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Counting closed and open walks
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Abstract

We recall simple techniques for computing the numbers of Dyck
or Motzkin words and similar ones, and give similar computations for
some walks in 2-dimensional spaces,

1 Paths on the line or half-line

It is well known that the number of walks in n steps from 0 to n — 2p with
steps of size 1 or —1 is (Z), since there must be p steps of size —1 and
n — p steps of size 1, and any such combination is convenient. In particular,

when n = 2p the number is (2;)”). The corresponding generating function is
ol (2;’)227’, that is 1/4/1 — 422. The total number of walks is 2".
The ballot problem is now how many walks remain in the positive part

of the line. We will call them positive walks. It is easily checked that the

number of such walks from 0 to n—2p is (7)) Z—f%. In particular when n =
2p

p)L a well known occurrence of the famous Catalan

2p, the number is ( T

number. The generating function is }77° (2pp ) ﬁz% , that is 1=v14z 3;4"2. The
total number of positive walks of length n is (Ln% J).

In the same vein, the number of walks with steps of sizes 1 or 0 or —1 from
0 to itself give rise to the generating function M(z) = 1/v/1 — 2z — 322 and
the closed positive walks (Motzkin walks) produce similarly the generating

function M, (z) = 1=2=v1522=32" V212_222_322 (Motzkin numbers). The total number
of walks is 3™ and the positive walks give the generating function lffg“; £

(cumulated Motzkin numbers).
If instead of one step of size 0 we use two such steps, we find again Cata-

lan numbers, the number of closed positive walks of length 7 is (*"2) -1

n+l1/)n+2°
Hgﬂ’ the number of positive

and the corresponding generating function is

which gives the generating function
walks of length n is (*")



( L 1) /2z. The number of closed paths in (*"), that corresponds to

1—4z n

the generating function

1
Vi—4z®

Instead of steps of length 1 and —1, we can use steps of size 1 and 1 -k,
with k£ > 2 Then the number of ways to go in n steps from 0 to n — kp is
(") (with n — p steps of size 1 and p steps of size 1 — k) and the number of

P
positive walks in n steps from 0 to n — kp is f(n,p, k) = (Z) 7;:’;”:'11.

o . —kptl ~1\n—k —1\n—kp+k
Indeed it is easily checked that (Z)’;—ﬂ% = (")t (z,l)nn—ﬂ%,
and (7)) ’:L__';pj'll is conveniently null when kp = n + 1.

)

On the other hand, the generating function ®(k, z) = 372 f (kp, p, k)zkp
associated to the number of closed positive walks satisfies ®(k,z) = 1 +
2% (®(k, 2))*.

These facts can be found in [4, ch. 7.5].

Another point of view gives the construction of closed positive walks as
a language S made from two letters, say u for up and d for down, following
the rule S = ¢ + SuSdS ... dS with k occurrences of d..

In the same vein, the number of walks with steps of sizes 1 or 0 or —1
from 0 to itself give rise generating function M (z) and the positive walks
(Motzkin walks) have generating function M (z).

Indeed, looking at the first passage at 0 after start gives M (z) = 1+
2My(2) + 22(My(2))? and M(z) = 1 + zM(2) + 22°M(2)M(z). These
relations give M, (z) = 1=2=¥1522=327 W and then M(z) = 1/v1 — 2z — 322

The corresponding language setting would be Sy = ¢ U hSL U uSudS
and S_ =eUhS_UdS_dS_ and S =cUhSUuS;dSUdS_uS.

More on this in the papers [1] and [3].

It is not difficult to see then that the positive walks give the generating
function % (and more precisely the number of positive walks from the
origin to the point ¢ has generating function z*(®(k,z))**!) and the nega-

tive walks (or the positive walks ending at 0) give the generating function
1—2®(k,2)
1-22
We now present similar results in the plane or higher dimensional spaces,

and cones with summit at the origin.
Some cases where both ends on the walks are not the origin can lead to
reasonably easy computations.

In particular, when n = kp, we have f(kp,p, k) = (



2 The positive line

We can look at the infinite matrix M where M;; (i and j non-ngative inte-
gers) shows the number of ways to connect the origin to the point i with j
steps inside the positive half-line..

It is clear that M;; = 0if i—j is even or positive. We have said above that
M; oc; = () L2355 Hence M is invertible and satisfies (R + R)M = MR
where R is the matrix with R;;_1 =1 for 4 > 1 and R;; = 0 otherwise,a nd
R? is the transpose of R.

Thus the inverse N of M satisfies RN = N(R—i—Rt) and N;; =1, N;; =0
if i > j. Therefore N; ; =0 if ¢ — j is odd and Nj_c ;. = (—1)‘3(2).

