
L R I

ALL k-BOUNDED POLICIES ARE EQUIVALENT

FOR SELF-STABILIZATION

BEAUQUIER J / JOHNEN C / MESSIKA S

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

07/2006

Rapport de Recherche N° 1455

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

All k-bounded policies are equivalent for self-stabilization

Rapport de Recherche LRI no 1455

Jo�roy Beauquier, Colette Johnen, St�ephane Messika
L.R.I./C.N.R.S., Universit�e Paris-Sud 11,

bat 490, 91405 Orsay Cedex, France
jb@lri.fr, colette@lri.fr, messika@lri.fr

Abstract: We reduce the problem of proving the convergence of a randomized self-stabilizing
algorithm under k-bounded policies to the convergence of the same algorithm under a speci�c policy.
As a consequence, all k-bounded schedules are equivalent : a given algorithm is self-stabilizing under
one of them if and only if it is self-stabilizing under any of them.
Key words: randomized algorithms, distributed algorithm, self-stabilizing system, scheduler.
key words: randomized algorithms, distributed algorithm, self-stabilizing system, scheduler.
R�esum�e: Nous r�eduisons le probl�eme de prouver la convergence d'un algorithme probabiliste
pour n'importe quelle politique k-born�ee �a la convergence du même algorithme pour une seule
politique. Ainsi, toutes les politiques k-born�ees sont �equivalentes : un algorithme converge vers les
con�guratiosn l�egitimes pour une politique k-born�ee �x�ee s'il converge pour toutes les politiques
k-born�ees.
Mots cl�es: algorithmes probabiliste, algorithme r�eparti, auto-stabilization, ordonnanceur.

1

1 Introduction
By their very nature, distributed algorithms have to deal with a non-deterministic environment.
The speeds of the di�erent processors or the message delays are generally not known in advance
and may vary substantially from one execution to the other.
For representing the environment in an abstract way, the notion of scheduler (also called deamon
or adversary) has been introduced. The scheduler is in particular responsible of which processors
take a step in a given con�guration or of which among the messages in transit arrives �rst. It is
well known that the correctness of a distributed algorithm depends on the considered scheduler.
This remark also holds for self-stabilizing distributed algorithm.
Di�erent classes of schedulers have been considered in the literature on self-stabilization. Very
often, the scheduler is viewed as a machine that chooses the subset of activable processors to be
activated. For instance the synchronous scheduler chooses all enabled processors which take an
elementary step concurrently, the central scheduler (central demon) chooses a single processor and
then the processors take their steps one after the other, the distributed scheduler chooses a subset of
enabled processors which take a step concurrently and the probabilistic scheduler draws randomly
a subset of enabled processors. It can be assumed that the scheduler disposes of no memory at all,
or of a bounded �nite memory, or of an in�nite memory. The second case corresponds to bounded
schedulers (that can be either centralized or distributed).
If the synchronous scheduler is able to produce one policy, there is in�nity of policies produced by
the distributed schedulers (corresponding to all possible choices of subsets along the computation).
Then stating that an algorithm is correct under a given scheduler means it is correct for each policy
`produced' by the scheduler. A "proof" that does not take into account all policies can hardly be
considered as correct even if the algorithm is deterministic, and it is still worst for probabilistic
algorithms, since the probabilistic measure of the executions depends on the considered policy.
For instance under some policies the algorithm converges in a �nite bounded number of steps (the
stabilization time) while with others it can not converge at all. Even when the stabilization time
is always �nite, it can di�er according to the policy.
Since it is not feasible to have a special proof for each policy, a convenient way to treat correctly
the problem would be to prove general equivalence properties for some classes of policies. These
properties would express that if an algorithm is correct for a particular policy of the class, then
it is correct for any policy in the class. The aim of this paper is to present such an equivalence
property.
We prove that all bounded policies are equivalent for self-stabilization. That means that if an
algorithm can be proved to be self-stabilizing under a particular bounded policy, then it is also
self-stabilizing for any bounded policy. Note that this class contains the synchronous policy.
Then, as a corollary we get that self-stabilization under the synchronous policy implies self-
stabilization under any bounded policy. This leads to drastic simpli�cations in the proofs of already
known results. For instance the result of [1], can be deduced directly from [9].
Related works. In [5], Dolev, Israeli and Moran introduced the idea of a two players game
between the scheduler and what they call luck, i.e. random values, without de�ning formally the
probabilistic space of computations. The structure (informally presented) behind a scheduler-luck
game is a policy (formally de�ned in this paper) where some branches have being cut. In [15], [13],
and [14], Lynch, Pogosyants and Segala present a formal method for analyzing probabilistic I/O
automata which model distributed systems. A clear distinction between the algorithm, which is

