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abstract: In this paper, we reduce the problem of computing the convergence time for a random-
ized self-stabilizing algorithm to an instance of the stochastic shortest path problem (SSP). This
problem has been solved, and the solution gives us a way to compute automatically the stabilization
time against the worst and the best scheduler. Moreover, a corollary of this reduction ensures that
the best and the worst schedulers for this kind of algorithms are memoryless and deterministic. We
apply these results here in several examples.
key words: randomized algorithms, distributed algorithm, self-stabilizing system, scheduler.
R�esum�e: Nous r�eduisons le probl�eme du calcul du temps de converge d'un algorithme probabiliste
et auto-stabilisant �a une instance du probl�eme SSP - probl�eme du plus court chemin stochastique.
Le probl�eme SSP admet une solution calculable automatiquement. Nous avons ainsi un moyen
d'�etablir automatiquement le temps moyen de stabilisation dans le cas o�u l'ordonnenceur a le pire
comportement, et aussi dans le cas o�u il a le meilleur comportement. De plus, un corollaire de
cette r�eduction assure que l'ordonnencement conduisant au pire temps moyen de stabilisation et
celui qui conduit au meilleur temps moyen sont d�eterministes et sans m�emoire. Nous appliquons
ses r�esultats sur plusieurs algorithmes probabiliste et auto-stabilisants.
Mots cl�es: algorithmes probabiliste, algorithme r�epartie, auto-stabilization, ordonnanceur.
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1 Introduction
By their very nature, distributed algorithms have to deal with a non-deterministic environment.
The speeds of the di�erent processors or the message delays are generally not known in advance
and may vary substantially from one execution to the other. For representing the environment in
an abstract way, the notion of scheduler (also called demon or adversary) has been introduced.
The scheduler is in particular responsible of which processors take a step in a given con�guration
or of which among the messages in transit arrives �rst. It is well known that the correctness
of a distributed algorithm depends on the considered scheduler. This remark also holds for self-
stabilizing distributed algorithm.
Di�erent classes of schedulers have been considered in the literature. With the synchronous sched-
uler, all enabled processors take an elementary step concurrently, with the central scheduler (central
demon) the processors take their steps one after the other, with a distributed scheduler, a subset
of enabled processors take a step concurrently and with the probabilistic scheduler all enabled
processors take a step with some given probability. If there is a unique synchronous scheduler,
there is an in�nity of distributed schedulers (corresponding to all possible choices of subsets along
the computation). In this paper, we restrict our attention to probabilistic self-stabilization. Clas-
sically self-stabilization requires convergence (each execution reaches a legitimate con�guration)
and correctness (each execution starting from a legitimate con�guration satis�es the speci�cation).
Probabilistic self-stabilization requires that convergence and correctness are only probabilistic (this
notion will be presented in a formal way later). It appears that the convergence property of a given
algorithm depends on the chosen scheduler. With some schedulers the algorithm can converge in a
�nite bounded number of steps (the stabilization time) while with others it can not converge at all.
Even if the stabilization time is �nite, it can di�er according to the scheduler. There is generally
in�nity many schedulers in a given class, as for the class of distributed schedulers that we consider
here. It is thus interesting to know a best scheduler (the scheduler that gives the smaller expected
stabilization time) and a worst. Note that a best scheduler can possibly give a �nite stabilization
time and a worst an in�nite one. In some cases best and worst both give �nite stabilization time
(it is then said that the algorithm is self-stabilizing under "the" distributed scheduler).
One could think that the best and the worst schedulers are intricate and di�cult to describe, or
that their simulation would use a lot of resources. In fact it is not true because there are always
a best scheduler and a worst scheduler that are memoryless (meaning that the choice they make
in a given con�guration depends only on the con�guration, and not on the past of the execution).
This results extends a result in [3] and, although in a di�erent context, a result of [2]. But we do
much more: we give an automatic way of computing a) both of these schedulers, under the form of
Markov processes, b) the expected stabilization time (when it is �nite, elsewhere we get that the
algorithm does not converge) for both of the schedulers.
We give three examples. The �rst one is very simple. Guessing the best and the worst scheduler is
easy and (fortunately!) the automatic construction gives the same result. Guessing the schedulers
on the two other examples is not so easy, and we hope that the reader will be convinced he couldnt
get the schedulers for the third example "by hand". We also show in each case how the stabilization
time can be computed using a �xpoint method.
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Related works. In [4], Dolev, Israeli and Moran introduced the idea of a two players game
between the scheduler and what they call luck, i.e. the random values, without de�ning formally
the probabilistic space of computations. The structure (informally presented) behind a sl-game
is a strategy (formally de�ned in this paper) where some branches have being cut. In [12], [10],
and [11], Lynch, Pogosyants and Segala present a formal method for analyzing probabilistic I/O
automata which modelize distributed systems. A clear distinction between the algorithm, which is
probabilistic, and the scheduler, which is non-deterministic, is made. The notion of cone, that is
at the basis of the probabilistic space, is also used. These works do not consider self-stabilization.
In [6, 5] the notion of randomized distributed algorithms under a �xed scheduler are studied using
methods issued from Markov theory, in [5] the authors present how to adapt these methods for an
arbitrary scheduler. Moreover, de Alfaro in [3] applies analogies with SSP to compute maximal
and minimal reachability probability for probabilistic transition systems.

