GenRGenS v2.0 User Manual

Yann Ponty Alain Denise¹

LRI, UMR CNRS 8623
Université Paris-Sud XI

Yann.Ponty@lri.fr Alain.Denise@lri.fr

Research Report n°1447 - April 2006

Abstract:
GenRGenS is a software dedicated to the random generation of genomic sequences and structures. It allows to handle several useful models in sequence analysis, as Markov chains, Hidden Markov models, weighted context-free grammars, regular expressions and Prosite expressions. In particular, GenRGenS is the only program that handles weighted context-free grammars, allowing the user to model and generate structured objects (as RNA secondary structures) of any given desired size. GenRGenS also allows the user to combine several of these different models.

The present user manual describes the different classes of models for random sequences supported by GenRGenS, and illustrates the implementation of such models with several examples inspired by real biological models. It also describes the different ways to invoke the software under various operating systems.

Availability:
Source and executable files of GenRGenS (in Java), as well as the complete user’s manual, are freely available at http://www.lri.fr/bio/GenRGenS.

Contact: dev.GenRGenS@lri.fr

¹This work was partially supported by the French IMPG Bioinformatics program, the CNRS Specific Action "Modélisation et algorithmique des structures secondaires d’ARN" and the French education ministry founded action ACI IMPBio.
Contents

1 Introduction

2 Generalities and file formats
 2.1 How to run GenRGenS
 2.1.1 Downloading and installing GenRGenS
 2.1.2 Command-line version
 2.1.3 Graphical User Interface
 2.2 Description files
 2.2.1 Main structure
 2.2.2 Common clauses
 2.2.2.1 The TYPE clause
 2.2.2.2 The ALIAS clause
 2.2.3 Simple example

3 The MARKOV package : Markovian models
 3.1 Some theoretical aspects
 3.1.1 Main definition
 3.1.2 What about heterogeneity ?
 3.1.3 Hidden Markovian Models (HMMs)
 3.2 Implementing a Markovian model
 3.2.1 Main structure
 3.2.2 Markovian generation specific clauses
 3.2.2.1 The ORDER clause
 3.2.2.2 The PHASE clause
 3.2.2.3 The SYMBOLS clause
 3.2.2.4 The START clause
 3.2.2.5 The FREQUENCIES clause
 3.2.2.6 The HMMFREQUENCIES clause
 3.3 Examples
 3.3.1 A Bernoulli model
 3.3.1.1 Source
 3.3.1.2 Semantics
 3.3.2 A model for a mRNA having order 1
 3.3.2.1 Source
 3.3.2.2 Semantics
 3.3.3 An heterogenous model
 3.3.3.1 Source
 3.3.3.2 Semantics
 3.3.3.3 Random generation scenario for this example
 3.3.4 Basic Hidden Markov Model
 3.3.4.1 Source
 3.3.4.2 Semantics
3.4 Command-line options and additional tools .. 18
 3.4.1 Markov-specific option: Dead-Ends tolerance 18
 3.4.2 BuildMarkov: Automatic construction of MARKOV description files ... 19
 3.4.2.1 Tool description .. 19
 3.4.2.2 Usage .. 19
 3.4.2.3 Input files .. 19

4 The GRAMMAR package: Context-Free Grammars(CFG) 20
 4.1 Minimal amount of language theory .. 20
 4.1.1 Grammars and discrete models ... 20
 4.1.1.1 Toward models for structures: Modelling long range interactions . 21
 4.2 Uniform random generation of words of context-free languages 21
 4.2.1 Stochastic approach does not guarantee uniformity 22
 4.2.2 A precomputation stage is needed ... 22
 4.3 Weighted languages for controlled non-uniform random generation 23
 4.4 Implementing a CFG-based model .. 24
 4.4.1 Main structure ... 24
 4.4.2 Grammar generation specific clauses 24
 4.4.2.1 The SYMBOLS clause .. 25
 4.4.2.2 The START clause .. 25
 4.4.2.3 The RULES clause .. 25
 4.4.2.4 The WEIGHTS clause .. 25
 4.4.3 A complete example .. 26
 4.4.3.1 Source ... 26
 4.4.3.2 Semantics .. 26
 4.5 Grammar-specific command line options .. 28

5 The RATIONAL package: Regular Expressions and PROSITE patterns 29
 5.1 Some theory .. 29
 5.1.1 Regular expressions syntax ... 29
 5.1.2 PROSITE Patterns ... 30
 5.1.2.1 What are PROSITE Patterns? .. 30
 5.1.2.2 Syntax ... 31
 5.1.3 PROSITE patterns/Rational expressions relationship 32
 5.1.4 Uniform random generation among the language denoted by a Regular Expression .. 32
 5.2 Implementing a Rational/PROSITE model ... 33
 5.2.1 Main structure ... 33
 5.2.2 RATIONAL generation specific clauses 33
 5.2.2.1 The LANGUAGE clause .. 33
 5.2.2.2 The EXPRESSION clause .. 33
 5.2.2.3 The WEIGHTS clause .. 33
 5.3 Examples .. 34
 5.3.1 RATIONAL style example .. 34
 5.3.1.1 Source ... 34
 5.3.1.2 Semantics ... 34
 5.3.2 PROSITE style example .. 34
 5.3.2.1 Source ... 34
 5.3.2.2 Semantics ... 35
 5.4 Rational expressions-specific command line options 35
6 The MASTER package: Hierarchical models

6.1 Hierarchical models: Principles ... 36
 6.1.1 Saving time and space .. 36
 6.1.2 Ambiguity and bias .. 36

6.2 Implementing a hierarchical model 37
 6.2.1 Main structure ... 37
 6.2.2 Master generation specific clauses 37
 6.2.2.1 The SYMBOLS clause ... 37
 6.2.2.2 The MAINFILE clause .. 37
 6.2.2.3 The WHERE clause ... 37
 6.2.2.4 The SIZE definitions ... 38
 6.2.3 Capturing Dependencies between sequences size 38

6.3 A complete example .. 39
 6.3.1 Source .. 39
 6.3.2 Semantics ... 41
Chapter 1

Introduction

Random sequences can be used to extract relevant information from biological sequences. The random sequences represent the “background noise” from which it is possible to differentiate the real biological information. Random sequences are widely used to detect over-represented and under-represented motifs, or to determine whether the scores of pairwise alignments are relevant. Analytic approaches exist for solving these kinds of problems (see e.g. [?]), although for the most complex cases, an experimental approach (i.e. the computer generation of random sequences) is still necessary.

Some programs are already currently available for generating random sequences. For example, the GCG package contains a few generation tools, such as HmmerEmit that generates sequences according to HMM profiles, and Corrupt that adds random mutations to a given sequence [?]. Seq-Gen randomly simulates the evolution of nucleotide sequences along a phylogeny [?]. The Expasy server has RandSeq, which generates random amino acid sequences according to a Bernoulli process [?]. Shufflet is a program that generates random shuffled sequences [?]. However, until now, there has been no software package that can integrate several statistical and syntactical models of random sequences and combine them. This is the purpose of GenRGenS.

The random sequence models currently handled by GenRGenS are the following:

- **MARKOV**: Markovian random generation. Puts probabilistic constraints on the occurrences of k-mers among the generated sequences. A markovian model can be automatically built from real biological data by a tool bundled with GenRGenS.

- **GRAMMAR**: Random generation based on context-free grammars. This syntactic formalism allows to take into account both sequential and structural constraints. Most long-range interactions and correlations can be captured by this formalism.

- **MASTER**: Random generation of hierarchical sequences. Combines different levels of abstraction. Sequences of symbols are generated using a master description file and then some of these symbols are rewrited into sequences generated with respect to auxiliary description files and distributions over sequences lengths.

- **RATEXP**: Prosite patterns and rational expressions. Generates sequences uniformly at random from a rational expression or a prosite pattern. Long ago, searches in language theory stated that these formalisms’ expressivity are included in that of the context-free grammars1. However, more efficient generation algorithms are available for this subclass. Moreover, support for Prosite patterns allows a copy/paste approach for random generation that some may find convenient.

1 i.e. If a property is captured by a Prosite-based model, it is always possible to build a context-free grammar-based model capturing the same property.
Chapter 2

Generalities and file formats

2.1 How to run GenRGenS

This section is dedicated to the installation and usage of GenRGenS v2.0. GenRGenS performs random generation from a given sequences model. Models are passed to the main generation engine through description files. These are text files meeting certain syntax criteria. Until further improvements GenRGenS supports four classes of models. Each of these models’ description file has a specific syntax, although they all share certain properties.

2.1.1 Downloading and installing GenRGenS

Foreword: GenRGenS’ current implementation uses Java, so it will be necessary to download and install a version of Java’s runtime environment (or virtual machine) superior to 1.1.2, freely downloadable from http://java.sun.com.

GenRGenS latest versions (binaries+sources) can be found at the following URL:

First download the bundle file found in the download section of the site. If needed, uncompress the archive into an appropriate directory, using free or shareware tools like 7zip (.ZIP files), Java bundled tool jar (.JAR files) or GNU tar (.TAR files) into a root directory of your choice. We’ll assume for the next sections that the chosen directory is `GenRGenSDir`.

2.1.2 Command-line version

After decompression of the archive, move to `GenRGenSDir` and open a shell to invoke the Java virtual machine through the following command:

```
java -cp . GenRGenS.GenRGenS [options] [-nb k] -size n DescriptionFile
```

where:

- `k` is the number of sequences to be generated by GenRGenS. Defaults to 1.
- `n` is an indicative length for the generated sequences. Depending on the class of models, it can either be the exact length, an upper bound or just ignored depending on the type of generation. Required.
- `DescriptionFile` is the path to a description file describing the random sequence model. Required.

Specific options may be available for some classes of models and will be detailed further.
2.1.3 Graphical User Interface

There are two ways to run GenRGenS interactive version, one is achieved through command line and the other uses file associations supported by certain platforms:

- **From Shell**: Move to `GenRGenSDir` and, at the prompt, enter the following command:

  ```
  java -cp . GenRGenS.GenRGenS
  or java -jar GenRGenSvX.X.JAR
  ```

- **From a graphical environment**: Some operating systems maintain associations between files and eligible executables, based on file name suffixes or file header analysis. Under these platforms, a simple double-click on the JAR archive will execute the main application.

![Figure 2.1: Screenshot of the main GUI](image)

Once GenRGenS UI is run, a typical random generation scenario would be:

- Open a description file, using 'File/Open Description File...' or 'File/Reopen' menu items or clicking on button A

- Define some required/optional parameters, such as the sequence length or the number of sequences, inside the **Generation Configuration** window spawned from 'Utilities/GenRGenS' menu item or by clicking on button C.

