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Abstract

Ad hoc networks consist of wireless hosts that communicate with each other in the absence of a
fixed infrastructure. Such network cannot rely on centralized and organized network management.
The clustering problem consists in partitioning network nodes into groups called clusters, thus
giving at the network a hierarchical organization. A self-stabilizing algorithm, regardless of the
initial system state, converges in finite time to a set of states that satisfy a legitimacy predicate
without external intervention. Due to this property, self-stabilizing algorithms tolerate transient
faults.

In this paper we present a robust self-stabilizing clustering algorithm for ad hoc network. The
robustness property guarantees that, starting from an arbitrary state, in one round, network is
partitioned into clusters. After that, network stays partitioned during the convergence toward a
legitimate configuration where the clusters partition is optimal.

Keywords: Self-stabilization, Distributed algorithm, Clustering, Ad hoc networking.

Résumé

Les réseaux ad hoc se composent d’hôtes qui communiquent les uns avec les autres en l’absence
d’une infrastructure fixe. A eux de prendre en charge l’organisation du réseau (routage, gestion de
la bande passante, connectivité). Un tel réseau ne peut pas compter sur la connectivité centralisée
et organisée. Le problème clustering consiste à partitionner les noeuds d’un réseau en grappes, donc
établissant une organisation hiérarchique au réseau. Un algorithme auto-stabilisant, indépendant
de l’état initial du système, converge à un ensemble de l’état qui satisfait à un prédicat légitime dans
un temps fini, sans intervention externe. Grâce à cette propriété, les algorithmes auto-stabilisants
tolèrent les défaillances transitoires. Dans cet article nous présentons un algorithme auto-stabilisant
robuste d’agrégation pour les réseaux ad hoc. La propriété de robustesse garantit que, à partir d’un
état arbitraire, en un round, le réseau est partitionné en grappes. Après, le système évolue pour
converger vers une configuration légitime où la partition est optimale.

Mots-clés: Auto-stabilization, Algorithme distribuée, Clustering, Réseau Ad hoc.

1



1 Introduction

An ad hoc network is a self-organized network especially one with wireless or temporary plug-in
connections. Such a network may operate in a standalone fashion, or may be connected to the larger
Internet [12]. In Latin, ad hoc literally means “for this”, further meaning “for this purpose only”
and thus usually “temporary”. Mobile routers may move randomly; thus, the network’s topology
may change rapidly and unpredictably. Such network cannot rely on centralized and organized
network management. Significant examples include establishing survivable, efficient, dynamic com-
munication for emergency/rescue operations, disaster relief efforts, and military networks. The
meeting where participant will create a temporary wireless ad hoc network is also a typical exam-
ple. Minimal configuration and quick deployment are needed in these situations.

Clustering means partitioning network nodes into groups called clusters, giving to the net-
work a hierarchical organization. A cluster is a connected graph composed of a clusterhead and
(possibly) some ordinary nodes. Each node belongs to only one cluster. In addition, a cluster is
required to obey to certain constraints that are used for network management, routing methods,
resource allocation, etc. By dividing the network into non-overlapped clusters, intra-cluster rout-
ing is administered by the clusterhead and inter-cluster routing can be done in reactive manner
by clusterhead leaders and gateway. Clustering has the following advantages. First, clustering
facilitates the reuse of resource, which can improve the system capacity. Members of a cluster
can share resources such as software, memory space, printer, etc, thus increasing its disposability
and its accessibility. Secondly, clustering-based routing reduces the amount of routing information
propagated in the network. Finally, clustering can be used to reduce the amount of information
that is used to store the network state. The clusterhead will collect the state of nodes in its cluster
and built an overview of its cluster state. Distant nodes outside of the cluster usually do not need to
know the details of specific events occurring inside the cluster. Hence, an overview of the cluster’s
state is sufficient for those distant nodes to make control decisions.