2 Notion of Markov Decision Processes
In this section we adopt the notation of de Alfaro [3].

Informally, a Markov decision process is a generalization of the notion of Markov chain in
which a set of possible actions is associated to each state. To each state-action pair corresponds a
probability distribution on the states, which is used to select the successor state. A Markov chain
corresponds thus to a Markov decision process in which there is exactly one action associated with
each state. The formal de�nition is as follows.
De�nition 1 (Markov Decision Process) A Markov decision process (MDP) (S; Act; A; p)
consists of a �nite set S of states, a �nite set Act of actions, and two components A; p that specify
the transition structure.

� For each s 2 S, A(s) is the non-empty �nite set of actions available at s.
� For each s; t 2 S and a 2 A(s), pst(a) is the probability of a transition from s to t when
action a is selected. Moreover, p veri�es the following property 8s; 8a 2 A(s) we havePt2S pst(a) = 1.

De�nition 2 (Behavior of MDP) A behavior of a Markov decision process is an in�nite se-
quence of alternating states and actions, constructed by iterating a two phase selection process.
First, given the current state s, an action a 2 A(s) is selected non deterministically; second the
successor state t of s is chosen according to the probability distribution P (tjs; a) = pst(a).
Given a state s we denote 
s the set of all the behaviors starting in s.
De�nition 3 (cylinder sets) The basic cylinder associated to the history h = s0a0s1a1:::sn con-
tains all behaviors of a MDP starting at s0 having the same pre�x h:

Ch = fw 2 
sjX0 = s ^ Y0 = a0 ^ ::: ^Xn = sn ^ Yn = ang
We have to de�ne also some measurable sets of behaviors. For every state s, we let Bs 2 2
s be the
smallest algebra of subsets of 
s, that contains all the basic cylinder sets and that is closed under
complement and countable unions and intersections. This algebra is called the Borel �-algebra of
basic cylinder sets, and its element are the measurable sets of behaviors (see [3]).
To be able to talk about the probability of behaviors, we would like to associate to each � 2 Bs aprobability measure P (�). However this measure is not well de�ned, since the probability that a
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behavior belongs to � depends on how the actions have been nondeterministically chosen.
To represent these choices, we use the concept of policy (see [3]). Policies are closely related to the
adversaries of Segala and Lynch [12] and to the schedulers of Lehman and Rabin [8], Vardi [13] and
Pnueli and Zucck [9].
De�nition 4 (Policy) A policy � is a set of conditional probabilities Q�(ajs0s1:::sn); for all n � 0,
all possible sequences of states s0; :::; sn and all a 2 A(sn). It must be 0 � Q�(ajs0; s1:::; sn) � 1
and Pa2A(sn)Q�(ajs0; s1:::; sn) = 1.
A policy is deterministic if for each s there is an action a 2 A(s) such that Q�(ajs0; s1:::; sn) = 1.
A policy is called Markovian if the choice of the action at a state does not depend on the portion
of behavior before the state is reached.