- Validate generation. Random sequences are generated and displayed on text buffer D. Potential errors or warnings are shown on text buffer E.

- Save generated sequences to disk, using 'Buffers/Save Output Buffer Content...' or by cliquing on button B.
The Generation Configuration window defines a few additional parameters:

- **Box 1**: The size of the emitted sequences or an upper-bound depending on the type of generation.
- **Box 2**: The number of generated sequences.
- **Checkbox 3**: Whether or not to display informations about the generation during the process.
- **Checkbox 4**: Toggles displaying of generated sequences on and off. Useful when large numbers of sequences are required.
- **Messagebox 5**: Selects the output file.
- **Panel 6**: Display a number of generator-specific option. Here, for a markovian generator, it is possible to provide the size parameter (Box 1) as an upper bound for the sequence size. The sequence is then generated letter by letter, until a dead-end is encountered, i.e. there is no sequel for this sequence in this model, or the size provided is reached.

2.2 Description files

Description files describe random models to the generation engine of GenRGenS. They are composed of clauses, each defining a parameter in the random model. The syntax of description files will be detailed below, along with the most common clauses.

2.2.1 Main structure

GenRGenS description files are sequences of clauses. All clauses are based on the pattern `Param_Name = Param_Value`, where `Param_Name` is the name of the parameter being defined and `Param_Value` its value. Parameters available are specific to a given random model, although some parameters are
shared by most if not all description files types. Clauses must be ordered in a generation-specific way, otherwise they will be rejected by GenRGenS’ main engine. A clause can be optional: if omitted, its associated parameter will default to a value detailed in the random model’s description part of this document.

2.2.2 Common clauses

2.2.2.1 The TYPE clause

\[
\text{TYPE} = \{\text{MARKOV, GRAMMAR, RATEXP, MASTER}\}
\]

The TYPE clause is the first clause of any description file. It defines the type of random model to be used for generation. Currently supported values for FileType are listed below:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Random model description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKOV</td>
<td>Markovian random generation.</td>
</tr>
<tr>
<td>GRAMMAR</td>
<td>Random generation based on context-free grammars.</td>
</tr>
<tr>
<td>MASTER</td>
<td>Random generation of hierarchical sequences.</td>
</tr>
<tr>
<td>RATEXP</td>
<td>Prosite patterns and rational expressions.</td>
</tr>
</tbody>
</table>

2.2.2.2 The ALIAS clause

\[
\text{ALIASES} = s_1 = \text{id}_1 \, s_2 = \text{id}_2 \ldots
\]

\[
s_i \text{ is a symbol used for random generation}
\]

\[
\text{id}_i \text{ is a new representation for this symbol}
\]

Another common clause is the ALIAS clause. It causes GenRGenS to substitute the right hand sides of the equalities to the left hand sides after the generation is performed. This clause simplifies the writing of large random models while keeping the output explicit, as one can write the whole model using letters and substituting more explicit symbols to letters afterward. See chapter 3 for advanced use of this clause.

2.2.3 Simple example

For instance, here is the toy example of a description file describing a simple Markovian model:

\[
\begin{array}{|c|}
\hline
\text{Clause} & \text{Description} \\
\hline
1 & \text{TYPE = MARKOV} \\
2 & \text{ORDER = 0} \\
3 & \text{FREQUENCIES =} \\
 & a \ 33 \ c \ 20 \\
 & g \ 15 \ t \ 32 \\
4 & \text{ALIASES =} \\
 & a = A \ c = C \\
 & g = G \ t = U \\
\hline
\end{array}
\]

Figure 2.3: A simple Markovian description file

For instance, here is the toy example of a description file describing a simple Markovian model:

Clause 1 defines the class of random model to be used for random generation. Here, a Markovian model is choosen, thus raising a need for the definition of various parameters whose roles a explained below.
Clause 2 defines the order of the Markovian model. A 0 value stands for a Bernoulli model, i.e. the probability of emission of a letter doesn’t depend on letters priorly emitted. Further details and definitions can be found on chapter 3.

Between clause 2 and clause 3, an optional clause PHASE = int is omitted. Default value 1 will then be used for the number of phases, thus defining an homogenous Markovian model.

Clause 3 defines the emission probabilities for the various symbols. Instead of asking the user to provide the probabilities for the different k-mers, we preferred to compute the probabilities from given numbers of occurrences. This approach is well fit for the use of a Markovian profile built from a real sequence. Here, we are using the DNA bases A, C, G and T. Here, Adenosine(A) will be emitted with a \(\frac{33}{33+20+15+32} = 0.33 \) probability.

Clause 4 performs post-generation rewriting of the sequence. Here, it allows generation of RNA sequences from a DNA-dedicated Markovian model \(^1\).

\(^1\)Which may seem a little lazy as the model is simple, but the size of a Markovian model grows exponentially with respect to its order, and rewriting manually a Markovian model of order 6 may bore the most willful scientist.
Chapter 3

The MARKOV package: Markovian models

Markovian models are the simplest, easiest to use statistical models available for genomic sequences. Statistical properties associated with a Markovian model make it become a valuable tool to the one who wants to take into account the occurrences of k-mers in a sequence. Their most commonly used version, the so-called classical Markovian models, can be automatically built from a set of real genomic sequences. Hidden Markovian models are now supported by GenRGenS at the cost of some preprocessing, as shown in section 3.1.3. Apart from genomics, such models appear in various scientific fields including—but-not-limited—to speech recognition, population processes, queuing theory and search engines.

3.1 Some theoretical aspects

3.1.1 Main definition

Formally, a classical Markovian model applied to a set of random variables V_1, \ldots, V_n causes the probabilities associated with the potential values for V_n to depend on the values of V_i, \ldots, V_{n-1}. We will focus on homogenous Markovian models, where the probabilities for the different values for V_n are conditioned by the values already chosen for a small subset $[V_{i-k-1}, V_{i-1}]$ of variables from the past, also called context of V_i. The parameter k is called the order of the Markovian model. Moreover, the probabilities of the values for V_i in an homogenous Markovian model cannot in any way be conditioned by the index i of the variable.

Applied to genomic sequences, the random variable V_i stands for the i^{th} base in the sequence. The Markovian model constrains the occurrence probability for a base α in a given context composed of the k previously assigned letters, therefore weakly constraining the proportions of each $k+1$-mers.

3.1.2 What about heterogeneity?

GenRGenS handles a small subset of the heterogenous Markovian class of models. Formally, an heterogenous model allows the probabilities associated with a variable V_i to depend on any of the variables prior to V_i. Our subset of the heterogenous Markovian models will use an integer parameter called phases to compute the probabilities for V_i. The phase of a variable V_i is

1Google computes its PageRank, which is a score for the relevance of a page, by modelling the behavior of a randomly clicking net-surfer using a Markovian model.

2When total control over the occurrences of $k+1$-length words (and shorter...) is required, one should consider using shuffling algorithms.
simply given by the formula $i \mod \text{phases}$. In our subset of the heterogeneous Markovian models, the probabilities for V_i depend on both context and phase of the variable. Such an addition is useful to model phenomena in which variables are gathered in packs of \textit{phases} consecutive variables, and their values not only depend on their contexts, but also on their relative position inside the pack. Such are sequences of protein-coding DNA, where the position of a base inside of a base triplet is well-known to be of interest.

It is also possible to simulate such phase alternation by introducing dummy letters encoding the phase in which they will be produced. For instance, an order 0 model having 3 phases (for coding DNA...) would result in a sequence model over the alphabet \{$a_0, c_0, g_0, t_0, a_1, c_1, g_1, t_1, a_2, c_2, g_2, t_2$\} having non-null transition probabilities only for $\cdots x_0 \rightarrow y_1, \cdots x_1 \rightarrow y_2$ and $\cdots x_2 \rightarrow y_0$. Therefore, the expressivity of our heterogeneous models do not exceed that of the homogeneous ones, but it is much more convenient to write these models using an heterogeneous syntax.

3.1.3 Hidden Markovian Models (HMMs)

Hidden Markovian models address the hierarchical decomposability of most sequences.

An hidden Markovian model is a combination of a top-level Markovian model and a set of bottom-level Markovian models, called hidden states. The generation process associated with an HMM initiates the sequences using a random hidden state. At each step of the generation, the algorithm may switch to another hidden using probabilities from the top-level model, and then emits a symbol using probabilities related to the current urn.

Once again, this class of models' expressivity seems to exceed that of the classical Markovian models. However, in our context, it is possible to emulate an hidden model with a classical one just by duplicating the alphabet so that the emitted character also contains the state which it belongs to.

3.2 Implementing a Markovian model

This section describes the syntax and semantics of Markovian description files, as shown in figure 3.2.

3.2.1 Main structure

Clauses nested inside square brackets are optional. The given order for the clauses is \textbf{mandatory}.

3.2.2 Markovian generation specific clauses

Markovian description files allows definition of the Markovian model parameters.
Figure 3.2: Main structure of a Markovian description file

3.2.2.1 The ORDER clause

\[
\text{ORDER} = k
\]

\[k \in \mathbb{N}\]

Required
Sets the order of the underlying Markovian model to a positive integer value \(k\). The order of a Markovian model is the number of previously emitted symbols taken into account for the emission probabilities of the next symbol. See section 3.1.1 for more details about this parameter.

3.2.2.2 The PHASE clause

\[
\text{PHASE} = \text{phases}
\]

\[\text{phases} \in \mathbb{N}^*\]

Optional, defaults to \(\text{PHASE} = 0\)
Sets the number of phases parameter of GenRGenS’ heterogenous Markovian models subclass to a positive non-null integer value \(\text{phases}\). See section 3.1.2 for more details about this parameter.