For these reasons, it is not surprising that several distributed clustering algorithms have been
proposed in this area during the last years [13, 19, 2, 3, 1, 11, 8]. The clustering algorithms
appeared in [1, 11] build a spanning tree. Then on top of the spanning tree, the clusters are con-
structed. In these papers, the clusterheads set is not a dominating set (i.e., a processor can be at
distance greater than 1 of its clusterhead). Two network architectures for MANET (Mobile Ad
hoc Wireless Network) are proposed in [13, 19] where nodes are organized into clusters. The built
clusterheads set is an independent (i.e., clusterheads are not neighbors) and also a dominating set.
The clusterheads are selected according to the value of their IDs. In [8], a weight-based distrib-
uted clustering algorithm taking into account several parameters (processor’s degree, transmission
and battery power, processor mobility) is presented. In a neighborhood, the processors elected
are those that are the most suitable for the clusterhead role (i.e., a processor optimizing all the
parameters). In [3], a Distributed and Mobility-Adaptive Clustering algorithm, called DMAC, is
presented; the clusterheads are selected according to a node’s parameter (called weight). The higher
is the weight of a node, the more suitable this node is for the role of clusterhead. An extended
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version of this algorithm, called Generalized DMAC (GDMAC), was proposed in [2]. In the latter
algorithm, the clusterheads set does not have to be an independent set. This implies that, when,
due to mobility of the nodes, two or more clusterheads become neighbors, none has to resign. Thus,
the clustering management with GDMAC requires less overhead than the clustering management
with DMAC in highly mobile environment. The DMAC and GDMAC algorithms are analyzed re-
spectively in following papers [7, 6], with respect to their convergence time and message complexity.

In 1973, Dijkstra [9] introduced to computer science the notion of self-stabilization in the con-
text of distributed systems. He defined a system as self-stabilizing when “regardless of its initial
state, it is guaranteed to arrive at a legitimate state in a finite number of steps”. A system
which is not self-stabilizing may stay in an illegitimate state forever. The design of self-stabilizing
distributed algorithms has emerged as an important research area in recent years [21, 10]. The
correctness of self-stabilizing algorithms does not depend on initialization of variables, and a self-
stabilizing algorithm converges to some predefined stable state starting from an arbitrary initial
one. Self-stabilizing algorithms are thus inherently tolerant to transient faults in the system. Many
self-stabilizing algorithms can also adapt dynamically to changes in the network topology or system
parameters (e.g., communication speed, number of nodes). A state following a topology changes
is seen as an inconsistent state from which the system will converge to a state consistent with the
new topology. [14] presents a self-stabilizing algorithm that builds a maximal independent set (i.e.,
members of the set are not neighbors, and the set cannot contains any other processors). Notice
that a maximal independent set is a good candidate for the clusterheads set because a maximal
independent set is also a dominating set (i.e., any processor is member of the dominating set or has
a neighbor that is member of the set). In [22], a self-stabilizing algorithm that creates a minimal
dominating set (i.e., if a member of the set quits the set, the set is not more a dominating set) is
presented. Notice that a minimal dominating set is not always an independent set.

Several self-stabilizing algorithms for clusters formation and clusterheads selection have been
proposed [5, 20, 17]. These algorithms are not robust. We present in this paper a robust version
of GDMAC self-stabilizing algorithm [2]. Starting from an arbitrary state:

(1) the system satisfies a safety predicate in one round under the synchronous schedule; and

(2) once the system satisfied the safety predicate, it performs correctly its task; event during
the stabilization phase where the system makes progress toward re-establishing the proper
clusters.

The presented algorithms are designed for the state model. Nevertheless, our algorithms can
be easily transformed into algorithms for the message-passing model. Each node v periodically
broadcasts to its neighbors a message containing its state. Based on this message, v’s neighbors
decide to update or not their variables. After a change in the value of v’s state, node v broadcasts
to its neighbors its new state.

The paper is organized as follows. In section 2, the formal definition of self-stabilization is
presented. The clustering problem is discussed in the section 3. A robust version of [17] is described
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in section 4. The self-stabilization proof is presented in section 5. Section 6 discusses about the
robustness of our algorithm. Finally, the time complexity is analyzed in section 7.