Some can object that this policy does not take care about the history of the actions but De
Alfaro in [3] has already shown that all the de�nitions are equivalent. Informally, a policy dictates
the probabilities with which the actions are chosen knowing all the history of the process.
De�nition 5 (Probability measure of a cylinder under a policy) Let � be a policy. Let h =
s0a0s1a1:::sn be an history.

P �s (Ch) =
n�1Y
k=0

psksk+1(ak)Q�(akjs0; s1:::; sk)

There is an unique extension of the probabilistic measure P �s , to any element of Bs. Thus thetriple (�;Bs; P �s ) de�nes a probabilistic space on Bs.

3 Randomized Distributed Algorithms as Markov Decision Pro-
cesses

We will present, here, how we can modelize a randomized distributed algorithm as a Markov
Decision Process. One can refer to [6, 5] to get more details.

In a distributed system, the topology of the network of machines is generally given under the
form of a graph G = (V;E), where the set V = f1; :::; Ng of vertices corresponds to the location
of the machines. There is an edge between two vertices when the corresponding machines can
communicate together. All the machines are identical �nite state machines. The space of states is
Q. A con�guration X of the distributed system is the N -tuple of all the states of the machines. The
set of con�gurations QN is denoted �. Given a con�guration X of �, the state of the ith machine
is written X(i). Randomized distributed algorithms are characterized by a scheduler (adversary),
i.e., a mechanism which selects, at each step, a nonempty subset of enabled machines which apply
the guarded rules of the algorithm. The execution simultaneously by several machines of rules is
call a computation step. Let us recall that for a given �xed memoryless (Markovian) scheduler, the
randomized distributed algorithm can be seen as a Markov chain Xt = (Xt(1); :::Xt(N)) where Xtis a random variable taking its values in � (see [6]).

Here, we consider that the scheduler is arbitrary, then given a con�guration s we de�ne A(s)
by all the non-empty subsets of machines enabled in this con�guration. With this de�nition we see
that the notion of scheduler corresponds to the notion of determistic policy. Then, the randomized
distributed algorithm can be seen as a Markov Decision Process.
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Example 1 (Toy Example) Here we de�ne a toy example that will help us to illustrate the results
of the paper. This algorithm presented achieves token circulation on unidirectional ring (see,[7, 1]):

Tokenp ! if (random(0; 1) = 0) then Pass Tokenp.
The complete algorithm 4 is presented in annexe.
The algorithm to be self-stabilizing should converge from a con�guration with two tokens to a

con�guration with one token. This algorithm ensures that in any con�guration, the ring has at least
one token.

4 Finding best and worst Schedulers for Self-Stabilization Algo-
rithms

In this paper, we will focus on randomized self-stabilizing algorithms. We can recall here the
de�nition.
4.1 Probabilistic self-stabilization

De�nition 6 A randomized algorithm A is self-stabilizing towards a set of legitimate states L if
� Whatever the starting con�guration s0 it reaches a con�guration in L within a �nite number
of states and with probability 1
� The set L of states is closed under the rules of A

Example 2 Under some schedulers (for instance a �xed one choosing one token after the other),
it is very easy to check that our toy example converges towards the set of con�gurations with only
one token.

The aim of the following sections is to adapt some results on stochastic shortest path problem
of de Alfaro [3] and Bertsekas and Tsitsiklis [2] to randomized self-stabilizing algorithms.
4.2 Results on the Stochastic Shortest Path Problem

We just present here the main results, but we refer to [3, 2, 6] to more details. Informally, the
stochastic shortest path problem consists in computing the minimum expected cost for reaching a
given subset of destination states, from any state of a Makov decision process (in which a cost is
associated to each action). This problem was �rst study by Bertsekas and Tsitsiklis in [2] and by
de Alfaro in [3]. The following notations and de�nition are taken from [3] and [2].
De�nition 7 (Instance of Stochastic Shortest Path Problem) An instance of the stochas-
tic shortest path problem consists of an MDP � = (M;U; c; g) in which the components M U; c and
g are de�ned as follows:

