. Thus
we have, asymptotically,

`(n) ∼ Cωn
i . (19)

A sufficient condition for the above formula to hold is: the
automaton is strongly connected and aperiodic. However,
as noticed in Section 3.2.1, there are a number of weaker
conditions which imply it.

Appendix 2: Proof of Formula (17) and related
algorithm
We have

Pr(i1, . . . im−1) =
c(i1)c(i2) . . . c(im−1)P
P c(k1)c(k2) . . . c(km−1)

where P stands for:

k1 + k2 + · · ·+ km−1 = n−m− i0 − im.

By Formula (13) this leads to

Pr(i1, . . . im−1) ∼ (ωc,1 + . . .+ ωc,r)
n−m−i0−imP

P (ωc,1 + . . .+ ωc,r)n−m−i0−im

=
1P
P 1

.

The denominator equals the number of distinct ways to
choose (k1, k2, . . . , km−1) in such a way that they sum to
n−m−i0−im. This means that the sequence (i1, i2, . . . im−1)
is to be picked uniformly among all sequences such that
k1 + k2 + · · ·+ km−1 = n−m− i0 − im.

Let Q = n − m − i0 − im and q = m − 1. The number
of ways to choose q numbers greater or equal to zero that
sum to Q equals

`
Q+q−1

q−1

´
, for any positive integers Q and q.

Hence

Pr(i1, . . . im−1) ∼ 1`
n−2−i0−im

m−2

´ .
This proves Formula (17).

Additionally, there is an easy algorithm to generate uni-
formly at random q numbers i1, i2, . . . , iq ≥ 0 that sum to
Q: pick uniformly at random q − 1 numbers j1, j2, . . . , jq−1

between 1 and Q+ q, then set i1 = j1 − 1, i2 = j2 − j1 − 1,
. . ., iq−1 = jq−1 − jq−2 − 1, iq = Q − jq−1. Clearly, this

simple algorithm is linear according to Q and q, hence to n
and m.
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