3.2.2.3 The SYMBOLS clause

\[
\text{SYMBOLS} = \{\text{WORDS,LETTERS}\}
\]

Optional, defaults to \(\text{SYMBOLS} = \text{WORDS}\)
Chooses the type of symbols to be used for random generation.
When \(\text{WORDS}\) is selected, each pair of symbols must be separated by at least a blank character (space, tabulation or newline). A Markovian description file written using \(\text{WORDS}\) will then be easier to read, as explicit names for symbols can be used, but may take a little longer to write, as illustrated by the toy example of the \(\text{FREQUENCIES}\) clause’s content for a simple Markovian description file modelling the ORF/Intergenic alternation at a base-triplet level :

<table>
<thead>
<tr>
<th>Start</th>
<th>ORF</th>
<th>Stop</th>
<th>100</th>
<th>ORF Stop</th>
<th>35</th>
<th>Stop Intergenic</th>
<th>93</th>
<th>Intergenic Intergenic</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF</td>
<td>ORF</td>
<td>65</td>
<td></td>
<td>ORF</td>
<td>7</td>
<td>Stop ORF</td>
<td>7</td>
<td>Intergenic ORF</td>
<td>15</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 3.3: A simple Markovian model for the Intergenic/ORF alternation

A \(\text{LETTER}\) value for the \(\text{SYMBOLS}\) parameter will force GenRGenS to see a word as a sequence of symbols. For instance, the definition of a \(15/35/23/27\) occurrences proportions for the symbols \(\text{A/C/G/T}\) in a context \(\text{ACC}\) will be expressed by the following statement inside of the \(\text{FREQUENCIES}\) clause :

A \(\text{LETTER}\) value for the \(\text{SYMBOLS}\) parameter will force GenRGenS to see a word as a sequence of symbols. For instance, the definition of a \(15/35/23/27\) occurrences proportions for the symbols \(\text{A/C/G/T}\) in a context \(\text{ACC}\) will be expressed by the following statement inside of the \(\text{FREQUENCIES}\) clause :

\[
\text{FREQUENCIES} = \{\text{A/C/G/T}, \text{ACC}\}
\]

A \(\text{LETTER}\) value for the \(\text{SYMBOLS}\) parameter will force GenRGenS to see a word as a sequence of symbols. For instance, the definition of a \(15/35/23/27\) occurrences proportions for the symbols \(\text{A/C/G/T}\) in a context \(\text{ACC}\) will be expressed by the following statement inside of the \(\text{FREQUENCIES}\) clause :

\[
\text{FREQUENCIES} = \{\text{A/C/G/T}, \text{ACC}\}
\]
3.2.2.4 The START clause

\[
\text{START} = s_1 \ n_1 \ s_2 \ n_2 \ \ldots \\
\quad n_i \in \mathbb{N}
\]

Optional, defaults to the distribution of k-mers, k being the value order (see below). Defines the frequencies associated with various eligible prefixes for the generated sequence. Each \(s_i \) is either a sequence of symbols separated by white spaces or a word, depending on the value of the SYMBOLS parameter. Every \(s_i \) must be composed of the same amount \(m \) of symbols, \(m \geq \text{order} \).

If omitted, the beginning of the sequence is chosen according to the distribution of \(k \)-mers implied by the content of the FREQUENCIES clause and computed as follows:

\[
\forall \omega \in V^k, p_\omega = \sum_{c \in V} p_{\omega,c}
\]

where \(V \) is the set of symbols used inside of the sequence, \(V^k \) is the set of words of size \(k \), and \(p_{c,\omega} \) is the probability of emission of \(c \) in a context \(\omega \) as defined by the FREQUENCIES clause. Note that no specific order is required for definition of a START clause.

3.2.2.5 The FREQUENCIES clause

This clause is used to define the probabilities of emission of the Markovian model.

\[
\text{FREQUENCIES} = s_1 \ n_1 \ s_2 \ n_2 \ \ldots \\
\quad n_i \in \mathbb{N}
\]

Required

Defines the probabilities of emission for the different symbols.

Each \(s_i \) is either a sequence of symbols separated by white spaces or a word, depending on the value of the SYMBOLS parameter. Each \(s_i \) is composed of \(k + 1 \) symbols, \(k \) being the order. The first \(k \) symbols define the context and the last letter a candidate to emission. The relationship between the frequency definition \(s_i \ n_i \) and the probability \(p_{c_i,\omega_i} \) of emitting \(c_i \) in a context \(\omega_i \), \(s_i = \omega_i, c_i \) is given by the following formula:

\[
p_{c_i,\omega_i} = \frac{n_i}{\sum_{s_j = \omega_i, c} n_j}
\]

The (simple) idea behind this formula is that the probability of emission of a base in a certain context equals to the context/base, concatenation’s frequency divided by the sum of the frequencies sharing the same context. Choice has been made to write frequencies instead of direct probabilities because most of the Markovian models encountered in genomics are built from real data by counting the occurrences of all \(k + 1 \)-mers, thus allowing the direct injection of the counting process’ result into the description file. As for the START clause, it is not necessary to provide values for the FREQUENCIES in a specific order.

3.2.2.6 The HmmFREQUENCIES clause

\[
\text{HMMFREQUENCIES} = s_1 \ n_1 \ s_2 \ n_2 \ \ldots ; \\
\quad \alpha_1 : \ s_1^1 \ n_1^1 \ s_1^2 \ n_1^2 \ \ldots ; \\
\quad \alpha_2 : \ s_1^1 \ n_1^2 \ s_2^2 \ n_2^2 \ \ldots ; \\
\quad \ldots ; \\
\quad s_i \in \{\alpha_j\}^*, \ n_i \in \mathbb{N}, \ n_j^i \in \mathbb{N}
\]
Required
Defines the hidden Markovian model’s probabilities of emission.
First, a master model \(s_1 n_1 s_2 n_2 \ldots \) is defined for the alternation of the hidden states. \(s_1, s_2, \ldots \) are sequences of hidden states \(\alpha_i \), separated or not by whitespaces depending on the previously defined value for the clause \(\text{SYMBOLS} \). \(n_i \) are sequences of integers, representing the frequencies of the corresponding sequence. Their lengths equal the phase parameter of the model, as provided by the \(\text{PHASE} \) clause.

Then, a model definition is required for each hidden states \(\alpha_i \) through the following syntax:
\[
\alpha_i : s^1_i n^1_i s^2_i n^2_i \ldots ;
\]

Each \(s^j_i \) is composed of symbols \(\beta_k \), which are part of the emission vocabulary.

Once such a model is defined, a sequence is issued starting from a random hidden state \(h_0 \). At each step \(k \) of the generation, the process is allowed to move from the current hidden state \(h_k \) to another hidden state \(h_{k+1} \) (potentially \(h_k = h_{k+1} \)) and then emits a symbol according to the probabilities of the hidden state \(h_{k+1} \). The process is iterated until the expected number of symbols are generated.

Remark 1: Each model definition must be ended by a semicolon \(; \) to avoid ambiguity.

Remark 2: The vocabularies \(A = \{ \alpha_i \} \) and \(B = \{ \beta_i \} \) respectively used for the master and the hidden states model definition must be disjoint.

Remark 3: The numbers of phases for heterogenous master and hidden states model must be equal.

Remark 4: Different orders for the master and states models are supported.

3.3 Examples

3.3.1 A Bernoulli model

3.3.1.1 Source

We illustrate the design of a Markovian model with a description file generated automatically from the 22-th human chromosome, using the tool \texttt{BuildMarkov} bundled with \texttt{GenRGenS} and described in section 3.4.2, through the following command:

```bash
java -cp . GenRGenS.markov.BuildMarkov -o 0 -p 1 q22.fasta -d q22.ggd
```

This model is a Bernoulli one, as no memory is involved here, i.e. the probability of emission of a base doesn’t depend on events from the past.

```
1 TYPE = MARKOV
2 ORDER = 0
3 PHASE = 1
4 SYMBOLS = LETTERS
5 FREQUENCIES =
   T 8800702 G 8083806 C 8090307 A 8846873
```

Figure 3.4: A Bernoulli model for the entire 22-th human chromosome(cleaned up from unknown N bases.)

3.3.1.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we choose an amnesic model, i.e. there is no relation between two bases probabilities.
In 3, we choose an homogenous model, the probabilities of emission won’t depend on the index of the symbol among the sequence.

In 4, we use letters as symbols for simplicity sake.

Clause 5 provides definition for the frequencies. Here, the A and T are slightly more likely to occur than C and G. Precisely, at each step an A symbol will be emitted with probability \[
\frac{8846873}{8846873 + 8600702 + 8090307 + 8846873} \approx 0.2616.
\]

3.3.2 A model for a mRNA having order 1

3.3.2.1 Source

This description file has been built automatically from a portion of the 17q11 part of the 17-th human chromosome by the tool BuildMarkov invoked through the following command:

```
```

<table>
<thead>
<tr>
<th>1</th>
<th>TYPE = MARKOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ORDER = 1</td>
</tr>
<tr>
<td>3</td>
<td>PHASE = 1</td>
</tr>
<tr>
<td>4</td>
<td>SYMBOLS = WORDS</td>
</tr>
<tr>
<td>5</td>
<td>FREQUENCIES =</td>
</tr>
<tr>
<td></td>
<td>a a 64 a c 98 a g 127 a t 52</td>
</tr>
<tr>
<td></td>
<td>c a 126 c c 174 c g 58 c t 138</td>
</tr>
<tr>
<td></td>
<td>g a 112 g c 127 g g 135 g t 66</td>
</tr>
<tr>
<td></td>
<td>t a 39 t c 96 t g 121 t t 48</td>
</tr>
</tbody>
</table>

Figure 3.5: Order 1 Markov model for the sequence of the mRNA encoding the S-protein involved in serum spreading.

3.3.2.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we choose an order 1 model, i.e. the probability of emission of a symbol only depends on the symbol immediately preceding in the sequence.

In 3, we choose an homogenous model, the probabilities of emission won’t depend on the index of the symbol among the sequence.

In 4, we illustrate the use of WORDS. The symbols must be separated in the FREQUENCIES by at least one whitespace or carriage return. Space characters will be inserted between symbols in the output.

Clause 5 provides definition for the frequencies, subsequently for the transition/emission probabilities.
3.3.3 An heterogenous model

3.3.3.1 Source

The following description file describes a Markovian model for the first chromosome’s 1q31.1 area of the human genome, built by BuildMarkov through:

```
java -cp . GenRGenS.markov.BuildMarkov -o 2 -p 3 1q31.1.fasta -d 1q31.1.ggd
```

and edited afterward to include the START clause.