� M is Makovien Decision Process
� U is the set of destination states
� c is the cost function, which associates to each state s 2 S � U and action a 2 A(s) the
cost c(s; a)
� g is the terminal cost function which associates to each s 2 U its terminal cost g(s).
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De�nition 8 (SSP-proper policy) TU is a random variable indicating the position of the �rst
entrance in U : TU = minfkjsk 2 U with s0a0s1a1::sn being the pre�x of a behaviorg.
Given an instance of SSP a policy � is SSP-proper if P �s (TU <1) = 1 for all s 2 S.
We call �P the class of SSP-proper policies.
The cost of a policy � at s 2 S is de�ned by v�s = E(g(XTU )+PTU�1k=0 c(Xk; Xk+1)) - Xk is a random
variable : its value represents the con�guration of distributed system after k computation steps -
The SSP problem is de�ned by the determination of v�s = inf�2�P v�s ; for all s 2 S � U .
We �rst have to de�ne two assumptions:
De�nition 9 (SSP1, SSP2 and L)

� SSP1 : There is at least one Markovian SSP-proper policy.
� SSP2 : If � is Markovian and not SSP-proper, then v�s =1 for at least one s 2 S.
� L : Let (M;U; c; g) be an instance of the SSP problem. We denote v = (vs)s2S�U a vector
of real numbers. We de�ne the Bellman operator L by

L(vs) = mina2A(s)fc(s; a) + X
t2S�U

pst(a)vt +Xt2U
pst(a)g(t)g

Theorem 1 (Bellman Equations) If SSP1 and SSP2 are satis�ed then the following assertions
hold:

� The Bellman operator L admits exactly one �xpoint v� such that v� = Lv�
� v� = v�
� There exists a Markovian policy that reaches the minimum, it su�ces to take in each state
actions that realize the minimum in the right hand side on the L equation.

Note that in the initial theorem, we can also obtain the �xpoint by solving a linear programming
problem, but we will not to develop this point here.
4.3 Application to self-stabilization

Our goal is to apply the result on the SSP problem to �nd the convergence time of randomized
self-stabilizing algorithms. First,After showing in the previous section how a randomized algorithm
can be seen as a Markov decision process, we show now the reduction towards SSP.
Theorem 2 Computing the convergence time for a randomized self-stabilizing problem can be re-
duce to an instance of SSP.
Proof:

� Case 1: Best convergence time. We de�ne U as the set L of legitimate states of the
algorithms We de�ne c as identically equal to 1. We de�ne g as identically null.
With these values of U , c, and g the cost of a policy � is the expectation time of the random
variable XTU under the policy �. The minimum cost of the SSP problem will count the
minimum expected number of steps before reaching L under any policy � which is the best
convergence time.

� Case 2: Worst convergence time. We de�ne U as the set L of legitimate states of the
algorithms We de�ne c as identically equal to �1. We de�ne g as identically null.
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With these values of U , c, and g the cost of a policy � is the expectation time of the random
variable -XTU under the policy �. The minimum cost of the SSP problem will count the
opposite of the maximum expected number of steps before reaching L under any policy �
which is the worst convergence time.

2

Theorem 3 The instance of SSP obtained from a randomized self-stabilizing problem veri�es the
assumptions SSP1 and SSP2
Proof: If the algorithm is self-stabilizing then all the policies allow to converge towards L with
probability 1 which ensures that the two assumptions are true, since all the policies are SSP-proper.
Note that if the algorithm is only self-stabilizing for a certain class of policies (schedulers) than
the reduction to SSP to obtain the worst convergence time satis�es assumptions SSP1 and SSP2.
Indeed, SSP1 is true because there exists SSP-proper policies (the one for which the algorithm is
self-stabilizing), SSP2 holds because for the non SSP-proper policies the convergence time is in�nite
so the minimum is -1. 2

Corollary 1 The best and the worst schedulers (considering the convergence time) for a random-
ized self-stabilizing algorithm are memoryless and deterministic.
This comes directly from the theorem.