2 Model

In this paper, we consider the state model [4, 16, 15]. A distributed system S is a set of state
machines called processors. Each processor can communicate with a subset of other processors
called neighbors. We model a distributed system by an undirected graph G = (V, E) in which V ,
|V | = n, is the set of nodes and there is an edge {u, v} ∈ E if and only if u and v can mutually
receive each others’ transmission (this implies that all the links between the nodes are bidirectional).
In this case we say that u and v are neighbors. The set of neighbors of a node v ∈ V will be denoted
by Nv. Every node v in the network is assigned an unique identifier (ID). For simplicity, here we
identify each node with its ID and we denote both with v. We assume the locally shared memory
model of communication. Thus, each processor i has a finite set of local variables such that the
variables at a processor i can be read by i and any neighbors of i, but can only be modified by
i. Each processor has a program and the processors execute their programs asynchronously. We
assume that the program of each processor i consists of a finite set of guarded statements of the
form Rule : Guard → Action, where Guard is a boolean predicate involving the local variables
of i and the local variables of its neighbors, and Action is an assignment that modifies the local
variables in i. The rule R is executed only if the corresponding guard Guard evaluates to true,
in which case we say rule Rule is enabled. The state of a processor is defined by the values of its
local variables. A configuration of a distributed system G is an instance of the processor states.
The set of configurations of G is denoted as C. A computation e of a system G is a sequence of
configurations c1, c2, ... such that for i = 1, 2, ..., the configuration ci+1 is reached from ci by a single
step of one or several processors. A computation is fair if any processor in G that is continuously
enabled along the computation, will eventually perform an action. Maximality means that the
computation is either infinite, or it is finite and in this later case no action of G is enabled in the
final configuration. Let C be the set of possible configurations and E be the set of all possible
computations of a system G. The set of computations of G starting with the particular initial
configuration c ∈ C will be denoted Ec. The set of computations of E whose initial configurations
are all elements of B ∈ C is denoted as EB.

In this paper, we use the notion attractor [18] to define self-stabilization.

Definition 1 (Attractor). Let B1 and B2 be subsets of C. Then B1 is an attractor for B2 if and
only if:

1. ∀e ∈ EB2
, (e = c1, c2, ...),∃i ≥ 1 : ci ∈ B1 (convergence).

2. ∀e ∈ EB1
, (e = c1, c2, ...),∀i ≥ 1, ci ∈ B1 (closure).

The set of configurations that matches the specification of problems is called the set of legitimate
configurations, denoted as L. C\L denotes the set of illegitimate configurations.

Definition 2 (Self-stabilization). A distributed system S is called self-stabilizing if and only if
there exists a non-empty set L ⊆ C such that the following conditions hold:
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1. L is an attractor for C.

2. ∀e ∈ EL, e verifies the specification problem.

One motivation for our robust stabilization is that a system should react gracefully to the changes
of inputs - preserving a safety predicate in the presence of the changes of inputs. The safety
predicate is chosen to ensure that the system still perform correctly its task during the period of
convergence. A self-stabilizing protocol is robust with respect to changes of inputs, if starting from
a legitimate state followed by changes of inputs, the safety predicate holds continuously until the
protocol converges to a legitimate state.

Definition 3 (Robustness under Input Change [18]). Let SP be a safety predicate, let IC be
a set of changes of inputs in the system. A self-stabilizing distributed system S is robust under IC
if and only if SC the set of configurations which satisfy SP verifies the following properties (i) SC
is closed, and (ii) SC is closed under any change in IC.

3 Clustering for ad hoc network

Clustering an ad hoc network means partitioning its nodes into clusters, each one with a clusterhead
and (possibly) some ordinary nodes. In order to meet the requirements imposed by the wireless,
mobile nature of these networks, nodes in the same cluster has to be at distance at most 1 of their
clusterhead. Thus, the following clustering property has to be satisfied:

1. Every ordinary node has at least a clusterhead as neighbor (dominance property).

We consider weighted networks, i.e., a weight wv is assigned to each node v ∈ V of the network.
In ad hoc networks, amount of bandwidth, memory space or battery power of a processor could
be used to determine weight values. For simplicity, in this paper we assume that each node has
a different weight. The choice of the clusterheads is based on the weight associated to each node:
the higher the weight of a node, the better this node is suitable to be a clusterhead.