An interpretation is thus: the columns of N represent the base of the sec-
ond kind Chebyshev polynomials [1, X,...,U;...] in the base [1, X, X?,...,
Xt ...] of the vector space of polynomials. We recall their dfinition Uy =
1,U; = X,Upy2 = XUpy1—U, or equivalently U(2 cos #) sin @ = sin((i+1)8)
for each 6 real or complex (therefore U;(2) =i + 1).

If Q commutes with R, we see that MRQ = MQR = (R+ R')MQ. In
particular, if Q@ = U;(R), the matrix MU;(R) has its first column with a 1 in
position ¢ and zeros elsewhere. Thus the matrix M) shows in its column j
the number of ways to go from the point 7 in j steps to the points 0,1,2,....

The asymptotic behaviour of the total number of positive walks of length

n from the origin namely (Ln72 J) is 2"*1/(7\/n). Hence the total number
of positive walks of length n from the point b is U;(2)2"*!/(w/n), that is
(i +1)2"* /(my/n),

Similarly, in the case of steps 1 and —k, the matrix M giving the number
of ways to go from the origin to point ¢ in j steps has M;_3.; = (ﬁ ) jjf_cckjll
for 0 < ¢ < j/3 and the other entries are 0. Its inverse N has N;_o¢;qc =
(—1)¢(%) for 0 < 2¢ < i and its other entries are 0.

3 Paths in the plane

We will have several kinds of steps, that are non-colinear vectors in Z?2 such
that a linear combination with positive integer coefficients is null exists;
this ensures the existence of closed walks. We may suppose without loss
of generality that each vector appears in such a combination, since vectors
absent from all combinations cannot be steps in a closed walk. We consider
walks starting from the origin using these steps, so that the walker remains
in some sector of the plan (not too small, so that it contains some steps
from the origin and some steps towards the origin, in order to allow closed
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Figure 1: First half plane

walks).

3.1 The oriented triangular net

In what follows the combination is simply a + b+ ¢ = 0 We will count walks
using these steps.

3.1.1 Whole plane

Clearly, the number of walks from the origin to itself in 3p steps is (%f’)%.

The corresponding generating function is 372 %%z:‘p . The total number
of walks of length p is of course 3P.

3.1.2 First half-plane

We now allow only the half plane limited by the line Ra and containing b.
(see figure 1). Then the closed walks inside that half plane are obtained as
words with 2p letters from the alphabet b, ¢ with no more ¢’s than b’s in

their beginning (there are (2;’) ﬁ such words), with the same number of a’s

inserted in any possible way. Thus the numper of closed walks of length 3p
. . 3p)!

starting at the origin is (3;’) (if’)ﬁ = %.

The number of walks arriving on the line is the number of Motzkin walks,

—2—V1-22-322
2

with generating function 1=2 5
z
generating function 1/v1 — 2z — 322.

and the total number of walks has



Figure 2: Second half plane

3.1.3 Second half plane

We now allow only the half plane limited by the line R(b— ¢) and containing
a (see figure 2).

Then the closed walks are obtained as words more a’s than b’s and c¢’s
at thir beginning; (regarding the distance to the borderline, a may be seen
as a step up of length 2 and b and ¢ as steps down of length 1), with any
repartition of b and ¢ (in equal number for a close walk). Thus the number of
closed walks of length 3p starting at the origin is (2;) (?;p) 2p1+1 = (p!)g:zg)p! 1y

The total number of walks arriving on the line has thus a generating
function f satisfying f = 1 + 423f3, thus the number of walks of length
(%)
2p+1 °

and the total number on the side of b and ¢ has

3p arriving on the line is The number of walks on the side of a has

1-2z2f
1-3z

generating function ﬁ

generating function

3.1.4 A 60-degrees sector

We now allow only the small sector between the half-line R™a and the half-
line R c (see figure 3).. Then the numbers z, y, z of steps a, b, ¢ in a walk
must satisfy £ > y > z in order that the walk starting at 0 has all its points

in th(att)sector. The number of allowed closed walk starting at the origin is
2(3p)!

plp+)!(p+2)!
Indeed the number of walks of length p 4+ g + r inside that sector to go
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Figure 3: A 60 degrees sector

from the origin to the point M with OM = (p—r)a+ (g —r)b (with p >

. ! . . .
qg>r)is f(p,q,r) = (p+2)!(q+1)!T!)(;p_"'q’ﬂ'_"l’"))(p_rw)(q_rﬂ), since this satisfies

flp,q,r) = flp,g,r =)+ f(p,g—L,r)+ flp—1,qr) forp>qg>7r>0
f(0,0,0) =1 and f(p,q,7r) =0ifp=gq—1orq=r—1.

The total number of walks is the number of Motzkin walks.