This last results allows us to only consider memoryless schedulers when studying self-stabilizing
algorithms. Indeed, the worst convergence time is always given by a memoryless scheduler, this
result will considerably simplify the veri�cation of the correctness and the computation of the
complexity of these algorithms.

Moreover, the Bellman equation gives us a way to compute automatically the worst and the
best convergence time and to obtain the corresponding schedulers.

We wil now apply all this result to our toy example and to two other algoritms.
Example 3 (Application to the toy example) Con�gurations are gathered in class. Con�gu-
rations in which the tokens are at the same (clockwise) distance d, belong to the same class denoted
d. If a token T1 is at distance d of the other token T2 then T2 is at distance N -d of T1. Therefore
class d and N -d are identical. Notice that if d = 0 then the ring has only one token. The best
convergence time is easy to guess here, from the con�guration of the class 0 < d � N=2 is 2 � d,
whatever is the ring size. This convergence time is achieved under the following policy: in any
con�guration, the token at distance d of the other token tries to catch up the unmoving token.

Let us see how the Bellman equation gives the result.
Let us take N = 5, then there are 3 classes c0; c1; c2 There are also three kind of schedulers

in each di�erent con�guration, one can choose only the closest token (action c), the further (f),
or both of them (b). In the corresponding SSP instance we have U = c0 and we can start from
the vector v0 = (0; 0) then applying one time the Bellman operator L we obtain that v1 = (1; 1)
then v2 = (3=2; 2), v3 = (7=4; 11=4), v4 = (15=8; 26=8), v5 = (31=16; 57=16), v6 = (63=32; 120=32),
v7 = (127=64; 247=64), v8 = (255=128; 502=128) and the sequence converges towards v� = (2; 4)
which is e�ectively a �xpoint. Then, by getting the action in which the minimum is reached we
obtained that the best scheduler is the one that chose always action c, that is conform to the intuition.

In the rest of the paper, we will exactly adopt these techniques to �nd best and worst schedulers
(policies) for more di�cult examples.
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5 Examples
5.1 Self-stabilizing vertex coloring

Algorithm 1 Self-stabilizing vetex coloring algorithm
Variable on p:
cp color of p node. color takes value in N
Constant in p:
B is a constant having a value in N��, we assume that B > �p

Action on p:
R1:: 9q 2 Np such that cp = cq �! cp = random(1; B)
In this section, we study a very simple self-stabilizing vertex coloring algorithm. The algorithm

converges from any con�guration to a con�guration where neighboring nodes do not have the same
color. On a node that has the same color as one of its neighbors R1 is enabled. An enabled node
can randomly choose any color in the colors set (i.e. to execute R1 action). All colors have the
same probability to be chosen: 1=B (B being the color set size). We assume that B is greater than
the maximum node degree.
We study the behavior of the self-stabilizing vertex coloring algorithm on a complet network of four
nodes. After an analysis of the set of con�gurations, 4 con�gurations types was determined:

� All nodes have the same color. This con�gurations type is named 1 color. In this type of
con�gurations, all nodes are enabled, four distinct schedule choices exist.

� Every node nodes has a neighbor that has its color, and the con�guration has two colors.
For instance the con�guration (Red, Red, Blue, Blue) belongs to this category. This type
is named 2 colors (2). In this type of con�gurations, all nodes are enabled, and 5 distinct
schedule choices exist.

� Three nodes have the some color, the last node having a distinct color. For instance the
con�guration (Red, Red, Red, Blue) belongs to this category. This type is named 2 colors
(3). In this type of con�gurations, three nodes are enabled, and three schedule choices exist.

� Only two nodes have the same color. Thus 3 colors exist in a con�guration of that type,
for instance (Red, Blue, Green, Green). This con�gurations type is named 3 colors. In this
type of con�gurations, two nodes are enabled, and two schedule choices exist.

Even on this very simple algorithm, the worst and best strategies are di�cult to guess. Thus,
without building the Markovien decision process, it is impossible to �nd the best and worst sta-
bilization time. In the Figure 1, we present the Markov decision processus associated with the
self-stabilizing vertex coloring algorithm on a complete network of 4 nodes.