2

probabilistic, and the scheduler, which is non-deterministic, is made. The notion of cone, that is at
the basis of the probabilistic space, is also used. These works do not consider self-stabilization. In
[8, 7] the notion of randomized distributed algorithms under a �xed policy is studied using methods
issued from Markov theory, in [7] the authors adapt these methods to Markov Decision Processes.
In [3], we reduce the problem of computing the convergence time of a probabilistic self-stabilizing
algorithm to an instance of the Stochastic Shortest Path problem (SSP). The reduction gives us a
way to compute automatically the stabilization time against the worst and the best policy.

2 Notion of Markov Decision Process
In this section we adopt the notation of de Alfaro [4].
Informally, a Markov Decision Process is a generalization of the notion of Markov chain in which a
set of possible actions is associated to each state. To each state-action pair corresponds a probability
distribution on the states, which is used to select the successor state. A Markov chain corresponds
thus to a Markov decision process in which there is exactly one action associated with each state.
The formal de�nition is as follows.
De�nition 1 (Markov Decision Process) A Markov decision process (MDP) (S; Act; A; p)
consists of a �nite set S of states, a �nite set Act of actions, and two components A; p that specify
the transition structure.

� For each s 2 S, A(s) is the non-empty �nite set of actions available at s.
� For each s; t 2 S and a 2 A(s), pst(a) is the probability of a transition from s to t when
action a is selected.
Moreover, p veri�es the following property : 8s; 8a 2 A(s) Pt2S pst(a) = 1.

De�nition 2 (Behavior of MDP) A behavior of a Markov decision process is an in�nite se-
quence of alternating states and actions, constructed by iterating a two phases selection process.
First, given the current state s, an action a 2 A(s) is selected non deterministically; second the
successor state t of s is chosen according to the probability distribution P (tjs; a) = pst(a).Given a state s we denote
s the set of all the behaviors starting in s.
De�nition 3 (cylinder sets) The basic cylinder associated to the sequence h = s0a0s1a1:::sncontains all behaviors of a MDP starting at s0 and having the same pre�x h:

Ch = fhw 2
s0g
Now, we de�ne some measurable sets of behaviors. For every state s, let Bs 2 2
s be the smallest
algebra of subsets of
s, that contains all the basic cylinder sets and that is closed under complement
and countable unions and intersections. This algebra is called the Borel �-algebra of the basic
cylinder sets and its elements are the measurable sets of behaviors (see [4]).
To be able to talk about the probability of behaviors, we associate to each ! 2 Bs a probability
measure P (!). However this measure is not well de�ned, since the probability that a behavior
belongs to ! depends on how the actions have been nondeterministically chosen.
To represent these choices, we use the concept of policy (see [4]). Policies are closely related to the
adversaries of Segala and Lynch [15] to the schedulers of Lehman and Rabin [11], Vardi [16] and
Pnueli and Zuck [12], and to the notion of strategy [10]. Informally, a policy de�nes the probabilities
with which the actions are chosen knowing the history of the machine states.