Assume that the clusterheads are bound to never be neighbors. This implies that, when due to
the mobility of the processors two or more clusterheads become neighbors, those with the smaller
weights have to resign and affiliate with the now higher neighboring clusterhead. Furthermore,
when a clusterhead v becomes the neighbor of an ordinary processor u whose current clusterhead
has weight smaller than v’s weight, u has to affiliate with (i.e., switch to the cluster of) v. These
“resignation” and “switching” processes due to processor’s mobility are a consistent part of the
clustering management overhead that should be minimized in ad hoc network where the topology
changes fairly often. To overcome the above limitations, in [2] Basagni introduced a generalization
of the previous clustering property called Ad hoc clustering properties defined as follow:

1. Every ordinary node always affiliates with (only) one clusterhead which has higher weight
than its weight (affiliation condition).

2. For every ordinary node v, for every clusterhead z ∈ Nv : wz ≤ wClusterheadv
+ h

(clusterhead condition).
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3. A clusterhead has at most k neighboring clusterheads (k being an integer, 0 ≤ k < n)
(k-neighborhood condition).

The first requirement ensures that each ordinary node has direct access to at least one clusterhead
(the one of the cluster to which it belongs), thus allowing fast intra and inter cluster communica-
tions. The second requirement guarantees that each ordinary node always stays with a clusterhead
that gives it a “good” service. By varying the threshold parameter h it is possible to reduce the
switching overhead associated to the passage of an ordinary node from its current clusterhead to a
new neighboring one when it is not necessary. With this requirement we want to incur the switching
overhead only when it is really convenient. When h = 0 we simply obtain that each ordinary node
affiliates with the neighboring clusterhead with the highest weight. Finally, the third requirement
allows us to have up to k neighboring clusterheads, 0 ≤ k < n. When k = 0 we obtain that two
clusterhead can not be neighbors. Notice that the case with k = h = 0 corresponds to the previous
algorithm.

Safety property for clustering algorithm The safety property has to ensure that the network
is partitioned into clusters and each cluster has a leader that performs clusterhead task. In a
clustered network, the role of clusterhead is to act as a local coordinator within a cluster, performing
information aggregation and exchange to neighboring clusters.

4 Robust Self-stabilizing Clustering Algorithm

In this section, we present a clustering algorithm (see Algorithm 1). This algorithm is self-stabilizing
and robust to the input changes. Even during the stabilization phase, it is desired that network
is correctly partitioned, i.e., each node belongs to only a cluster. This property, called “safety”,
guarantees functioning of the applications using the hierarchical structure established by Algorithm
1, because each node belongs to a cluster.

After the R1(v) action, v is a truly clusterhead (Chv = T ). After the R2(v) action, v is an ordinary
node (Chv = F ). After the R3(v) action, v is a nearly ordinary node (Chv = NF ).

A truly clusterhead v checks the number of its neighbors that are clusterheads. If they exceed k,
then it sets up the value of SRv to the weight of the first clusterhead (namely, the one with the
(k+1 )th highest weight) that violates the k -neighborhood condition (R5(v) action). Otherwise,
SRv is assigned to 0 (R4(v) action). SRv value of an ordinary node is 0 or R4(v) is enabled to set
the value to 0.

A truly clusterhead (Chv = T ) has to resign its role iff it violates the k-neighborhood condition.
A clusterhead v having to resign takes the nearly ordinary state (Chv = NF ) - it performs R3(v)
action. v stays in this nearly ordinary state until all of nodes in its cluster have joined another
cluster.
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A node v that has the state “nearly ordinary” is requiring that the member of its cluster join
another cluster. Thus, the members of v’s cluster are enabled (G11 or G21 predicate is verified),
till v is nearly ordinary. As the scheduler is fair, the members of v’s cluster will perform the rule
R1 or R2. Thus, they will quit the v’s cluster. At some time, v’s cluster will contains one member:
v. (∀z ∈ Nv : Clusterheadz 6= v). At that time, v becomes an ordinary node (rule R2) if v has
at least a neighbor clusterhead whose weight is higher than v’s weight. Otherwise, v becomes a
clusterhead (rule R1).

The safety predicate SP is defined as follow:

SP ≡ ∀v ∈ V : (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv
6= F ).