The computation of the best and worst convergence time is done by computing �xpoints of the
Bellman operator L. In the Figure 2, we present the best and worst convergence time assuming that
B = 4, from every con�guration types. To compute the worst convergence time, we can start frome
the vector v0 = (0; 0; 0; 0) then applying one time the Bellman operator L we obtain that v1 =
(�1;�1;�1;�1) then v2 = (�2;�2;�2;�15=8), v3 = (�3;�189=64;�188=64;�171=64), v4 =
(253=64;�3937=1024;�975=256;�109=32) and converges towards v� = (�97=6;�91=6;�89=6;�38=3)
which is e�ectively a �xed point.
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initial probability to reach the con�guration
con�guration 1 color 2 colors (2) 2 colors (3) 3 colors 4 colors

3 or 4 nodes perform an action:
1 color 1/B3 3(B-1)/B3 4(B-1)/B3 6(B-1)(B-2)/B2 (B-1)(B-2)(B-3)/B3

2 colors (2)
2 colors (3)

2 nodes (which does have the same color) perform the action:
1 color 1/B2 (B-1)/B2 2(B-1)/B2 (B-1)(B-2)/B2 0

2 colors (2)
2 nodes (which does have the same color) perform the action:

2 colors(2) 0 2/B2 2/B2 5(B-2)/B2 (B-2)(B-3)/B2

2 colors (3)
3 colors

1 node performs an action:
1 color 1/B 0 (B-1)/B 0 0

2 colors (2) 0 1/B 1/B (B-2)/B 0
2 colors (3) 0 1/B 1/B (B-2)/B 0
3 colors 0 0 0 3/B (B-3)/B

Figure 1: Markov Decision Process of vertex coloring algorithm on a complete network of 4 nodes
Convergence time from

1 color 2 colors (2) 2 colors (3) 3 colors 4 colors
Best convergence 34/7 14/3 14/3 4 0
Worst convergence 97/6 91/6 89/6 38/3 0

Figure 2: Convergence time of vertex coloring on 4-node complete network, B = 4

The selection of the policy at each iteration of the computation of the �xpoints, helps us to �nd
the best and worst policy on each con�guration type. Once the policies known, we could explain
why these strategies were optimal.
The best policy or strategy in order to have the fastest convergence time is de�ned as follows: a
node of each color does not move, other nodes try to change their color. Then, after each move,
the number of colors does not decrease. The Markov chain de�ned by the best strategy is given in
Figure 3, assuming that B = 4.

The worst strategy has two goals: �rst to maintain as few colours as possible and second to
minimize the number of nodes that make a move. For instance, when all nodes have the same color,
only one node tries to change its color. >From a con�guration of type 2 colors (2), two nodes having
the same color performs a move; with such a policy, it is possible to go back to a con�guration
with only one color. >From a con�guration of type 2 colors (3), only a node performs the rule
action; with such a policy, it is impossible to reach a con�guration with four colors, in one step.
>From a con�guration having three colors, two nodes do the rule action; with a such policy, it is
possible to reach a con�guration with only two colors. With such a strategy, from any illegitimate
con�guration, the number of colors can decrease in at most two move. The Markov chain de�nes
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4 colors

2 colors (3)

2 colors (2)

5/8
3 colors 1/4

3/4

21/64
36/64

1/8

1 color

1/64

6/64

2/8

Figure 3: The best strategy for the vertex coloring graph

1/2

4 colors1/83 colors

1/8

6/16

1/86/16

2 colors (3)

1/4

1 color 3/4

1/16

2 colors (2)

10/16

3/16

1/4 1/4

Figure 4: The worst strategy for the vertex coloring graph

by the worst strategy is given in Figure 4, assuming that B = 4.
5.2 Self-stabilizing naming algorithms on oriented grids

The problem, here, is to give distinct identi�ers to the nodes of a grid network, with the sense of
direction (each node knows north, south, west and east).
5.2.1 Deterministic Self-stabilizing algorithm
There are deterministic self-stabilizing algorithms solving this problem. We �rst present one of
them and we compute its stabilization time. Then we randomize the algorithm and we use our
techniques to compute the best and the worst stabilization times. We get the (surprising) result
that the randomized version is faster than the deterministic one under any scheduler. Here we
apply our techniques by hand, what reduces the size of the network we are able to deal with, but
their implementation by program would allow to treat more realistic examples. We present one of
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these algorithms in Algorithm 2. The identi�er is a tuplet of two integers (V al SW , V al NW ).
When every node p veri�es the properties (i) and (ii) then the identi�ers are distinct:

� (i) the value V al SW is greater than the values V al SW of p's South and West neighbors.
� (ii) the value V al NW is greater than the values V al NW of p's North and East neighbors.