<table>
<thead>
<tr>
<th></th>
<th>TYPE = MARKOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ORDER = 2</td>
</tr>
<tr>
<td>3</td>
<td>PHASE = 3</td>
</tr>
<tr>
<td>5</td>
<td>SYMBOLS = LETTERS</td>
</tr>
<tr>
<td>6</td>
<td>START =</td>
</tr>
<tr>
<td></td>
<td>atg 99</td>
</tr>
<tr>
<td></td>
<td>gtg 1</td>
</tr>
<tr>
<td>6</td>
<td>FREQUENCIES =</td>
</tr>
<tr>
<td></td>
<td>agg 19 18 22 cgg 3 10 6 act 42 27 28 agc 30 24 22</td>
</tr>
<tr>
<td></td>
<td>aga 47 30 40 cct 22 33 35 cgc 11 9 11 tag 23 28 31</td>
</tr>
<tr>
<td></td>
<td>cga 3 6 5 att 68 80 53 ggg 14 12 15 tac 17 26 36</td>
</tr>
<tr>
<td></td>
<td>ctt 46 38 45 taa 58 49 48 gct 26 31 24 gcc 15 8 21</td>
</tr>
<tr>
<td></td>
<td>acg 10 2 5 gga 25 22 17 acc 22 18 22 cgg 8 12 11</td>
</tr>
<tr>
<td></td>
<td>aca 38 28 45 gtt 41 38 26 tgt 42 35 40 atg 32 42 44</td>
</tr>
<tr>
<td></td>
<td>ccc 17 21 17 cca 20 39 29 atc 31 24 23 gcc 5 7 5</td>
</tr>
<tr>
<td></td>
<td>ctg 24 27 41 ata 43 56 46 gcc 25 24 8 ctc 26 19 23</td>
</tr>
<tr>
<td></td>
<td>gca 25 26 20 cta 29 32 24 gtg 9 30 27 tgg 32 29 28</td>
</tr>
<tr>
<td></td>
<td>gtc 20 16 13 tct 26 42 38 tgc 32 16 27 gta 34 27 26</td>
</tr>
<tr>
<td></td>
<td>tga 54 26 47 ttt 89 99 95 tgg 5 6 6 tcc 41 29 20</td>
</tr>
<tr>
<td></td>
<td>tca 38 34 36 ttg 41 43 48 aat 71 48 50 ttc 34 40 51</td>
</tr>
<tr>
<td></td>
<td>tta 55 62 61 cat 35 27 37 gat 37 33 24 aag 31 38 51</td>
</tr>
<tr>
<td></td>
<td>aac 19 32 36 cag 27 40 36 aaa 74 96 94 cac 25 19 26</td>
</tr>
<tr>
<td></td>
<td>cca 43 35 28 gag 19 22 21 agt 43 28 43 gac 14 23 14</td>
</tr>
<tr>
<td></td>
<td>gaa 39 51 25 cgt 9 3 5 tat 59 58 62 ggt 17 26 16</td>
</tr>
</tbody>
</table>

Figure 3.6: A Markovian description file for the 1q31.1 area of the first human chromosome

3.3.3.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we will consider the frequencies of base triplets, e.g. the probability of emission of a base is conditioned by the 2 last bases.

In 3, we differentiate the behaviour of the Markovian process for each phase, in order to capture some properties of the coding DNA.

In 4, we use letters as symbols for simplicity sake.

Clause 5 initiates each sequence with an **atg** base triplet with probability 0.99 or chooses **gtg** with probability 0.01.
Clause 6 provides definition for the frequencies. To explain the semantics of this clause, we will focus on some particular frequencies definitions:

\[\text{agg} \ 19 \ 18 \ 22 \ \text{aga} \ 47 \ 30 \ 40 \ \text{agt} \ 43 \ 28 \ 43 \ \text{agc} \ 30 \ 24 \ 22\]

Writing \text{agg} 19 means that base \text{g} has occurred 19 times in an \text{ag} context on phase 0. In other words, the motif \text{agg} has occurred 19 times on phase 1. We will illustrate the link with the emission probability of \text{g} in a context \text{ag} in the next section.

3.3.3.3 Random generation scenario for this example

- First a random start \text{atg} is chosen with probability 0.99.

- The context, here composed of the two most recently emitted bases, is now \text{tg}, and the phase\(^3\) of the next base is 2. The emission probabilities for the bases of \text{g} is \(p_{\text{g,ag}}^2 = \frac{22}{40+13+22} = \frac{22}{75}\). Similarly, probabilities of emissions for the other bases are \(p_{\text{a,ag}}^2 = \frac{40}{127}\), \(p_{\text{c,ag}}^2 = \frac{43}{127}\) and \(p_{\text{t,ag}}^2 = \frac{22}{127}\).

- After a call to a random number generator, a \text{g} base is chosen and emitted.

- The new context is then \text{gg}, and the new phase is 0. We then consider new probabilities for the bases \text{a, c, g} and \text{t}:

\[\text{gga} \ 25 \ 22 \ 17 \ \text{ggc} \ 15 \ 8 \ 21 \ \text{ggg} \ 14 \ 12 \ 15 \ \text{gg} \ 26 \ 16\]

The probabilities of emission for the different bases are then \(p_{\text{a,gg}}^0 = \frac{25}{71}\), \(p_{\text{c,gg}}^0 = \frac{15}{71}\), \(p_{\text{g,gg}}^0 = \frac{14}{71}\) and \(p_{\text{t,gg}}^0 = \frac{17}{71}\).

3.3.4 Basic Hidden Markov Model

![Diagram](image)

Figure 3.7: Basic HMM excerpted from the sequence analyst’s bible[?]

Consider the basic output of a HMM profile building algorithm drawn in Figure 3.7.

3.3.4.1 Source

It can be translated into the following GenRGenS input file:

\(^3\)We recall that the phase equals to \(n \mod \text{Phases}\), where \(n\) is the number of bases previously generated.
Type = Markov
Order = 1
Symbols = WORDS
HMMFrequencies =
St I 100 I J 100 J K 60 J L 40
K K 60 K L 40 L M 100 M End 100 ;
St: A 80 C 00 G 00 T 20 ;
I: A 00 C 80 G 20 T 00 ;
J: A 80 C 20 G 00 T 00 ;
K: A 20 C 40 G 20 T 20 ;
L: A 100 C 00 G 00 T 00 ;
M: A 00 C 00 G 20 T 80 ;
End: A 00 C 80 G 20 T 00 ;

Figure 3.8: A Markovian description file for the 1q31.1 area of the first human chromosome

3.3.4.2 Semantics
In 1, we choose a Markovian random generation.

In 2, an order of 1 is defined for the master model.

In 3, we choose to manipulate words as symbols.

Part 4 is a definition for the frequencies of the master Markovian model. For instance, the probability of choosing L as the next hidden state while in state J is \(p_{JL} = \frac{40}{100} \).

Remark: The word START is a keyword and cannot be used as an identifier.

Part 5 contains the different emission frequencies, converted from probabilities to integers.

3.4 Command-line options and additional tools
3.4.1 Markov-specific option: Dead-Ends tolerance

Inside some markovian models, it is theoretically possible that some states may be dead-ends, the frequencies of all candidate symbols summing to 0 in this context. It is then impossible to emit an extra symbol. That is why GenRGenS always checks whether each reachable state can be exited. The default behaviour of GenRGenS is to refuse to generate sequences in such a case, as the generated sequences are supposed to be of the size provided by the user, and it is senseless to keep on generating letters when a dead-end is encountered. However, this phenomenon may be intentional, in order for instance to end the generation with a specific word (perhaps a STOP codon...) if total control over the size can be neglected.

Markovian specific command line option usage:

```
java -cp . GenRGenS.GenRGenS -size n -nb k -m [T|F] MarkovianGGDFile
```

- **-m [T|F]**: Toggles rejection of models with dead-ends on (T) and off (F). Notice that disabling the rejection may result in shorter sequences than that specified by mean of the size parameter. **Defaults to -m T.**
3.4.2 BuildMarkov: Automatic construction of Markov description files

3.4.2.1 Tool description

This small software is dedicated to the automatic construction of Markov description files from a sequence. It scans the sequence(s) provided through the command line and evaluates the probabilities of transitions from and to each Markov state.

3.4.2.2 Usage

After decompression of the GenRGenS archive, move to GenRGenSDir and open a shell to invoke the Java virtual machine through the following command:

```
java -cp . GenRGenS.markov.BuildMarkov [options] InputFiles
```

where:

- `InputFiles` is a set of paths aiming at sequences that will be used for Markov model construction. **Required (At Least one).**

The following parameters/options can also be specified:

- `-d OutputFile`: Outputs the description file to the file `OutputFile`.
- `-p n`: Defines the number of phases in the Markov model. `n` must be > 0. `n = 1` means that the model will be homogenous. **Defaults to n=1.**
- `-o k`: Defines the order of the Markov model. `k` must be ≥ 0. `k = 0` means that the model will be a Bernoulli model. **Defaults to n=0.**
- `-v 1`: Verbose mode, show the progress of the construction (useful for large files).

3.4.2.3 Input files

The input files can be flat files, that are text files containing a raw sequence, or FASTA formatted files, that are an alternation of title lines and sequences, and usually look like the figure below.

Title line →	> seq1 This is the description of my first sequence.
Seq Def →	AGTACGTAGTAGCTGCTACGTAGCTAGCTA
	CGACGTAGTAGCTGCTACGTAGCTA
	CGACGTGCTGCTACGTAGCTA
	> seq2 This is a description of my second sequence.
	CGATCCTACGTCGACTGATCGACTGATCGACTGATCGACTGATCGA
	CATCGTCAGTTACTGATGCTGCTG

Figure 3.9: A typical FASTA formatted file, containing several sequences.

Remark1: Inside a sequence definition, both for FASTA and flat files, BuildMarkov ignores the spaces, tabulations and carriage returns so that the sequence can be indented in a user-friendly way.

Remark2: When several sequences are found inside a FASTA file, they are considered as different sequences and processed to build the Markov model. If the FASTA file contains a sequence split into contigs, thus needing to be concatenated, then a preprocessing of the file is required to remove the title lines before it can be passed as an argument to BuildMarkov.
Chapter 4

The GRAMMAR package: Context-Free Grammars (CFG)

4.1 Minimal amount of language theory

For many years, the context free grammars have been used in the theoretical languages field. They seem to be the best compromise between computability and expressivity. Applied to genomics, they can model long range interactions, such as base pairings inside an RNA, as shown by D.B. Searls[7]. We provide in this package generation algorithms for two classes of models based on Context Free Grammars: the uniform models and the weighted models. In the former, each sequence of a given size has the same probability of being drawn. In the latter, each sequence’s probability is proportional to its composition. Like stochastic grammars, a weight set can be guessed to achieve specific frequencies. Unlike stochastic grammars, one can control precisely the size of the output sequences.

The term context-free for our grammars equals to a restriction over the form of the rules. This restriction is based on language theoretical properties. A sample of context-free grammar, and the way a sequence is produced from the axiom can be seen in figures 4.1 and 4.2.

| 1 | $S \rightarrow aSbS$ |
| 2 | $S \rightarrow \epsilon$ |

Figure 4.1: A context free grammar for the well-balanced words

$S \rightarrow aSbS \rightarrow aaaSbbSbS \rightarrow aabSbS \rightarrow aabaSbbSbS \rightarrow aababSbS$

$\rightarrow aababbaSbbS \rightarrow aababbaabbSbS \rightarrow aababbaabb$

Figure 4.2: Derivation of the word $aababbaabb$ from the axiom S. **Bold** are the freshly produced letters. **Underlined** are the letters that will be rewritten at next step.