3

De�nition 4 (Policy) A policy � is a set of conditional probabilities Q�(ajs0s1:::sn), for all n � 0,
all possible sequences of states s0; :::; sn and all a 2 A(sn), such that 0 � Q�(ajs0; s1:::; sn) � 1 andPa2A(sn)Q�(ajs0; s1:::; sn) = 1.
A policy is deterministic i� for each state s there is an action a 2 A(s) such that Q�(ajs0; s1:::; sn) =1.
A policy � is a memory k-bounded policy if for all n � 0, all possible sequences of states s0; :::; snwe have Q�(ajs0; s1:::; sns01s02:::; s0k) = Q�(s01s02:::; s0k).A policy is called memoryless if it is a memory 1-bounded policy.
De�nition 5 (Probability measure of a cylinder under a policy) Let � be a policy. Let h =
s0a0s1a1:::sn be a sequence of computation steps. The probability of the basic cylinder associate to
the the history h is

P �s (Ch) =
n�1Y
k=0

psksk+1(ak)Q�(akjs0; s1:::; sk)

It is well-known that there is an unique extension of the probabilistic measure P �s to any element
of Bs. Thus the triple (�;Bs; P �s) de�nes a probabilistic space on Bs.Note that a policy of a randomized distributed algorithm can be seen as a Markov chain.

3 Randomized Distributed Algorithms as Markov Decision Pro-
cesses

We present how we model a randomized distributed algorithm as a Markov Decision Process (see
[8, 7]for more details).
In a distributed system, the topology of the network of machines is usually given under the form of
a communication graph G = (V;E), where the set V = f1; :::; Ng corresponds to the machine set.
There is an edge between two vertices when the corresponding machines can communicate directly.
We assume that all the machines are �nite state machines. A con�guration X of the distributed
system is the N -tuple of all the states of the machines. Given a con�guration X, the state of the
ith machine is written X(i). The code is a �nite set of guarded rules: (i.e. label:: guard ! action).
The guard of a rule on p is a boolean expression involving p's state. The action of a p rule updates
the p state. A machine p is enabled in a con�guration c, i� a rule guard of p is true, in c. The
simultaneous execution by several machines of rules is called a computation step.
The MDP associated with a distributed algorithm is de�ned by (i) S, the set of con�gurations, (ii)
Act, the set of machine sets, (iii) A(c), contain all subsets of enabled machines in c, (iv) pst(a),the probability to reach the con�guration t from a con�guration s by a computation step where all
machines in a execute a rule.
Scheduler. A scheduler (adversary) is a mechanism which selects, at each step, a nonempty sub-
set of enabled machines for applying the guarded rules of the algorithm. Basically, a scheduler
is intended to be an abstraction of the external non-determinism. Because the e�ect of the en-
vironment is unknown in advance, the scheduler must have the ablility to formalize any external
behavior.
De�nition 6 Let DS be a distributed system. A scheduler D is a set of DS policies.

4

The synchronous daemon [9] is the scheduler which \chooses" all enabled machines. This scheduler
is a memoryless scheduler. A single deterministic policy is produced by the synchronous scheduler.
A computation is k-bounded [2] if along any sequence where a machine p is continuously enabled,
any other machine p0 performs at most k actions before p performs an action. A policy is k-bounded
if it contains only k-bounded computations. For a randomized distributed algorithm, an in�nity of
k-bounded policies exist. The k-bounded scheduler, is the set of k-bounded policies.

3.1 Probabilistic Convergence of a randomized protocol

The main idea behind these de�nitions is simple : To analyze a self-stabilizing algorithm under a
scheduler, one has to analyze every Markov chain derived from the MDP associated to the algorithm
combined with each policy `produced` by the scheduler.
De�nition 7 (Probabilistic convergence) Let L be a predicate de�ned on con�gurations. A
probabilistic distributed algorithm A under a scheduler D probabilistically converges to L i� : In
any policy of � of D, from any con�guration c, the probability of the set of computations reaching
a con�guration satisfying L is equal to 1. Formally, limn!1 P �c (9m � n j Xm 2 L) = 1 where Xmis the reached state after m computation steps in the Markov chain de�ned as the MDP associated
to A, c and �.