When a node does not satisfy the property (i) (resp. (ii)) the rule R1 (resp. R2) is enabled.
The R1 action sets V al SW to the smallest value that satis�es the property (i). The R2 action
sets V al NW to the smallest value that satis�es the property (ii).
Algorithm 2 Unique naming self-stabilizing deterministic algorithm
The identi�er of p is the couple (V al SWp, V al NWp).We name s (resp. w, n, and e) the neighbor of p at the South (resp. West, Nort, and East) of p if
such a neighbor exists.
Macro on p:
Bound SWp = Max(x; y). If p has a neighbor at its south then x = V al SWs otherwise x = 0.

If p has a neighbor at its west then y = V al SWw otherwise y = 0.
Bound NWp = Max(x0; y0). If p has a neighbor at its north then x0 = V al NWn otherwise

x0 = 0. If p has a neighbor at its west then y0 = V al NWw otherwise y0 = 0.
Constant in p:
k is a constant having a value in N+

Action on p:
R1:: if (V al SWp � Bound SWp) �! V al SWp := Bound SWp + 1
R2:: if (V al NWp � Bound NWp) �! V al NWp := Bound NWp + 1

In the following paragraphs, we present the best and worst time to stabilize V al SW values
from ICN on grid of size N �N .. ICN is a speci�c illegitimate con�guration de�ned as follow: the
value of V al SW of a node at distance d of SW is 2(N � 1)� d. In Figure 5, we present such an
initial con�guration on a grid of size 5 � 5. >From the con�guration ICN , the value V al SW of
each node except the node SW (SW being the node at the far south and far West) has to change
in order to get its �nal value (presented in Figure 5).
Best convergence time Consider the policy that chooses at each computation step, all nodes
that can update the value of V al SW . Note that the V al SW value of the nodes at distance d of
SW is stable after d steps with the deterministic algorithm. On a grid of size N �N , all V al SW
values are stable after 2(N � 1) computation steps.
Worst convergence time Consider the policy that chooses at each computation step, the farest
node of SW that is enabled. Each node p performs at least dp actions where dp is the distance ofthe node to SW . On a grid of size N �N , all V al SW values are stable after Pp dp = N2(N � 1)
computation steps.

11



4

5

6

7

8

0

1

2

3

4

1

2

3

4

5

4

3

5

6

7

2

3

4

5

6

12

11

10

9

8

14

13

12

11

10

16

15

14

13

1211

12

14

15

11

10

9

12

13

13

initial values final values

North

East

Figure 5: initial and �nal values of V al SW

5.2.2 Probabilistic Self-stabilizing algorithm
We present a probabilistic self-stabilizing algorithm based on the same idea as the deterministic
algorithm previously presented (algorithm 3). Identi�ers are still tuples of two integers (V al SW ,
val NW ).

When a node does not verify the property (i) the rule R1 or R2 is enabled. The rule R2 is
enabled when the node can update its value V al SW without forcing one of its neighbors (at its
north or at its East) to change its V al SW value. If such a value does not exist, then R1 is enabled.
The R2 action randomly chooses V al SW among the values which verify (i) and are lesser than the
V al SW value of node's neighbor at East and at North. The R1 action randomly chooses V al SW
among k values - the k smallest values which verify (i).

The rules R3 and R4 changes the V al NW value. They are similar to the two rules to update
V al SW , respectively R1 and R2 .