4.1.1 Grammars and discrete models

In the computer science and combinatorics fields, words issued from grammars are used as codes for certain objects, like computer programs, combinatorial objects, ... For instance, the grammar whose rules are given in figure 4.1 naturally encodes well balanced parenthesis words, if a stands for a opening parenthesis and b stands for a closing one. A one to one correspondence has also
been shown between the words generated by this grammar and some classes of trees. As trees are also used as approximations of biological structures, it is possible to consider the use of context-free grammars as discrete models for genomic structures.

4.1.1.1 Toward models for structures: Modelling long range interactions

We now discuss the utility of context-free grammars as discrete models for genomic structures. Most of the commonly-used models do only take into account a smallest subset of their neighborhood. For instance, in a Markov model, the probability of emission of a letter depends only on a fixed number of previously emitted letters. Although these models can prove sufficient when structural data can be neglected, they fail to capture the long-range interaction in structured macromolecules such that RNAs or Proteins. Back to our CFGs, figure 4.2 illustrates the fact that letters produced at the same step can at the end of the generation be separated by further derivations. As we claim that dependencies inside a CFG-based model rely on some terminal symbols proximity inside of the rules, CFGs can capture both sequential and structural properties, as illustrated by figure 4.3.

![Figure 4.3: Long range interaction between bases 1 and 2 can be captured by CFGs, as they are generated at the same stage, and then separated by further non-terminal expansions. The CFG used here is an enrichment of the one shown in Figure 4.2](image)

4.2 Uniform random generation of words of context-free languages

The uniform random generation algorithm, adapted from a more general one[?], is briefly described here. At first, we motivate the need for a precomputation stage, by pointing out the fact that a stochastic approach is not sufficient to achieve uniform generation. Moreover, controlling the size of the output using stochastic grammar is already a challenge in itself.
4.2.1 Stochastic approach does not guarantee uniformity

To illustrate this point, we introduce the historical grammar for RNA structures, whose rules are described in figure 4.4.

\[
\begin{align*}
1 & \quad S \rightarrow aTbS \\
2 & \quad S \rightarrow cS \\
3 & \quad S \rightarrow \epsilon \\
4 & \quad T \rightarrow aTbS \\
5 & \quad T \rightarrow cS
\end{align*}
\]

Figure 4.4: A CFG grammar for the RNA Secondary Structures

Now, suppose one wants to generate a word of size 6 uniformly at random from this grammar. A natural idea would be to rewrite from the axiom \(S\) until a word of size 6 is obtained. Therefore, you have to check whether each derivation yields a word of the desired length, as, for instance, the \(S \rightarrow \epsilon\) rule produces only the empty word and needs not to be investigated.

Once you have built a set of derivations suitable for a given length, you have to carefully associate probabilities with each derivation. Indeed, choosing any of the eligible \(k\) rules with probability \(1/k\) may end in a biased generation, as the numbers of sequences accessible from any rules are not equal. This fact is illustrated by the example from figure 4.4, where the two eligible rules for sequences of size 6 from the axiom \(S\) are \(S \rightarrow aTbS(1)\) and \(S \rightarrow cS(2)\).

![Diagram of deriving words of size 6 from S](image)

Figure 4.5: Deriving words of size 6 from \(S\)

As illustrated by figure 4.5, choosing rules (1) or (2) with equal probabilities is equivalent to grant the set of words produced by rules (1) and (2) with total probabilities \(1/2\) and \(1/2\). As these sets do not have equal cardinalities, uniform random generation cannot be achieved.

4.2.2 A precomputation stage is needed

That is why the grammar is first analyzed during a preprocessing stage, that precomputes the probabilities of choosing rules at any stage of the generation. These probabilities are proportional to the number of sequences accessible after the choice of each applicable rule for a given non-terminal, normalized by the total number of sequence for this non-terminal.
Once these computations are made, it is possible to perform uniform random generation by choosing a rewriting using the precomputed probabilities, as shown in figure 4.6.

Figure 4.6: The complete tree of probabilities for the words of size 6.

4.3 Weighted languages for controlled non-uniform random generation

Although uniform models can prove useful in the analysis of algorithms, or to shed the light on some overrepresented phenomena, they are not always sufficient to model biological sequences or structures. For instance, it can be shown using combinatorial tools that the classical model for RNA secondary structures from figure 4.4 produces on the average one base-pair-long helices (see [?] or [?]), which is not realistic. Furthermore, substituting the rule 1 with a rule $S \rightarrow a^k T b^k S$ in order to constrain the minimal number of base pairs inside an helix only raises the average length of an helix to exactly k, losing all variability during the process.

Thus, we proposes in [?] a way to control the values of the parameters of interest by putting weights $\pi_{i_1}, \pi_{i_2} \ldots \pi_{i_n}$ on the terminal letters $i_1, i_2 \ldots i_n$. We then define the weight of a sequence to be the product of the individual weights of its letters. For instance, in a weighted CFG model having weights $\pi_a = 2$, $\pi_b = 1$ and $\pi_c = 3$, a sequence $aacbcaacbc$ has a weight of $2^3 \cdot 1^3 \cdot 3^3 = 1944$.

By making a few adjustments during the precomputation stage, it is possible to constrain the probability of emission of a sequence to be equal to its weight, normalized by the sum of weights of all sequences of the same size. Under certain hypothesis, it can be proved that for any expected frequencies for the terminal letters, there exists weights such that the desired frequencies are observed. By assigning heavy weights to the nucleotides inside helices, and low ones to helices starts, it is now possible to control the average size of helices, terminal loops, bulges and multiloops.

To illustrate the effect of such weightings, we consider the previous example from figure 4.5, and we point the fact that the average number of unpaired bases equals to $\frac{58}{17} \approx 3.412 \ldots$ in the uniform model. By assigning a weight $\pi_c = 10$ to each unpaired base letter, we obtain the probabilities of emission for sequences of size 6 summarized in table 4.7.
These probabilities yield a new expectancy for the number of unpaired bases in a random structure of \(\frac{500}{10^3} \approx 4.91 \ldots \). So, by assigning a weight barely higher than 10 (\(< 12\)), it is possible to constrain the average number of the unpaired base symbol c to be 5 out of 6. This property holds only for sequences of size 6, but another weight can be computed for any sequence size. Moreover, we claim that, under certain common sense hypothesis, the frequency of a given symbol quickly reaches an asymptotic behaviour, so that the weight do not need to be adapted to the sequence size above a certain point.

4.4 Implementing a CFG-based model

This section describes the syntax and semantics of context-free grammar based description files.

4.4.1 Main structure

```plaintext
TYPE = GRAMMAR
[SYMBOLS = ...]
[START = ...]
RULES = ...
[WEIGHTS = ...]
[ALIASES = ...]
```

Figure 4.8: Main structure of a context-free grammar description file

Clauses nested inside square brackets are optional. The given order for the clauses is mandatory.

4.4.2 Grammar generation specific clauses

Context-free grammar based description files define some attributes and properties of the grammar.
4.4.2.1 The SYMBOLS clause

SYMBOLS = \{WORDS, LETTERS\}

Optional, defaults to SYMBOLS = WORDS

Chooses the type of symbols to be used for random generation.

When WORDS is selected, each pair of symbols must be separated by at least a blank character (space, tabulation or newline). This affects mostly the RULES clause, where the right-hand-sides of the rules will be made of words, separated by blank characters. This feature can greatly improve the readability of the description file as shown in the example from figure 4.9.

RULES =
 tRNA -> Acceptor_\text{Stem} Acceptor_{\text{Site}} ;
 Acceptor_{\text{Stem}} -> A Acceptor_{\text{Stem}} U ;
 Acceptor_{\text{Stem}} -> MultiLoop ;
 MultiLoop -> Fill D_{\text{Stem}} Anticodon_{\text{Stem}} Variable_{\text{Loop}} T_{\text{Psi} \text{C}_{\text{Stem}} ;
 ...;

Figure 4.9: The skeleton of a grammar for the tRNA

A LETTERS value for the SYMBOLS parameter will force GenRGenS to see a word as sequence of symbols. For instance, the right hand side of the rule $S \rightarrow aSbS$ will decompose into $S \rightarrow aSbS$ if this option is invoked. Moreover, blank characters will be inserted between symbols in the output.

4.4.2.2 The START clause

START = nt

Optional, defaults to START = n_0, with n_0 being the left hand side of the first rule defined by the RULES clause.

Defines the axiom nt of the grammar, that is the non-terminal letter initiating the generation. This letter must of course be the left-hand-side of some rule inside the RULES clause below.

4.4.2.3 The RULES clause

RULES = nt_1 \rightarrow s_1; nt_2 \rightarrow s_2; ...

Required

Defines the rules of the grammar.

Rules are composed of letters, also called symbols. Each symbol nt_i that appears as the left-hand side of a rule becomes a non-terminal symbol, that is a symbol that needs further rewriting. s_i are sequences of symbols that can either appear or not as the left-hand side of rules, separated by spaces or tabs if SYMBOLS=LETTERS is selected.

If the START clause is omitted, the axiom for the grammar will be nt_1.

The characters ::= can be used instead of \rightarrow to separate the left-hand side symbols from the right-hand side ones.

4.4.2.4 The WEIGHTS clause

WEIGHTS = l_1 w_1 l_2 w_2 \ldots

\begin{equation*}
 w_i \in \mathbb{R}
\end{equation*}
Optional, weights default to 1.
Defines the weights of the terminal letters \(l_i \).
As discussed in section 4.3, assigning a weight \(w_i \) to a terminal letter \(l_i \) is a way to gain control over the average frequency of \(l_i \). For instance, in a grammar over the alphabet \(\{a, b\} \), adding a clause \(\text{WEIGHTS = a 2} \) will grant sequences \(aaab \) and \(bbbb \) with weights 8 and 1, i.e. the generation probability of \(aaab \) will be 8 times higher than that of \(bbbb \).