4 Extension to all k-bounded policies
We will show in the sequel that, under some simple conditions, the probabilistic converge under
a policy guarantees the probabilistic convergence under any k-bounded policies. After that, it is
only needed to prove the convergence under a policy to formally prove the probabilistic convergence
under the k-bounded scheduler for any value of k.
The �rst hypothesis we will assume is the serializability, a classical concurrency notion. It ensures
that a schedule for executing concurrent machine rules is equivalent to one that executes the
machine rule serially in some order.
De�nition 8 A computation step sas0 is serializable i� s0 is reachable from s by a series of com-
putation steps where only a machine performs an action.
An history h = s0a0s1a1:::sl is serializable i� each computation step of h is serializable.
The second hypothesis is a property of probabilistic algorithms.
De�nition 9 A probabilistic distributed algorithm is potentially stable if and only if for each
guarded rule there is a no zero probability that the execution of the rule does not change the machine
state.
Notation 1 jhj denotes the length of the sequence h.
N is the number of machines in the system.
Lemma 1 Let A be a potentially stable algorithm. Assume that there exist s, s0, and a such that
pss0(a) > 0 and a contains a machine. Then, there is a real number " > 0 such that in any k-
bounded policy �, for any initial con�guration s0, for any history h ending at the con�guration s,

5

there exists a sequence h0 of computation steps such that
(i) P �s0(w 2 Chh0) > P �s0(w 2 Ch)", (ii) jh0j � kN , (iii) " � "bkN2pss0(a), and (iv) the last
con�guration of h0 is s0.
Proof:
We prove that under any policy, it possible to reach s0 after an history reaching s, in less that kN
computation steps with a probability greater than ".
As the number of rules is �nite, there exists a real number "d, such that for any rule performed
by any machine, the probability that this machine state does not change, is at least "d. Thus, in
any case, the probability that no machine changes its state during a computation step is at least "bN .
Let � be a k-bounded policy. Let h be an history s0a0s1a1s2:::ams such that P �s0(w 2 Ch) 6= 0.
An action a is the set of machines that perform a rule during the associated computation step. We
study the case where only one machine performs a rule; we name it machine 1.
The � policy is k-bounded, thus there exists an action ai in which the machine 1 executes a rule
such that (i) Q�(aijs0; s1:::; sm+i�1) > 0 assuming that sm+j = s 8j 2 [0; i�1], and (ii) 1 � i < kN .
Note that by de�nition of a k bounded policy, we have the following property: 8l 2 [0; i� 1] there
exists an action al such that Q�(aijs0; s1:::; sm+1) > 0 assuming that sm+j = s 8j 2 [0; l].
We denote by h0 the sequence sa1sa2::sais0 de�ned as: (i) during the execution of aj where j < i
no machine changes its state, and (ii) during the execution of ai only the machine 1 changes its
states. We have (i) P �s0(w 2 Chh0) > P �s0(w 2 Ch)", (ii) " > "bi+1N2pss0(a), (iii) jh0j < kN . 2

Lemma 2 Let A be a potentially stable algorithm. Assume that there exist s, s0, and a such that
pss0(a) > 0 and cs = sas0 is serializable. Then, there is a real number " > 0 such that in any
k-bounded policy �, for any initial con�guration s0, for any history h ending at the con�guration
s, there exists a sequence h0 of computation steps such that
(i) P �s0(w 2 Chh0) > P �s0(w 2 Ch)", (ii) jh0j � kN2, (iii) " � "bkN3pss0(a), and (iv) the last
con�guration of h0 is s0.
Proof:
We prove that under any policy, it possible to reach s0 after an history reaching s, in less that kN2