SP predicate ensures that (i) each node belongs to a cluster and that (ii) the clusterheads are not
ordinary nodes. As a nearly ordinary node and truly node acts as a clusterhead; each cluster has
a clusterhead that performs its tasks correctly. Thus, the hierarchical structure exists if the SP is
verified.

Due to an incorrect initial configuration, a node v has to correct the value of Clusterheadv and/or
SRv. In this case it verifies one of the following predicates: G12, G32, G4.
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Constants

wv : N // the weight of node v
Local variables of node v

Chv: {T, F, NF} // indicates the role of node v
Clusterheadv : IDs // the clusterhead of node v
SRv : N // the highest weight which violates the 3th condition in v’s neighbor

Macros

N+
v = {z ∈ Nv : (Chz = T ) ∧ (wz > wv)} // the set of v’s neighboring clusterhead that

has higher weight than v’s weight
Clv = |N+

v | // the number of v’s neighboring clusterhead that has higher weight than
v’s weight

Predicates

G1(v) = G11(v) ∨ G12(v)
G11(v) ≡ (Chv 6= T ) ∧ (N+

v = ∅)
G12(v) ≡ (Chv = T ) ∧ (Clusterheadv 6= v) ∧ (∀z ∈ N+

v : wv > SRz) ∧ (Clv ≤ k)

G2(v) = G21(v) ∨ G22(v)
G21(v) ≡ (Chv = F ) ∧ {(∃z ∈ N+

v : wz > wClusterheadv
+ h) ∨ (Clusterheadv /∈ N+

v )}
G22(v) ≡ (Chv = NF ) ∧ {(∀z ∈ Nv : Clusterheadz 6= v) ∧ (N+

v 6= ∅)

G3(v) = G31(v) ∨ G32(v)
G31(v) ≡ (Chv = T ) ∧ {(∃z ∈ N+

v : (wv ≤ SRz)) ∨ (Clv > k)}
G32(v) ≡ (Chv = NF ) ∧ (Clusterheadv 6= v)

G4(v) ≡ (Chv 6= T ) ∧ (SRv 6= 0)
G5(v) ≡ (Chv = T ) ∧ (SRv 6= max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )}))

Rules

R1(v) : G1(v) → Chv := T ; Clusterheadv := v;
SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )})

R2(v) : G2(v) → Chv := F ; Clusterheadv := maxwz
{z ∈ N+

v }; SRv := 0
R3(v) : G3(v) → Chv := NF ; Clusterheadv = v; SRv := 0
// update the value of SRv

R4(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧ G4(v) → SRv := 0
R5(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧ G5(v) →

SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )})

Algorithm 1 Robust Self-stabilizing Clustering Algorithm

We split the possibles local state of node v needing a v’s action in the following mutually exclusive
ones:

Case 1. v is an ordinary node or a nearly ordinary and v cannot become an ordinary node
- otherwise the affiliation condition will not be respected. G11(v) is verified, v will become a
clusterhead (rule R1).

Case 2. v is a clusterhead and v does not violate the k -neighborhood condition but the value
v’s clusterhead is incorrect. G12(v) is verified, v will correct the value of its clusterhead (rule R1).

Case 3. v is an ordinary node and v violates the clusterhead condition. G21(v) is verified, v
will select another neighbor as clusterhead (rule R2).
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Case 4. v is a nearly ordinary node and the safety predicate will be preserved if v becomes
ordinary (i.e., none of v’s neighbors selected v as their clusterhead). In addition, v can select one
of its neighbors as clusterhead without violating the affiliation condition - v has at least a neighbor
clusterhead whose weight is higher than v’s weight. G22(v) is verified, v will become an ordinary
node (rule R2).

Case 5. v is a clusterhead and v violates the k -neighborhood condition. G31(v) is verified, v
will become a nearly ordinary node (rule R3).

Case 6. v is a nearly ordinary node but its clusterhead value is incorrect. G32(v) is verified, v
will correct its clusterhead value (rule R3).
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Figure 1: Convergence after a change of node’s weight in the case k = 1, h = 0.