4.4.3 A complete example

4.4.3.1 Source

The following description file captures some structural properties of the tRNA.

```
1 | TYPE = GRAMMAR
2 | SYMBOLS = WORDS
3 | START = tRNA
4 | RULES =
   | \( \text{tRNA -> A\_Stem A\_Site} ; \)
   | \( \text{A\_Stem -> A\_u A\_Stem a\_U} ; \text{A\_Stem -> U\_a A\_Stem u\_A} ; \)
   | \( \text{A\_Stem -> C\_g A\_Stem c\_G} ; \text{A\_Stem -> G\_c A\_Stem g\_C} ; \)
   | \( \text{A\_Stem -> MultiLoop} ; \)
   | \( \text{A\_Site -> A A\_Site} ; \text{A\_Site -> U A\_Site} ; \)
   | \( \text{A\_Site -> C A\_Site} ; \text{A\_Site -> G A\_Site} ; \)
   | \( \text{A\_Site -> ;} \)
   | \( \text{MultiLoop -> Fill D\_Stem C\_Stem Variable\_Loop T\_Psi C\_Stem} ; \)
   | \( \text{Fill -> A Fill} ; \text{Fill -> U Fill} ; \text{Fill -> C Fill} ; \)
   | \( \text{Fill -> G Fill} ; \text{Fill -> ;} \)
   | \( \text{D\_Stem -> A\_u D\_Stem a\_U} ; \text{D\_Stem -> U\_a D\_Stem u\_A} ; \)
   | \( \text{D\_Stem -> C\_g D\_Stem c\_G} ; \text{D\_Stem -> G\_c D\_Stem g\_C} ; \)
   | \( \text{D\_Stem -> D\_Loop} ; \)
   | \( \text{D\_Loop -> Fill} ; \)
   | \( \text{C\_Stem -> A\_u C\_Stem a\_U} ; \text{C\_Stem -> U\_a C\_Stem u\_A} ; \)
   | \( \text{C\_Stem -> C\_g C\_Stem c\_G} ; \text{C\_Stem -> G\_c C\_Stem g\_C} ; \)
   | \( \text{C\_Stem -> C\_Loop} ; \)
   | \( \text{C\_Loop -> Fill} ; \)
   | \( \text{Variable\_Loop -> Fill} ; \)
   | \( \text{T\_Psi C\_Stem -> A\_u T\_Psi C\_Stem a\_U} ; \text{T\_Psi C\_Stem -> U\_a T\_Psi C\_Stem u\_A} ; \)
   | \( \text{T\_Psi C\_Stem -> C\_g T\_Psi C\_Stem c\_G} ; \text{T\_Psi C\_Stem -> G\_c T\_Psi C\_Stem g\_C} ; \)
   | \( \text{T\_Psi C\_Stem -> T\_Psi C\_Loop} ; \)
   | \( \text{T\_Psi C\_Loop -> Fill} ; \)
5 | WEIGHTS =
   | \( A \ 0.125 \ U \ 0.125 \ C \ 0.125 \ G \ 0.125 \)
6 | ALIASES =
   | \( A\_u = A \ a\_U = U \ C\_g = C \ c\_G = G \)
   | \( U\_a = U \ u\_A = A \ G\_c = G \ g\_C = C \)
```

Figure 4.10: A basic CFG-based model for the tRNA

4.4.3.2 Semantics

In 1, we choose a context free grammar-based model.

26
In 2, we use words, a reader-friendly choice for such a complicated (though still a little simplistic) model.

In 3, we choose the non-terminal symbol tRNA as our starting symbol. Every generated sequence will be obtained from iterative rewritings of this symbol. Here, this clause has no real effect, as the default behaviour of GenRGenS is to choose the first non-terminal to appear in a rule as the starting symbol.

Clause 4 describes the set of rules. The correspondence between non-terminal symbols and substructures is detailed in figure 4.11.

![Figure 4.11: Non-terminal symbols and substructures](image)

Note that we use different alphabets to discern paired bases from unpaired ones, which allows discrimination of unpaired bases using weights in clause 5. Of course, it is possible to get a more realistic model by substituting the $\text{X}_{\text{Loop}} \rightarrow \text{Fill}$ rules with specific set of rules, using different alphabets. Thus, one would be able to control the size and composition of each loop.

In 5, we discriminate the unpaired bases, which increases size of the helices. Indeed, uniformity tends to favor very small if not empty helices whereas the weighting scheme from this clause penalizes so much the occurrences of unpaired bases that the generated structures now have very small loops.

In 6, the sequence’s alphabet is unified by removing traces of the structure.
4.5 Grammar-specific command line options

During the precomputation stage, \texttt{GenRGenS} uses arbitrary precision arithmetics to handle numbers that can grow over the size in an exponential way. However, for special languages or small sequences, it is possible to avoid using time-consuming arithmetics, and to limit the computation to \textit{double} variables. This is the purpose of the \texttt{-f} option. The \texttt{-s} option toggles on and off the computation and display of frequencies of symbols for each generated sequence. \textbf{Grammar specific command line options usage:}

\begin{verbatim}
\end{verbatim}

- \texttt{-f [T|F]}: Activates/deactivates the use of light and limited \texttt{double} variables instead of heavier but more accurate \texttt{BigInteger} ones. Misuse of this option may result in division by zero or non-uniform generation. \textbf{Defaults to -f F.}

- \texttt{-s [T|F]}: Enables/disables statistics about each sequence. \textbf{Defaults to -s F.}
Chapter 5

The RATIONAL package: Regular Expressions and PROSITE patterns

At the bottom of Chomsky’s formal languages hierarchy lies the regular expressions. Taken as languages theory tools, their main purpose is the description of subsets over the whole set of sequences that can be parsed and/or generated by very simple machines called finite state automata over finite alphabets. This class is known to be a subclass of the one that is implemented by the context-free grammar, but more efficient random generation algorithms are available for it. Because of their simplicity, they have been extensively used to model families of genomic sequences differing only on a few positions. In the Prosite database, which is well known database of protein families and domains, a pattern (or consensus) is built from a given set of sequences, sharing functional properties. These so-called Prosite patterns are related to regular expressions, as shown in 5.1.3.

GenRGGenS provides a random generation process both for Prosite patterns and regular expressions. For instance, random sequences drawn with respect to a Prosite pattern supposedly being a fingerprint for a biological property can be used to test its relevance. One can also generate simple mutants from a regular expression by introducing some choice places inside the sequence. Such sequences can used for computation of statistical scores, such as Z-Scores, and P-values.

5.1 Some theory

In this chapter, we will describe the syntax and semantics of the regular expressions. We will then explain how GenRGGenS turns a ProSite pattern into a regular expression associated with the same language, and show how uniform random generation can be performed from a regular expression.

5.1.1 Regular expressions syntax

A regular expression e is a language description tool, recursively defined as follows:

$$ e = \begin{cases} e'^* \\ e' \mid e'' \\ e' \cdot e'' \\ (e')^\omega \\ \varepsilon \end{cases} $$

Where e_1 and e_2 are regular expressions, and l stands for any letter among the alphabet. The ε is a shortcut for an empty word (a word of size 0).
Formally, a language can be seen as a set of words over a given alphabet. The meanings of these alternatives are related to the languages denoted by such expressions.

- The disjunction \(e' | e'' \): The language is the union of the languages associated to \(e' \) and \(e'' \). Any word of \(e' | e'' \) belongs to \(e' \) or \(e'' \).

- The concatenation \(e' \cdot e'' \): The language is the concatenation of the languages associated to \(e' \) and \(e'' \). Any word among \(e' \cdot e'' \) can be decomposed into a concatenation of words issued from \(e' \) and \(e'' \).

- The iteration \(e^* \): Each word of the resulting language is a concatenation of a finite set of words issued from \(e \).

- \((e')\): The language is that of \(e' \). This construction is useful to avoid ambiguity. For instance, the expression \(a \cdot b \cdot c \) can denote the language \{ \(a, bc\) \} or the language \{ \(ac, bc\) \}.

- \(\omega, \varepsilon \): The only word among the language is the single character \(l \), resp. \(\varepsilon \).

Example 1:

\[e = (A.T.G).((A|T|G|C).(A|T|G|C).(A|T|G|C))^*.T.A.G.T.G.A|T.A.A \]

The regular expression \(e \) describes a simplistic model for an ORF, that is a subsequence of a DNA code starting with a START base triplet \(ATG \) and ending with one of the STOP base triplets \(TAG/TGA/TAA \). It should be noticed that anything can happen between the START and STOP codon, as the \((A|T|G|C).(A|T|G|C).(A|T|G|C))^* \) part of \(e \) doesn’t excludes STOP base triplets.

Example 2:

Such expressions are also perfectly fit to model mutants. Suppose you’re given three 5.8S ribosomal RNA sequences close one to another and aligned as follows.

\[
\begin{align*}
... & C G C C C C G G G G G ... \\
... & A C G C G A C C C G G U G G ... \\
... & C C U G U U . G U G G U G G ...
\end{align*}
\]

A regular expression \(e \) can then be used to model a family of sequences that contains the three original sequences, among with some other sequences close to the originals.

\[e = \cdots (C|A).(C|G).(C|G|U).(C|G).(C|G|U).(C|A|U).(G|G|C|\varepsilon).(C|G),(C|U),G.G.(C|U),G.G \cdots \]

5.1.2 PROSITE Patterns

5.1.2.1 What are PROSITE Patterns?

PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to identify to which known protein family a new sequence belongs. It was started in 1989 by Amos Bairoch, and is part of the SWISS-PROT program[\?]. It features text-files structured by tags and carriage-returns. Among these tags, some are used to define patterns to model sequential aspects behind functional properties. They can be seen as consensus, as they capture some sequential similarities of a given entry set of sequences. Further informations can be found at:

<table>
<thead>
<tr>
<th>Amino-acid</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>G</td>
</tr>
<tr>
<td>Alanine</td>
<td>A</td>
</tr>
<tr>
<td>Valine</td>
<td>V</td>
</tr>
<tr>
<td>Leucine</td>
<td>L</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>I</td>
</tr>
<tr>
<td>Proline</td>
<td>P</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>F</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Y</td>
</tr>
<tr>
<td>Cysteine</td>
<td>C</td>
</tr>
<tr>
<td>Methionine</td>
<td>M</td>
</tr>
<tr>
<td>Histidine</td>
<td>H</td>
</tr>
<tr>
<td>Lysine</td>
<td>K</td>
</tr>
<tr>
<td>Arginine</td>
<td>R</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>W</td>
</tr>
<tr>
<td>Serine</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>T</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>D</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>E</td>
</tr>
<tr>
<td>Asparagine</td>
<td>N</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Q</td>
</tr>
<tr>
<td>Aspartic acid or asparagine</td>
<td>B</td>
</tr>
<tr>
<td>Glutamic acid or glutamine</td>
<td>Z</td>
</tr>
<tr>
<td>Unknown</td>
<td>X</td>
</tr>
</tbody>
</table>

Figure 5.1: Standard codes for the amino-acids, as proposed by the IUPAC

5.1.2.2 Syntax

Let \mathcal{P} be the set of all known amino-acids, abbreviated with respect to the standard one-letter IUPAC code\(^1\) given by figure 5.1.2.2.