computation steps with a probability greater than ".
cs = sas0 is serializable thus there exists a sequence of computation steps s0a01s01a02s02::a0ns0n of lengthn < N that reaches s0 from s and along this sequence, at most one machine performs an action at
a time. We call i the machine executing a rule during ai. 8i 2 [0; n � 1], we have ps0is0i+1(a0i) > 0
and, by de�nition, pss0(a) = Qn�1i=0 ps0is0i+1(a0i).
Let � be a k-bounded policy. Let h be an history s0a0s1a1s2:::s such that P �s0(w 2 Ch) 6= 0.
According to lemma 1, for 1 � i � n, there exists an history hi = hi�1a1s2a2::: having the followingproperties (i) h0 = h, (ii) P �s0(w 2 Chi) > P �s0(w 2 Chi�1)"i > 0, (iii) jhij < hi�1 + kN , (iv)
"i � "bkN2psi�1s0i(a0i), and (v) the last con�guration of hi is s0i.
We conclude that the history hn has the following properties (i) P �s0(w 2 Chn) > P �s0(w 2 Ch)" (ii)
jhnj < jhj+ kN2, (iii) " � "bkN3pss0(a), and (iv) the last con�guration of hn is s0. 2

6

Lemma 3 Let A be a potentially stable algorithm. Assume that there exists �s, a policy such that
there is an history hs of length l reaching a legitimate con�guration and there is a real number
"s > 0 such that (i) P �sc0 (w 2 Chs) > "s, and (ii) hs is serializable.Then, there is a real number " > 0 such that in any k-bounded policy �, for any initial con�guration
c, for any history h ending at the con�guration c0, there is a sequence h0 such that (i) P �c (w 2
Chh0) > P �c (w 2 Ch)", (ii) jh0j � lkN2, (iii) " > "blkN3"s, and (iv) h0 reaches a legitimate
con�guration.
Proof:
We prove that under any policy, it possible to reach a legitimate con�guration after an history
reaching c0, in less that lkN2 computation steps with a probability greater than "blkN3"s.
There exists a sequence hs = c0a0c1a1c2::al�1cl such that P �sc0 (w 2 Chs) > "s and cl is a legitimate
con�guration.
We have "s = Qli=1 pci�1ci(ai�1) > 0. Thus 8i 2 [1; l], we have pci�1ci(ai�1) > 0. Moreover,
ci�1ai�1ci is serializable, 8i 2 [1; n].
Let � be a k-bounded policy. Let h be an history such that P �c (w 2 Ch) 6= 0 and the last con�gu-
ration of h is c0.
According to lemma 2, for 1 � i � n, there exists an history hi having the following properties (i)
P �c (w 2 Chi) > P �c (w 2 Chi�1)"i > 0 where h0 = h (ii) "i > "bkN3pci�1ci(ai�1), (iii) i < kN2 and
(iii) the last con�guration of hi is ci.
We conclude that the history hl has the following properties (i) P �c (w 2 Chl) > P �c (w 2 Ch)", (ii)
jhlj < jhj+ lkN2, (iii) " > "blkN3"s, and (iv) the last con�guration of hl is legitimate. 2

Lemma 4 Let A be a potentially stable algorithm. Assume that there exist a policy �s, a real
number "s > 0 and an integer l such that from any initial con�guration c there is an history h
reaching a legitimate con�guration with (i) P �sc (w 2 Ch) > "s, (ii) h is serializable, and (iii)
jhj � l.
Then there is a real number " > 0 such that in any k-bounded policy �, for any initial con�guration
c, for any history h there is an sequence h0 such that (i) P �c (w 2 Chh0) > P �c (w 2 Ch)", (ii)
jh0j � lkN2, (iii) " > "blkN3"s, and (iv) h0 reaches a legitimate con�guration.
Proof: We prove that under any policy, it possible to reach a legitimate con�guration after any
history, in less that lkN2 computation steps with a probability greater than "blkN3"s.
Let � be a k-bounded policy. Let h be an history s0a0s1a1s2:::sn such that P �c (w 2 Ch) 6= 0.
According to the hypothesis, there is an history hs of length lesser than l reaching a legitimate
con�guration such that (i) P �ssn (w 2 Chs) > �s and (ii) hs is serializable.According to lemma 3, there exists a sequence h0 having the following properties (ii) P �c0(w 2
Chh0) > P �c0(w 2 Ch)� > 0, (iii) " > "blkN3"s, (iv) jh0j < klN2 and (iii) the last con�guration of h0
is legitimate. 2