Algorithm 1 is illustrated in Figure 1. Initially we have a stabilized network (Figure 1(a)). Due to
the change of the weight of node 4 (Figure 1(b)). Node 2 cannot stay ordinary because it would
violate the affiliation condition; i.e., all neighbors of node 2 have a weight that is smaller than
its weight. Node 2 becomes clusterhead (Figure 1(c)). Node 4 switches to nearly ordinary state
(Figure 1(d)). It cannot stay a clusterhead because it would violate the 1-neighborhood condition:
there are two clusterheads in its neighbor (node 2 and 5) that have a higher weight that its weight.
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Node 6 cannot stay ordinary because it would violate the affiliation condition; i.e., it does not
affiliate with a clusterhead. Node 6 chooses node 2 as its clusterhead (Figure 1(e)). After that,
node 4 joins the cluster of node 5 (Figure 1(f)): the network is stabilized. During the convergence
stage, the safety property SP is always verified: at any time the network is partitioned.

5 Proofs of self-stabilization

5.1 Proof of convergence

We first prove that the system reaches a terminal configuration.

Lemma 1 A1 = {C | ∀v : (G12(v) = F ) ∧ (G32(v) = F )} is an attractor.

Proof: If v verifies predicate G12(v) (resp G32(v)) then v is enabled and will stay enabled up to
the time where v performs R1(v) (resp R3(v)). As all computations are fair, v eventually performs
R1(v) (resp R3(v)). After that G12(v) (resp G32(v)) is never verified. �

Lemma 2 In A1, once v had performed a rule R1(v), (v) does not perform R1(v), R2(v) or R3(v)
until there exists a node u, wu > wv, that had performed R1(u).

Proof: In A1, G12(v) and G32(v) = F is never true.
Once v had performed the rule R1(v), we have that Chv = T and Clusterheadv = v. Thus, the
next rule performed by v will be R3(v).
Before doing R1(v), G11(v) is verified, we have N+

v = ∅. At time where v performs R3(v), G31(v)
is verified, implies that N+

v 6= ∅. Thus in meantime, a node u ∈ Nv, wu > wv performed the rule
R1(u).

Lemma 3 In A1, once v had performed a rule R2(v), (v) does not perform R1(v), R2(v) or R3(v)
until there exists a node u, wu > wv, that had performed a rule R1(u) or R3(u).

Once v had performed the rule R2(v), we have that Chv = F and Clusterheadv := maxwz
{z ∈

N+
v }. Denote u the clusterhead of v, we have u ∈ N+

v and wu = maxwz
{z ∈ N+

v } > wv. Next time
that v will perform a rule, G11(v) or G21(v) is verified.

Case 1. G11(v) is verified. At time where v performs R1(v), N+
v = ∅, implies that u performed

the rule R3(u) in meantime.
Case 2. G21(v) is verified. We have (∃z ∈ N+

v : wz > wu + h) ∨ (u /∈ N+
v ), implies that in

meantime u performed R3(u) or a node z ∈ Nv such that wz > wu + h > wu performed R1(z). �

Lemma 4 Let v be a node. The value of Chv cannot be NF forever.

Proof: We prove by contradiction. Assume that Chv = NF is verified forever. Assume that there
is a node u ∈ Nv such that Clusterheadu = v.

Case 1. Chu = F . Since Chv = NF then Clusterheadu /∈ N+
u (see the definition of N+

u ).
Thus, G21(u) is verified. As all computations are fair, u will perform R2(u). After doing R2(u),
Clusterheadu 6= v is verified forever.
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Case 2. Chu = T . Since Clusterheadu = v 6= u. Thus, G12(u) or G31(u) is verified. As all
computations are fair, u will perform R1(u) or R3(u). After doing R1(u) or R3(u), Clusterheadu 6=
v is verified forever.

Case 3. Chu = NF . Since Clusterheadu = v 6= u. Thus, G32(u) is verified. As all computa-
tions are fair, u will perform R3(u). After doing R3(u), Clusterheadu 6= v is verified forever.

Therefore, ∀u ∈ Nv, Clusterheadu 6= v is verified. Thus, G11(v) or G22(v) is verified. As all
computations are fair, v will perform R1(v) or R2(v). After doing R1(v) or R2(v), Chv = NF is
not verified. That is a contrary. �

Corollary 1 In A1, once v had performed a rule R3(v), v will certainly perform R1(v) or R2(v).