Then a PROSITE pattern p can then be recursively defined as follows:

$$p = \begin{cases} p' - p'' \\ p'(n) \\ p'(n_{\text{min}}, n_{\text{max}}) \\ (p')^l \\ \{l\} \\ x \\ l \end{cases}$$

where p' and p'' are PROSITE patterns; n, n_{min} and n_{max} are positive integers; l is a sequence of amino-acids encoded with respect to the IUPAC code for the amino-acids. The semantics for the preceding alternatives is described below:

- The concatenation $p' - p''$: protein codes are derived from patterns p' and p'' and concatenated.
- The strict iteration $p'(n)$: a protein code is derived from pattern p' and copied n times.
- The loose iteration $p'(n_{\text{min}}, n_{\text{max}})$: a protein code is derived from pattern p' and copied from n_{min} to n_{max} times.

\(^1\)See http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html for details
- The identity \(p'\): This notation is equivalent to \(p'\), and simply means that a sequence is issued from \(p'\). It can be used to resolve some ambiguities.

- The inclusive disjonction \([U]\): Any amino-acid code can be choosed from the list \(l\).

- The exclusive disjonction \(\{l\}\): Any amino-acid code that is not in the list \(l\) can be choosed.

- The wildcard \(x\): Any amino-acid, including the unknown \(X\) code.

- The amino-acid sequence \(l\): \(l\) is a word composed of amino-acid codes.

5.1.3 PROSITE patterns/Rational expressions relationship

As the rational expressions are also defined using concatenations, iterations and disjunctions, a PROSITE pattern can be considered as a rational expression. The correspondance between PROSITE elementary operations and rational ones are listed below:

\[
\begin{align*}
p' \cdot p'' & \Rightarrow e(p') \cdot e(p'') \\
p' \cdot (n) & \Rightarrow e(p') \\
p'(n_{\text{min}}, n_{\text{max}}) & \Rightarrow e(p'_{1} \ldots e(p')_{n_{\text{min}}}, \varepsilon | e(p')_{n_{\text{min}}+1}, \varepsilon | e(p')_{n_{\text{min}}+2}, \cdots (\varepsilon | e(p')_{n_{\text{max}}}) \cdots)) \\
(p') & \Rightarrow e(p') \\
[U] & \Rightarrow (l_1 | l_2 | \ldots | l_p) \\
\{l\} & \Rightarrow (k_1 | k_2 | \ldots | k_l), \; k_i \in \text{IUPACCodes} \setminus l \\
x & \Rightarrow (k_1 | k_2 | \ldots | k_l), \; k_i \in \text{IUPACCodes} \cup \{X\} \\
l & \Rightarrow l
\end{align*}
\]

5.1.4 Uniform random generation among the language denoted by a Regular Expression

It is a classical result of the formal language theory that any regular expression can be turned into an automaton that recognises/generates the same language. Such an automaton can be turned into a deterministic one, that is an automaton where each accepted word is uniquely coupled with a walk between two special states (start and final). Thus, instead of expanding a initial non-terminal symbol the way we did for the GRAMMAR package, we are going to walk inside of this automaton with carefully chose probabilities.

For instance, consider the ORFs inside of DNA. They start with a START codon \(\text{ATG}\), then follows a region of codons that are not STOP-ones, and finally they end with the STOP codon \(\text{TAA}\). This can be modelled by the following expression, whose deterministic automaton is shown in figure 5.2.

Each sequence is bijectively associated with a single path in the resulting. For instance, the sequence \(\text{ATG AAT TCG GAT TAA}\) corresponds to the state sequence 1-2-3 7-8-9 5-8-9 7-8-9 5-6-10. As explained in the GRAMMAR package, the choice of the next state must be made using correct probabilities in order to achieve uniformity. These probabilities are proportional to the amount of words reachable from the destination state. Once again these numbers can be computed using simple linear recurrences before the generation stage.

Controlled non-uniform random generation can also be achieved using the same distributions as within the GRAMMAR package. Indeed, each symbol(letter, IUPAC Code) can be associated with a weight inside the WEIGHT clause, so that a sequence’s probability will the product of all its letters’ weights, normalized by the sum of all the weights over the sequence set denoted by the expression. This weight mechanism may be used for instance to increase the proportion of a given base as well as to favor the occurrence of a given structured motif.
5.2 Implementing a Rational/PROSITE model

5.2.1 Main structure

The main structure of the file is shown in figure 5.3

```
TYPE = RATIONAL
LANGUAGE = RATIONAL | PROSITE
EXPRESSION = e | p
[WEIGHTS] = ...
[ALIASES = ...]
```

Figure 5.3: Main structure of a RATIONAL description file

5.2.2 RATIONAL generation specific clauses

5.2.2.1 The LANGUAGE clause

```
LANGUAGE = RATIONAL | PROSITE
```

Required
Chooses between rational/regular expression and PROSITE pattern syntaxes for the expression.

5.2.2.2 The EXPRESSION clause

```
EXPRESSION = e
```

Required
The rational or PROSITE expression. The syntax for e depends on the value of the LANGUAGE clause, and has always been described in section 5.1.1 for a RATIONAL choice, and in section 5.1.2.2 for PROSITE patterns.

5.2.2.3 The WEIGHTS clause

```
WEIGHTS = l_1 \; w_1 \; l_2 \; w_2 \; ... \\
\text{if } w_i \in \mathbb{R}
```

Figure 5.2: Deterministic automaton corresponding to the simple ORF model.
Defines the weights of the terminal letters l_i.
As discussed in section 4.3 for the GRAMMAR description file, assigning a weight w_i to a terminal letter l_i is a way to gain control over the average frequency of l_i.

5.3 Examples

5.3.1 RATIONAL style example

5.3.1.1 Source

We show and explain the GenRGenS description file corresponding to the simple ORF model shown in figure 5.2.

```
1 TYPE = RATIONAL
2 LANGUAGE = RATIONAL
3 EXPRESSION = (A.T.G).(T.A.(C’|G’|T)|T.(C’|G’|T).(A|C’|G’|T)|
(C’|G’|T).(A|C’|G’|T).(A|C’|G’|T))*.(T.A.A)
4 WEIGHTS =
5 G’ 2 C’ 2.5
6 ALIASES =
7 C’=C G’=G
```

5.3.1.2 Semantics

On line 1, we choose the RATIONAL package for random generation.

On line 2, we select a rational/regular expression.

On line 3, the rational expression corresponding to the simple ORF model from figure 5.2. Notice that the star operator * has highest precedence, so that "A|B*" ⇔ "A|B*(B*)" ≠ "(A|B)*". On lines 4 and 5, weights are assigned to the C’ss and G’ss. A weight higher than 1 for a symbol will increase its number of occurrence within generated sequences. Here, we choose to favor C and G among the coding area.

On lines 6 and 7, the symbols C’ and G’ were only introduced to allow the assignment of weights within the coding area. Indeed, we needed the weight not to affect the G from the START codon. We don’t really need them anymore, so we send them back to their original representations C and G.

5.3.2 PROSITE style example

We illustrate the use of GenRGenS RATIONAL package to generate protein sequences with respect to a given PROSITE pattern by a real-life example. The pattern CBM1_1 can be found under accession code PS00562 on expasy’s and is considered as a signature for the carbohydrate binding type-1 domain. Figure 5.4 shows its entry in the PROSITE database.

5.3.2.1 Source

The PA line of the PROSITE file can be inserted directly into the EXPRESSION clause, without the terminal dot, resulting in the following description file:
Figure 5.4: PROSITE entry for pattern CBM1_1

1 TYPE = RATIONAL
2 LANGUAGE = PROSITE
3 EXPRESSION =
4 C-G-G-x(4,7)-G-x(3)-C-x(4,5)-C-x(3,5)-[NHGS]-x-[FYWM]-x(2)-Q-C

5.3.2.2 Semantics

On line 1, we choose the RATIONAL package for random generation.

On line 2, we select a PROSITE pattern expression.

On line 3 and 4, the PROSITE pattern.

5.4 Rational expressions-specific command line options

The default behaviour of GenRGenS is to generate sequences of the size provided through the -size command line option. However, it can also be useful to generate among every words possibly drawn from a PROSITE expression, regardless of the size. This is the purpose of the -i option. The sequences are still drawn at random.

Rational specific command line options usage:

```
java -cp . GenRGenS.GenRGenS -size n -nb k -i [T|F] PrositeGGDFile
```

- `-i [T|F]`: When T is selected, ignores the size parameter, so that the sequences are drawn at random among the finite set corresponding to the PROSITE pattern defined in the file PrositeGGDFile. Generates sequences of the given size otherwise. Defaults to -i F.
Chapter 6

The MASTER package: Hierarchical models

Sometimes, true uniformity or total control over the distribution of the sequences is not needed, and the hierarchical aspects of some models can be captured. The MASTER generation is then a good tradeoff between computational efficiency and expressivity. The main principle is to generalize the idea behind hidden Markovian to any type of master and hidden states models. At first, a sequence is derived from a master description file, having a length passed to the main generation engine of GenRGenS. Then each of its symbols can either or not be defined non-terminal and rewritten using another description file coupled with a size distribution.

6.1 Hierarchical models: Principles

This class of models has been included to allow different models to be combined. For example, a simple model for the Intergenic/ORF alternation could describe the framed aspect of the ORFs (using the Framed Markov model) as well as the lack of a start codon in the intergenic areas (using the Rational expression model). This can be modelled using our hierarchical models.

Hierarchical models comprise a main master model, a set of auxiliary models and a set of rules defining how to rewrite letters of the master sequence using the auxiliary models. This can also be seen as a generalisation of the HMMs, as the hidden state sequence can be computed independently from the letters arising from each hidden state. A sequence length distribution can be provided with each rule through an expressive language, enabling complex constraints such as the overall length of the sequence is a multiple of 3 to be expressed.

6.1.1 Saving time and space

It is noticeable that this approach to random can save some time and space while using models that require more than linear time and space complexities. Indeed, if \(n_1 \) and \(n_2 \) are the sizes of the two parts of an expected sequence then \(n_1^{1+\epsilon} + n_2^{1+\epsilon} < (n_1 + n_2)^{1+\epsilon} \), for all \(\epsilon > 0 \).

6.1.2 Ambiguity and bias

It also implies a small loss of control over the distribution of sequences. For instance, a model built up by concatenating two sequences chosen uniformly is unlikely to be uniform itself. More generally, let \(M_1 \) and \(M_2 \) be two models, a sequence \(s \) issued from the model \(M_1.M_2 \) may admit different decompositions \(s = \alpha_1.\beta_1 = \alpha_2.\beta_2 = \ldots = \alpha_k.\beta_k \). Its global probability is then \(p(s|M_1.M_2) = \sum_{i=1}^k p(\alpha_i|M_1)p(\beta_i|M_2) \), which induces a bias if uniformity is aimed at. Further-
more, as it is impossible to constrain the ending of a Markov chain, the concatenation of two sequences issued from some Markovian models may induce some bias at the cutpoint.