Theorem 1 Let A be a potentially stable algorithm. Assume that there exist a policy �s, a real
number "s > 0 and an integer l such that from any initial con�guration c there is an history reach-
ing a legitimate con�guration with (i) P �sc (w 2 Ch) > �s, (ii) h is serializable, and (iii) jhj � l.

7

Under the k-bounded scheduler, Algorithm A probabilistically converges to the legitimate con�gura-
tion set.
Proof: Let � be a k-bounded policy. Let c be a con�guration.
According to lemma 4, there is a real number " > 0 and an integer D such that for any history h
there is an sequence h0 such that (i) P �c (w 2 Chh0) > P �c (w 2 Ch)", (ii) jh0j � D, (iii) h0 reaches a
legitimate con�guration.
Let L be the set of legitimate con�gurations.
Thus we have P �c (Xn reaches L) > 1� (1� ")n where Xn contains all the histories of length lesser
or equal to Dn. We conclude that limn!1 P �c (Xn reaches L) = 1. Under the policy �, Algorithm
A probabilistically converges to the legitimate con�gurations set.
In summary under any k-bounded policy, algorithm A probabilistically converges to the legitimate
con�gurations set. The expected number of computation steps for reaching a legitimate con�gura-
tion is bounded by D" Notice that " > "blkN3"s and D � lkN2, according lemma 4. 2

5 Examples
The aim of these examples is to illustrate how our results can be used. For each algorithm, we
exhibit a particular k-bounded policy for which the stabilization proof is easy. Then, we get, than
the algorithm is stabilizing for any k-bounded policy.
5.1 Self-stabilizing vertex coloring

Algorithm 1 Self-stabilizing vertex coloring algorithm
Constant in p:
B is a constant in N , we assume that B > � (the degree)

Variable on p: cp color of p machine, taking its values in B
Action on p:
R:: 9q 2 Np such that cp = cq �! cp = random(1; B)

In this section, we study a very simple self-stabilizing vertex coloring algorithm (Algorithm 1). The
algorithm converges from any con�guration to a con�guration where neighboring machines do not
have the same color. A machine that has the same color as one of its neighbors is enabled. An
enabled machine can randomly choose any color in the colors set (i.e. execute the R action). All
colors have the same probability to be chosen: 1=B (B being the color set size). We assume that
B is greater than the maximum machine degree, denoted �.
Let us study the algorithm under the memoryless policy � that chooses at each computation step
one of the enabled machine. At each computation step, the probability that the executing ma-
chine chooses a color distinct of its neighbor colors is at least B��B . Using the measure technique
proposed in [6], one proves that from any initial con�guration c, there is an history h reaching a

8

legitimate con�guration such that (i) P �c (w 2 Ch) > (B��B)N�1, and (ii) jhj � N � 1.
Using the theorem 1, we directly establish that the vertex coloring algorithm converges under any
k-bounded policy.
5.2 Token circulation