We study convergence time from ICN . In ICN there are 2N � 2 enabled nodes. Note that
from a given con�guration there are as much di�erent policies as there are subsets of the the set of
enabled nodes. When the con�guration is symmetrical the policies come by pair. Thus, from ICN ,there are at least 22N�2 distinct policies (schedule choices). Clearly, it is impossible to present on
a �gure the decision Markovian process on a grid of size bigger than 2� 2. Therefore, we present
the Markovian decision process on the grid of size 2� 2, in Figure 6, assuming that k > 2.

To �nd the best (resp. worst) convergence time, we compute the �xed point of the Bellman
operator L when the cost function has the value 1 (resp. -1) in any case. The best convergence time
is 2 � (k�1)(k�2)(2k�3)

6k3 and the worst convergence time is 4 � k�2k . They are better than the same
convergence times with the deterministic algorithm respectively 2 computation steps in the best
case, and 4 computation steps in the worst case. By extension, we conclude that the probabilistic
algorithm is faster than the deterministic algorithm, under any schedule.
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Algorithm 3 Unique naming self-stabilizing probabilistic algorithm on oriented grid
The identi�er of p is the couple (V al SWp, V al NWp).We name s (resp. w, n, and e) the neighbor of p at the South (resp. West, Nort, or East) of p if
such a neighbor exists.
Macro on p:
Lower Bound SWp = Max(x; y). If p has a neighbor at its south then x = V al SWs otherwise

x = 0. If p has a neighbor at its west then y = V al SWw otherwise y = 0.
Lower Bound NWp = Max(x0; y0). If p has a neighbor at its north then x0 = V al NWnotherwise x0 = 0. If p has a neighbor at its west then y0 = V al NWw otherwise y0 = 0.
Upper Bound SWp = Min(z; w). If p has a neighbor at its north then z = V al SWn otherwise

z = 0. If p has a neighbor at its east then w = V al SWe otherwise w = 0.
Upper Bound NWp =Min(z0; w0). If p has a neighbor at its south then z0 = V al NWs otherwise

z = 0. If p has a neighbor at its east then w0 = V al NWe otherwise w = 0.
Constant in p:
k is a constant having a value in N�

Action on p:
R1:: if (V al SWp � Lower Bound SWp) ^ (Lower Bound SWp + 1 � Upper Bound SWp) �!

V al SWp := random(Lower Bound SWp + 1::Lower Bound SWp + k);
R2:: if (V al SWp � Lower Bound SWp) ^ (Lower Bound SWp + 1 < Upper Bound SWp) �!

V al SWp := random(Lower Bound SWp + 1::Upper Bound SWp � 1);
R3:: if (V al NWp � Lower Bound NWp) ^ (Lower Bound NWp + 1 � Upper Bound NWp)

�! V al NWp := random(Lower Bound NWp + 1::Lower Bound NWp + k);
R4:: if (V al NWp � Lower Bound NWp) ^ (Lower Bound NWp + 1 < Upper Bound NWp)

�! V al NWp := random(Lower Bound NWp + 1::Upper Bound NWp � 1);

6 Conclusion
In this paper, we show that concerning the convergence time for probabilistic self-stabilizing algo-
rithm, we can reduce the �eld of schedulers to those which are deterministic and memoryless.
To prove this result we use a reduction towards a well-studied problem (Stochastic Shortest Path).
By the way, this reduction gives us a way to compute automatically both the convergence time and
the worst and best schedulers.
We need sometimes to �nd the best and the worst "`fair schedulers"' , we conjecture that under
weak fairness assumption (the measure of non-fair execution is null) the results hold. More, we
show that computations can be made by hand only for very small networks and prove the necessity
to implement them by program.
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A Complete Algorithm of Toy example

Algorithm 4 token circulation on anonymous and unidirectional rings
Constant:
N is the ring size. mN is the smallest integer not dividing N .
Field variables on p: vp is a variable taking value in [0, mN -1].
Random Variables on p:
rand boolp taking value in f1, 0g. Each value has a probability 1/2.

Predicate on p:
Tokenp � vp � vlp 6= 1 mod mNMacro on p:
vp := (vlp + 1) mod mN ;

Action on p:
A:: Tokenp ! if (random boolp = 0) then Pass Tokenp.
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