Indeed, we will show that the number of paths with p < ¢ < r and
ptg+r=nmnis(y) (Qqq)(ﬁ%l, in other words the number of Motzkin path
with ¢ up and ¢ own steps (with 0 < 2¢ < n.

We thus have to check the equality

min(qz,n—Qqn!(q_p_|_1)(n—p—2q+1)(n_q_2p+2) _ (" 2q L
= Pla+ Dln—p—g+2) 20)\4)a+1

that reduces to the equality Z;n:lr(l)(A’B) (A:B J(A—p)(B—p)(A+B—2p) =
AB (AEB ), after cancellation of n! and (¢ + 1)! and setting A = ¢+ 1 and
B = n —2g+ 1 and multiplication by (n — ¢+ 2)!. This last equality can be
proven by induction on A (tedious calculations).

There is also a bijective proof.

To a word of {abc}* with every first factor containing more a’s than b’s
and more b’s than c’s, is associated a Motzkin word by a bijection. Here
is the algorithm, written in Caml (figure 4). The number of b’s is also the
number of pairs of parentheses.

The converse bijection is more intricated.



type e = A | B | C;;
typemm = U | H | D;;

let rec aux n=
match n with
0 ->(0,0,0)
|A::r->let (om,ob,oc)=aux r in
if ob=0 then (H::om,0,oc) else (U::om,ob-1,0c)
|B::r->let (om,ob,oc)=aux r in
if oc=0 then (D::om,ob+1,0) else (H::om,ob+1,0c-1)
[C::r->let (om,ob,oc)=aux r in (D::om,ob,oc+1);;

let abcm n = match aux n with
(m,0,0) ->(m,"ok")

[(_,_,0) ->([]1, "too many B")
[(_,_,_) ->([], "too many C");;

Figure 4: Conversion of a word in a Motzkin word

3.1.5 A 120-degrees sector

It seems that the number of closed walks of length 37 from the origin in the

small sector between the half lines RTa and R*b is %

3.1.6 A 90-degrees sector

The number of closed walk of lengths 3i from the origin in the small sector

between the half lines R*a and RT(b — ¢) is (i!)3(2iif1!)(i R Indeed, the

number of paths towards the origin in that sector using p steps a, g steps b

. - (a+b+0)! b+c—2a+1 c—b+1
and 7 steps c with ¢ > band c+ b > 2a is P R S mtsr

3.2 The non-oriented triangular net

We have 3 vectors a, b, ¢ with null sum and their opposites. The total number
of walks of length n with no constraints is obviously 6.

Choosing the basis a, b, and coordinates x,y, one can see that the num-
ber of walks of length n with the constraint « > 0 is 2" M,, where M,, is
the cumulated Motzkin number (since each step +1, 0, —1 relative to the
distance of the line = 0) is given by 2 steps in the set a, —c for 1, b, —b for
0 and —a,c for —1.
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Figure 5: A 120 degrees sector

Figure 6: A 90 degrees sector



The total number of length n with the constraint z > y > 0 is 2"m,,
where m,, is the Motzkin number.

Indeed, we will use the basis a, —c, the sector is defined by £ >= 0Ay >=
0 and the symmetry s : (z,y) — (y,z). The union of the out-neighbourhood
N(z,y) and of s(N(s(z,y)) is juste twice (as a multiset) the union of the
oriented out-neighbourhoods of N*(z,y) and s(N*(s(z,y).

3.3 The square net

Here we have 4 kinds of steps, say a, —a, b and —b, with a and b independent.

3.3.1 Whole plane

The number of walks of length n is 4® and the number of closed walks of
length 2n is then (27?)2. Indeed the number of walks of length ¢ from the
origin to a,b with ¢ — |a| — |b| positive and even, is (t—a—lt—b)/Q) ((t—am b)/2) It
can be seen either by noticing that this expression satisfies the recurrence
relation f(a,b,t+1) = f(a—1,b,t)+ f(a+1,b,t)+ f(a,b—1,t)+ f(a,b+1,1)
for ¢ > 0 and f(0,0,0) = 1 but also by noticing that the coordinates of our
steps in the basis (a + b)/2,(a — b)/2 are £1 and +1. That last remark
(taken from [2, chap. 7]) provides also the two following results.

3.3.2 First half-plane and quadrant

The number of closed walks of length 2n in the half-plane delimited by the
line R(b+a) (see figure 7) is (2")2 =77+ Indeed the number of walks of length
t from the orlgln to z Y with ¢ —|z| —|y| positive and even and z+y > 0 and
even is (t w+y)/2) ((t o y)/Z)ﬁ. The number of walks from the origin

in the half-plane is 2" (Ln% J)
The number of closed walks of length 2n in the quadrant z > |y| (figure 8)

2n\ 2
n

The product structure allows to compute also the number of paths of
length n in the quadrant from a point (z,y) as the product m(z+y, n)m(z—
y,n) where m(z,n) is the number of paths of length n from z on the positive
line.