Consider the following property:
Proposition 1 there is a real "s > 0 and an integer l such that from any initial con�guration c,
there is an history h reaching a legitimate con�guration such that (i) P �sc (w 2 Ch) > �s, (ii) h is
serializable, and (iii) jhj � l.
We showed in the previous section that once this proposition is true for a policy � then the algo-
rithms converges to its legitimate con�guration under any k-bounded policy.
Herman [9] has proposed a token circulation algorithm under unidirectional rings of size 2N+1. This
algorithm is a randomly delayed circulation (see code in Algorithm 2). Only a machine holding a
token can take a step. A step consists in tossing a coin (probability 1/2 for head and tail) and if
head to transmit the token. Finally, the speci�cation is that eventually, only one token circulates
in the ring. In [9], the algorithm was proven under the synchronous policy. This algorithm is very
interesting to analyse because there exists memoryless policy under which the algorithm does not
converge. For instance, under the memoryless policy that chooses at each computation step one of
the token in the set FAR, the set of tokens at maximum distance of predecessor.
Algorithm 2 token circulation on anonymous and unidirectional rings
Variables on p: vp is a boolean variable;
Random Variables on p:
rand boolp taking value in f1, 0g. Each value has a probability 1/2.

Action on p: lp is the machine preceeding p
R:: vp == vlp ! if rand boolp = 1 then vp := (vp + 1) mod 2;

Let us study the algorithm under the memoryless policy � that chooses at each computation step
one of the tokens in the set NEAR, the set of tokens at minimum distance from teh predecessor. All
computations under this policy are serializable, because in a computation step, a single machine
performs an action. Using the measure technique proposed in [6], it can be proven that from
any initial con�guration c, there is an history h reaching a legitimate con�guration such that (i)
P �c (w 2 Ch) > 1

22N , and (ii) jhj � 2N .
Using the theorem 1, we directly establish that Herman's algorithm converges under any k-bounded
policy. Note that the policy � is not a k-bounded policy. Five years after the publication of this
algorithm, Beauquier and al., [1], have proven the convergence of this algorithm under any k-
bounded memory policy.
In the next section, we prove that a k-bounded memory policy is a k-bounded policy the converse
is not true.

9

6 Comparison of k-bounded and memory k-bounded policies
In this section, we assume all policies to be fair. A policy � is unfair if (i) there is an in�nite
computation in which a machine is continously enabled and never activated (ii) any pre�x of this
computation has a positive probability.
De�nition 10 (Fairness) Let � be a policy. Let comp be a computation where p is always enabled.
eta is said fair i� it exists ncomp such that p 2 a and Q�(ajpre�x of length ncomp of comp)> 0 or
P �(pre�x of length ncomp of comp)= 0.
Proposition 2 Let A be an algorithm such that any machine has a bounded number T of states.
Any fair memory k-bounded policy is �-bounded with � = TNk + k + 1.
Proof: Let � be a fair memory k-bounded policy.
Note that the number of distincts con�guration sequences of length k is bounded by T k.
Consider a computation comp of length � = TNk + k + 1 where some machine p is always enabled
and never performs a rule with P �(comp) > 0. If no such computation exists then the algorithm
is �-bounded. In comp, A same sequence of length k, s necesseraly appears twice: Thus comp =
s0; s; s0; s; sf ;. We have P �(s; s0) > 0. Let us study the computation comp0 = (s; s)�. p is always
enabled during comp0, for any value of n we have P �(pre�x of length n of comp')> 0. � is not fair
because p is never in the set of selected machines by the policy along comp0: if Q�(ajpre�x of lengthncomp of comp) > 0 then p is not an element of a. There is a contradiction: � is a fair policy. 2

This proves that the class of memory k-bounded policies is included in the class of k-bounded
policies.
Policy 1 A k-bounded policy that is not a memory K-bounded policy
Constant: N , the network size
Initialisation: counter0 := 1; counter1 := 0; pn := 0;
Policy choice in fonction of history length:
if the history length is an even number then all enabled machines are selected;
else
if (count1 == 0) then counter0 := counter0*2; counter1 := counter0; np := np+1 mod N;
else counter1 := counter1-1;
�
while machine np is not enabled do np:=np+1 mod N; done
The machine np is selected;