6.2 Implementing a hierarchical model

This section describes the syntax and semantics of MASTER description files.

6.2.1 Main structure

```
TYPE = MASTER
[Symbols = ...]
MAINFILE = "MainFilePath"
WHERE =
  s1 : "AuxFilePath" SIZE = law1
  s2 : "AuxFilePath" SIZE = law2
  ...
```

Figure 6.1: Main structure of a MASTER description file

Clauses nested inside square brackets are optional. The given order for the clauses is mandatory.

6.2.2 Master generation specific clauses

A hierarchical model must define the way symbols from the main sequence are to be expanded.

6.2.2.1 The Symbols clause

```
SYMBOLS = \{WORDS, LETTERS\}
```

Optional, defaults to SYMBOLS = WORDS

Chooses the type of symbols to be used for random generation.

When WORDS is selected, each pair of subsequent symbols is separated with spaces during the generation.

6.2.2.2 The Mainfile clause

```
MAINFILE = "MainFilePath"
```

Required

Defines the main random generation model description file. The file must be accessible by appending the string MainFilePath to the current directory.

A so-called master sequence is generated from this description file for further rewritings. Its length equals to the size provided to GenRGenS.

Remark: The overall size of the sequence generated from a MASTER model is usually not related to the size parameter provided to GenRGenS.

6.2.2.3 The Where clause

```
WHERE =
  s1 : "AuxPath_1" SIZE = var_1
  s2 : "AuxPath_2" SIZE = var_2 ...
```
Required
Defines the way to expand each occurrence of a symbol s_i from the main file to sequences issued from AuxPath$_i$, having size given by the distribution law$_i$.
Each s_i is a symbol that must belong to the vocabulary of the master file, but not necessarily to the sequence generated from it.
AuxPath$_i$ is the path to a description file that must be read-access enabled.
var$_i$ is a description of the random value associated to the size of this symbol’s expansion.

6.2.2.4 The SIZE definitions
A size can either be a constant, one of the predefined random variate generator, or an arithmetic expression defined recursively.

- integer or float constant: Generates a constant sequence size. If a non-integer size is specified at top-level, the value is rounded to the closest integer value, as it would be have been using round.
- $+, -, *, /, ^$: Classical binary arithmetic operators, acting on real numbers and returning a real value.
- (e): An expression nested by parenthesis is evaluated separately and priorly from its context. It can be used to overrule usual operator precedences. Ex: $7+3*5 \neq (7+3)*5$
- $\text{pow}(e_1, e_2)$: Functional form of the power operator $^$, returns $e_1^{e_2}$. If first argument e_1 is omitted, returns 2^{e_2}.
- $\text{log}(e_1, e_2)$: Returns $\log_{e_1}(e_2)$. If e_1 is omitted, returns $\log_{2}(e_2)$.
- $\text{floor}(e)$: Returns the closest integer value smaller than e.
- $\text{round}(e)$: Returns the closest integer to e.
- $\text{ceil}(e)$: Returns the closest integer value greater than e.
- $\text{min}(e_1, e_2)$: Returns the smallest number among $\{e_1, e_2\}$.
- $\text{max}(e_1, e_2)$: Returns the smallest number among $\{e_1, e_2\}$.
- length: Returns the former length of the master sequence. Equivalent syntax: size or N.
- $\text{normal}(m, sd)$: Generates a pseudorandom real value obeying a normal law having mean m and standard deviation sd. Equivalent syntax: $\text{gaussian}(m, sd)$.
- $\text{uniform}(low, up)$: Generates a pseudorandom integer value uniformly distributed over $[low, up)$ (e.g. $[low, up-1]$). If low is omitted, defaults to 0. Equivalent syntax: $\text{random}(lowm, up)$.
- $\text{var}(\omega, e)$: Declares a variable ω, whose value always equals the most recent evaluation of e. Once declared, ω can be used anywhere among the SIZE declaration parts of the ggd. Each variable carries the value 0 as long as it is not assigned.

6.2.3 Capturing Dependencies between sequences size
\text{MASTER} package introduces a way to capture the dependency between two subsequences’ size. A typical dependency that one may find useful would be: \textit{The total size of the two subsequence is 100nt, although the first’s size has been observed to vary with respect to a given distribution.} The \text{MASTER} package offers the possibility to declare variables, which is a powerful and delicate feature. Inside of a \text{MASTER} description file, simply enclose any expression of a length definition inside a var declaration. Ex.
In this example, each evaluation of the random variable \(\text{UNIFORM}(0,5)+1 \) is assigned to a variable named \(X \). Each evaluation of the expression \(\text{MAX}(5-X,0) \) will then make use of the current value of \(X \). This is likely to trick one into bad assumptions over the resulting sequences, for instance if the sequences issued from \texttt{MainFile.ggd} do not only present simple \(A-B \) alternations. Suppose that \texttt{MainFile.ggd} contains an implementation of a simple \textsc{rational} model, based on the regular expression \((A|B|m)*\), that \texttt{AuxFile1.ggd} and \texttt{AuxFile2.ggd} are \textsc{rational} models based on the regular expressions \(T^* \) and \(U^* \), and that a sequence \(\omega \) is issued from \texttt{MainFile.ggd}. Rewritings according to the \textsc{size} definitions above result in the following sequence \(\omega' \). It can be seen in figure 6.2 that a variable’s assignment can either be used by several subsequent dependant variables assignments, as in \(A_2 \rightarrow B_2 \ldots B_2' \), or be ignored like \(A_4 \). Therefore, this feature should only be used when the sequences issued from \texttt{MainFile.ggd} are sufficiently constrained, for instance by showing a strict assignment/use alternation such as the regular expression \(m^*(A \ m^* \ B \ m^*)^* \).

6.3 A complete example

6.3.1 Source

This example is inspired by a simple model for stem-loop ribosomal -1 frameshifting sites. A frameshiftting RNA causes the ribosome to slip over a specific sequence/structure motif and shift to another phase. A model inspired by the HIV-1 stem-loop frameshifting site is detailed in figure 6.3. The \texttt{Heptamer} part can be modeled with a regular expression, similar to a mutation model. The \texttt{Spacer} will use a Bernoulli model(model of order 0). The \texttt{Stem Loop} requires the full power of a context free grammar. Lastly, the frame shift sites are drowned into an ocean of coding RNA(symbol \texttt{Fill}) modelled again by a markov model.

![Figure 6.4: A MASTER description file for the frameshift model from figure 6.3.1](image_url)
Figure 6.3: A simple stem-loop frameshifting model. X stands for any base, Y means A or U and Z is anything but C.

<table>
<thead>
<tr>
<th>File frameshift.ggd</th>
<th>File heptamers.ggd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = MARKOV</td>
<td>TYPE = RATIONAL</td>
</tr>
<tr>
<td>ORDER = 1</td>
<td>LANGUAGE = RATIONAL</td>
</tr>
<tr>
<td>SYMBOLS = WORDS</td>
<td>SYMBOLS = WORDS</td>
</tr>
<tr>
<td>START = Fill 1</td>
<td>EXPRESSION =</td>
</tr>
<tr>
<td>FREQUENCIES =</td>
<td>(A</td>
</tr>
<tr>
<td></td>
<td>(A</td>
</tr>
<tr>
<td>Fill Heptamer 1</td>
<td>(A</td>
</tr>
<tr>
<td>Heptamer Spacer 1</td>
<td>(A</td>
</tr>
<tr>
<td>Spacer Stem_Loop 1</td>
<td>(A</td>
</tr>
<tr>
<td>Stem_Loop Fill 1</td>
<td>(A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File spacers.ggd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = MARKOV</td>
</tr>
<tr>
<td>ORDER = 0</td>
</tr>
<tr>
<td>SYMBOLS = WORDS</td>
</tr>
<tr>
<td>FREQUENCIES =</td>
</tr>
<tr>
<td>A 10 U 15</td>
</tr>
<tr>
<td>C 20 G 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File stem_loops.ggd.ggd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = GRAMMAR</td>
</tr>
<tr>
<td>RULES =</td>
</tr>
<tr>
<td>S -> A S U ; S -> U S A ;</td>
</tr>
<tr>
<td>S -> C S G ; S -> G S C ;</td>
</tr>
<tr>
<td>S -> L ;</td>
</tr>
<tr>
<td>L -> A' L ; L -> C' L ;</td>
</tr>
<tr>
<td>L -> G' L ; L -> U' L ;</td>
</tr>
<tr>
<td>L -> ;</td>
</tr>
<tr>
<td>WEIGHTS =</td>
</tr>
<tr>
<td>A' 0.4 C' 0.5 G' 0.5 U' 0.3</td>
</tr>
<tr>
<td>ALIASES =</td>
</tr>
<tr>
<td>A'=A G'=G C'=C U'=U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File junk.ggd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = MARKOV</td>
</tr>
<tr>
<td>ORDER = 0</td>
</tr>
<tr>
<td>SYMBOLS = WORDS</td>
</tr>
<tr>
<td>FREQUENCIES =</td>
</tr>
<tr>
<td>A 20 C 25</td>
</tr>
<tr>
<td>C 30 U 35</td>
</tr>
</tbody>
</table>

Figure 6.5: Auxiliary description files
6.3.2 Semantics

On line 1, a MASTER generator is choosed.

On line 2, we use words as symbols to avoid confusion.

On line 3, we define the main description file, whose content is listed in figure 6.5.

On line 5, we ask the generator to rewrite each occurrence of the symbol Heptamer with a sequence issued from heptamers.ggd, having size 7.

On line 6, we ask the generator to rewrite each occurrence of Spacer with a sequence issued from spacers.ggd, using a size uniformly distributed over [5, 7). Note that UNIFORM(5,8) is an equivalent syntax for 5 + UNIFORM(0,3). After each evaluation, the resulting size is stored inside a variable X.

On line 7, we ask the generator to rewrite each occurrence of Stem Loop with a sequence issued from stem_loops.ggd, using a size uniformly distributed over [24, 33). After each evaluation, the resulting size is stored inside a variable Y.

On line 8, we ask the generator to rewrite each occurrence of Fill using a size that depends on the previous assignments. The somehow cabalistic formula for the size of Fill’s expansion is just a little trick to ensure that the Heptamer motif always occurs on phase 0. That is, NORMAL(300, 100) + X + Y + 7 must be a multiple of 3. So, by dividing by 3 and rounding to the closest smaller integer and then multiplying by 3, we get the closest sum of the sizes of Heptamer, Spacer, Stem Loop and Fill that is divided by 3 without a remainder. It suffices then to substract 7 (Heptamer’s size), X (Spacer’s size) and Y (Stem Loop’s size), to get an eligible size for Fill.