Lemma 5 Every fair computation e that starts in A1 has a suffix where in any reached configura-
tion ∀v ∈ V : (Gi(v) = F ), i = {1..3}.

Proof: We will prove by contradiction. Assume that e has not a suffix in which ∀v ∈ V : (Gi(v) =
F ), i = {1..3}. A processor cannot verify forever G1(v) ∨ G2(v) ∨ G3(v) (this processor would
be enabled forever and never performs a rule). Thus along a maximal computation there is a
processor v that infinitely often verifies G1(v), G2(v) or G3(v) and also infinitely often does not
verify G1(v), G2(v) and G3(v). Meaning that v executes infinitely often R1(v), R2(v) or R3(v).
Following Corollary 1, if v executes infinitely often R3(v) then v executes also infinitely often R1(v)
or R2(v). Following Lemma 2, 3 and 4, once v have performed a rule R1(v), R2(v) or R3(v), it
will perform R1(v), R2(v) or R3(v) again if there exists a processor u (wu > wv) that performs
R1(u), R2(u) or R3(u). Since the set of processors is finite, then v performs R1(v), R2(v) or R3(v)
infinitely often only if there exists a processor u (wu > wv) that performs R1(u), R2(u) or R3(u)
infinite many times. Using a similar argument we have a infinite sequence of processors having
increasing weight that performs R1, R2 or R3 infinitely often. Since the number of processors is
finite, this is a contrary. Hence our hypothesis is false, and for every node v, Gi(v) : i = 1, 2, 3
becomes false forever. �

Theorem 1 The system eventually reaches a terminal configuration.

Proof: By Lemma 5, Gi(v), i = {1..3} is not verified, processor v would only update of SRv one
time if necessary. When Gi(v) = F, i = {1..5} for every node v, the system reaches a terminal
configuration. �

5.2 Proof of correctness

Theorem 2 Once a terminal configuration is reached, the Ad hoc clustering properties are satisfied.

Proof: In a terminal configuration, for every processor v, we have Gi(v) = F : i = {1..5}.
Following Lemma 4, in a terminal configuration there is not a node v such that Chv = NF .
Case 1. Chv = F .
G1(v) = F implies N+

v is not empty. G2(v) = F implies (∄z ∈ N+
v : (wz > wClusterheadv

+ h)) and
(Clusterheadv ∈ N+

v ). Thus v satisfies property 1 and 2.
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Case 2. Chv = T .
(G2(v) = F ) ≡ (∀z ∈ N+

v : wv > SRz) ∧ (Clv ≤ k). G1(v) = F implies that Clusterheadv = v.
We now prove that v has at most k neighboring clusterheads. Since Clv ≤ k, then v has at most
k neighboring clusterheads with higher weight than v’s weight. Assume that v has more than
k neighboring clusterheads, thus there exits at least a neighboring clusterhead u of v such that
wu ≤ SRv < wv. Hence, G22(u) = T because v ∈ N+

u (wu ≤ SRv), that is a contrary. �

6 Robustness

On a configuration that satisfies SP, the clusterhead of any node performs its task correctly, because
it is not an ordinary node. Thus, the hierarchical structure is kept up. Let us remind the definition
of SP: SP ≡ ∀v ∈ V : (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv

6= F ).

Let v a processor. We define SPv as the safety predicate SP on v.

Lemma 6 SPv is closed.

Proof: Assume that we have a computation step c1
cs
→ c2, we will prove that if SPv is verified in

c1, then in c2, SPv is verified.
We will prove by contrary. Assume that in c2, (Clusterheadv /∈ {Nv ∪ v}) ∨ (ChClusterheadv

= F ).
Thus, in cs there are two possibilities.

Case 1. v changed its clusterhead during the execution cs. Notice that the rules R4 and R5 do
not change the value of clusterhead of v. If v performs R1 or R3 in cs then SPv is always verified
because after doing R1 or R3, (Clusterheadv = v) ∧ (Chv 6= F ). Thus, v performed R2 during
the execution of cs. We denote z the clusterhead selected by v in cs. In c1, Chz = T and in c2,
Chz = F . In cs, z cannot perform R2. Thus, there is a contrary because R2 is the only rule that
changes the Chz value to F .