�

There are k-bounded policies that are not memory K-bounded policies (cf. policy 1 below). Policy
1 is 2-bounded, because all enabled machines execute a rule during even computation steps, but it
is not memory K-bounded for any K.
A possible sequence of choices is:

(fp1; p2g; p1)21 ; (fp1; p2g; p2)22 ; (fp1; p2g; p1)23 ; (fp1; p2g; p1)24 ; (fp1; p2g; p2)25 ; :::

10

7 Conclusion
In this paper we show that under assumptions all the k-bounded policies are equivalent for self-
stabilization. Then, when an algorithm can be proven to be self-stabilizing for a particular k-
bounded policy, it is also self-stabilizing for any k-bounded policy. This property is specially
interesting when the self-stabilization proof is easy for a particular policy. The more obvious choice
is the synchronous policy, but as we demonstrate it in the examples, some othe policies may be
used in each particular case. The property allows to simplify existing proofs, to make some of them
unnecessary (Herman's example).

References
[1] J. Beauquier, S. Cordier, and S. Dela�et. Optimum probabilistic self-stabilization on uniform

rings. In WSS95 Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 15.1{
15.15, 1995.

[2] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for self-stabilizing
leader election protocols. In Proc. of the 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC'99), pages 199{208, 1999.

[3] J. Beauquier, C. Johnen, and S. Messika. Brief announcement: Computing automatically
the stabilization time against the worst and the best schedulers. In Proc. 20th Int. Conf. on
Distributed Computing (DISC 2006), 2006.

[4] L. de Alfaro. Formal Veri�cation of Probabilistic systems. PhD Thesis, Stanford University,
1997.

[5] S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck games. IEEE
Transactions on Software Engineering, 21:429{439, 1995.

[6] M. Duot, L. Fribourg, and C. Picaronny. Finite-state distributed algorithms as markov
chains. In Distributed Computing 15th International Symposium (DISC01), Springer-Verlag
LNCS:2180, pages 240{254, 2001.

[7] L. Fribourg and S. Messika. Brief announcement: Coupling for markov decision processes -
application to self-stabilization with arbitrary schedulers. In Proc. of the 24th Annual ACM
Symposium on Principles of Distributed Computing (PODC05), page 322, 2005.

[8] L. Fribourg, S. Messika, and C. Picaronny. Coupling and Self-stabilization. In Proc. 18th Int.
Conf. on Distributed Computing (DISC 2004), Springer-Verlag, LNCS 3274, pages 201{215.
Springer, 2004.

[9] T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35:63{67, 1990.
[10] Colette Johnen. Service time optimal self-stabilizing token circulation protocol on anonymous

unidrectional rings. In SRDS 2002 Proceedings of the 21th Symposium on Reliable Distributed
Systems. IEEE, October 2002.

[11] D. Lehmann and M. O. Rabin. On the advantages of free choice: a symmetric and fully-
distributed solution to the dining philosophers problem. In Proc. 8th Annual ACM Symp. on
Principles of Programming Languages (POPL'81), pages 133{138, 1981.

11

[12] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. Distributed Com-
puting, 1(1):53{72, Jan. 1986.

[13] A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomized distributed
algorithms. In In Proc. of the 14th Annual ACM Symposium on Principles of Distributed
Computing (PODC95), pages 174{183, 1995.

[14] A. Pogosyants, R. Segala, and N. Lynch. Veri�cation of the randomized concensus algorithm
of Aspnes and Herlihy: a case study. In Distributed Algorithms 11th International Workshop
Proceedings (WDAG97), Springer-Verlag, LNCS:1320, pages 22{36, 1997.

[15] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In 5th Interna-
tional Conference on Concurrency Theory (CONCUR'94), Springer-Verlag, LNCS:836, pages
481{496, 1994.

[16] M. Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs. In 26th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society (FOCS'85),
pages 327{338, 1985.

12

	RR1455entête.pdf
	RR1455rapp.pdf