Similarly, the number of paths of length n in the half-plane y > = from
a point (z,y) is the product m(y — z,n)2".

is () (n+1)2 , The number of walks of length n from the origin is ((L"%J)) .



Figure 7: First half plane

Figure 8: A quadrant
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Figure 9: Another half-plane

3.3.3 Second half-plane and quadrant

m—k
sort the walks according to the number & (between 0 and n) of a steps. Then
there are also k steps —a and m — k steps b and m — k steps —b.
2

Thus the exponential generating function f = Y (Qn) Gy satisfies f2 =
3 (2") (n%)2 2%". The number of closed walks of length 2n in the half-plane
delimited by the line Ra (see figure 9) is K,, =Y k =0" (Qk) =1 (PR (2.
The exponential generating function g = (Zkk) kil (2k

2gz = f'. Hence the exponential generating function we look at, namely
EKné—nn)!, that is gf, satisfies 4zgf = 2f f' = (f?). This gives the wanted

Now the first expression (2;:)2 isalso Y.k =0™ (Qkk) (2m—2ky (2271?) since we can

3 clearly satisfies

2n\2 on+1 ony 1 (2n+2\ 1
n) (nﬁ-1)20 (n) gt Cogt) s
Similarly, since (22g)' = 2zf, we have zg' + 29 = 2f, and (2* ) =
4 32 3 . 2 in g2 is (2712)
22%gg' +42°g° = 42°fg. Thus the coefficient of z*" in ¢* is (")) %n
and the number of closed walks of length 2n in the quadrant a > 0 A

(see figure 10) is (%) -1 (%"+7) 35. The above results can also be obtamed

(like in [2]) by Vandermonde convolution.
Indeed

number as (

n— 2n)! 2k 2n—2k
Yroo )Q(2 ) =ho0 @ (2k))(2k)'k'gk+)1)(' (n()lc) (n)k)

_Zk 0 nl(n+1)! k!(n—k)! (k+1)!(n—k)!
= a2 S, () ()

and Vandermonde convolution gives then Y 3_, (i )(Z+,lc) (2"+1) Now the

result J,(R—HL) (*"*1) equals the formerly obtained formula (*") = (2::12) 3

11
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Figure 10: Another quadrant

() Caih)

And in the same way Y5_o (57) 224 ot 5 an be rewritten as the product

% Yo ("1 ("1}) where the sum simplifies to (>**?).

The number of walks in the half-plane is (**'). This can be obtained
by noticing that the number of walks arriving on the line gives a generating
function ¢ that satisfies ¢ = 1 + 2z¢ + ¢?, thus ¢ = :22’;72 Y1-42 and the
—2Z

total number of walks gives the generating function 1=
The number of walks in the quadrant is (Ln o J) (L(n /2 J) Indeed the ex-

ponential generating function for positive walks on the line is (Ln 2 j) 2" =

f+ J;—I = f + &, the exponential generating function for the walks from
the origin in the quadrant is its square, and we have already computed the
coefficients for f2, fg and g¢°.

4 Higher dimensions

Here we consider in the d-dimensional space a set of d+ 1 vectors e;,7 = 0..d

with only one relation, namely > e; = 0. The number of closed walks of

length dn from the origin to itself is then ((‘Z?)_Zﬁ)l'

The number of walks in a cone is easily computed when the cone is
described by a list of inequalities of the following kind:

e the number of steps p, counting the steps e, and p, counting the steps
ez with £ < y must satisfy p, < p, along the walk. Indeed this number

% and the number of walks from the
Qi)

origin to ¢ p;e; of length °¢_ p; is then T{Gi [Li<;j(pj—piti—i).

of closed walks is

12



e the inequality corresponds to a half-space, say delimited by the hyper-
plane of equation dey = e1+eo+- - -+e4, thus according a privileged role

to eg. Then the number of closed paths from the origin is %

As a corollary, it is easy to compute the number of walks if the inequalities
are described (up to a permutation of the indices) as follows: the set of steps
is partitioned into subsets with either

e a total order, and the corresponding p;’s satisfy p; < p; if 7,7 belong
to the same part, and i < j for the order of that part, or

e 3 privilegied generator as above

but nothing is required if ¢ and j are not in the same part.

For example, with d = 3, if the orders are 0 < 1 and 2 < 3, in other
words the constraints read (pg < pl) A (p2 < p3), the number of closed walks
of length 41 starting at the origin is %

Some other sectors of the space give simple formulas. For example, using
4 steps with null sum in 3-dimensional space, the constraints for half-spaces
2pg < p2 +p3 and py +p1 < p2 + p3 both give for the number of closed walks
of length 4n the expression W;l(m)z—ﬂ)
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