Case 2. v did not change its clusterhead during the execution of cs. Denote z the clusterhead
of v. In c1, SPv is verified implies that Chz 6= F . In c2, SP(v) is not verified implies that Chz = F .
Thus, during the execution cs, z performed R2. But z can perform R2 only when G22(z) is verified,
that implies Clusterheadv 6= z in cs. That is a contrary. �

Theorem 3 SP is closed.

Proof: The theorem follows directly from Lemma 6. �

We denote z the clusterhead of node v. The safety predicate SP ensures that z is a neighbor of
v and z is not an ordinary node. Thus, the safety predicate SP is only violated in cases of a z’s
removal (or a crash of z), a failure of link between v and z. Therefore, the safety predicate SP is
preserved in the following cases:

1. Change of node’s weight (illustrated in Figure 1).

2. Crash of ordinary nodes.

3. Joining of subnetworks that verify SP (illustrated in Figure 2).

4. Failures of link between two ordinary nodes or between two clusterhead nodes.
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Figure 2: The joining of two stabilized subnetworks.

7 Time complexity

We consider synchronous computation, in which every process performs its code simultaneously.
Thus, all enabled process perform a rule in a computation step.

Theorem 4 The system verifies SP in one round under the synchronous schedule.

Proof: Assume that we have a computation step c1
cs
→ c2. There are two possibilities:

Case 1. In c1, Gi(v) = F, ∀i ∈ {1..3}. We denote z = Clusterheadv in c1.
1. If Chv = T . Since G12(v) and G31(v) are not verified, that implies z = v, thus SPv is
verified in c1.

2. If Chv = F . Since G21(v) is not verified, that implies z ∈ N+
v , thus SPv is verified in c1.

3. If Chv = NF . Since G11(v) and G22(v) are not verified, that implies z = v, thus SPv is
verified in c1.

Thus, in c1, SPv is verified. Since SPv is closed (Lemma 6), then in c2, SPv is verified.

Case 2. In c1, ∃i ∈ {1..3} : Gi(v) = T .
1. If G1(v) = T . v will performs R1(v) in cs. After performing R1(v), (Clusterheadv =
v) ∧ (Chv = T ), thus SPv is verified in c2.

2. If G3(v) = T . v will performs R3(v) in cs. After performing R3(v), (Clusterheadv =
v) ∧ (Chv = NF ), thus SPv is verified in c2.

3. If G2(v) = T . v will performs R2(v) in cs. We denote z’ the clusterhead selected by
v in cs. Using the same argument in case 2 of Lemma 6: z’ could not perform R2 in cs.
Therefore, SPv is verified in c2.
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Figure 3: Stabilization time.

�

The stabilization time is the maximum number of rounds needed to reach a stabilized state from
an arbitrary initial one. Figure 3 presents a scenario to measure stabilization time in the case
k = 1, h = 0. Notice that this example can be generalized at any value of k and the initial
configuration is the worst one. We have a configuration C composed by m blocs as depicted in
Figure 3(a). Each bloc Bi includes two clusterheads Xi, Yi and an ordinary node Zi. We assume
that the weight of nodes are ordered as the following: Xi > Yi > Zi > Yi+1. A clusterhead node
Z ′, Z ′ > Y1 is a neighbor of Y1. The largest convergence time under any weight-based clustering
algorithm happens with this initial configuration. We denote N the number of nodes in the system
S, N = m(k + 2) + 1. Following Algorithm 1, from the initial configuration, each bloc Bi will one
after another takes two rounds to reconstruct. Thus, 2m + 1 rounds are needed to converge under
the synchronous schedule. The stabilization time is O(2N/(k + 2)).
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[18] C. Johnen and S. Tixeuil. Route preserving stabilization. In SSS’03: Proceedings of the
6th International Symposium on Self-stabilizing System, Springer LNCS 2704, pages 184–198,
2003.

[19] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal on
Selected Areas in Communications, 15(7):1265–1275, 1997.
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