S PJ O ¥ >

= S

HEQmEZDOBE=E

L R I

MONOTONY PROPERTIES OF CONNECTED
VISIBLE GRAPH SEARCHING

FRAIGNIAUD P / NISSE N

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud — LRI

07/2006

Rapport de Recherche N° 1456

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 490
91405 ORSAY Cedex (France)

Monotony Properties of
Connected Visible Graph Searching

Pierre Fraigniaud* Nicolas Nisse*
LRI LRI
CNRS & University of Paris Sud University of Paris Sud
91405 Orsay, France 91405 Orsay, France
pierre@Iri.fr nisse@Iri.fr
Abstract

Search games are attractive for their correspondence with classical width parameters.
For instance, the invisible search number (a.k.a. node search number) of a graph is equal to
its pathwidth plus 1, and the visible search number of a graph is equal to its treewidth plus 1.
The connected variants of these games ask for search strategies that are connected, i.e., at
every step of the strategy, the searched part of the graph induces a connected subgraph. We
focus on monotone search strategies, i.e., strategies for which every node is searched exactly
once. It is known that the monotone connected visible search number of an n-node graph
is at most O(logn) times its visible search number. First, we prove that this logarithmic
bound is tight. Precisely, we prove that there is an infinite family of graphs for which
the ratio monotone connected visible search number over visible search number is 2(log n).
Second, we prove that, as opposed to the non-connected variant of visible graph searching,
“recontamination helps” for connected visible search. Precisely, we describe an infinite
family of graphs for which any monotone connected visible search strategy for any graph in
this family requires strictly more searchers than the connected visible search number of the
graph.

Keywords: Graph searching, Treewidth, Pathwidth.

*Both authors received additional supports from the project “PairAPair” of the ACI Masses de Données, from
the project “Fragile” of the ACI Sécurité Informatique, and from the project “Grand Large” of INRIA.

1 Introduction

Introduced in [5, 14], graph searching is a game between two players on a graph: one is playing
the fugitive while the other is playing the searchers. They play alternatively. At each step: a
searcher is placed at a node, or a searcher is removed from a node; then the fugitive can move
from its current node u to any node v in the graph under the constraint that there is a path
from u to v that does not cross any node occupied by a searcher. The fugitive is caught when a
searcher is placed at the node it occupies . The goal is to find, for every graph G, the minimum
k such that there is a winning search strategy with k searchers, i.e., a strategy using k searchers
that captures any fugitive in G. This minimum £ is called the search number of the graph. We
refer to [3] for a survey on graph searching.

Two main variants of the game have been considered: visible and invisible search. In visible
search [6, 16], the fugitive is visible to the searchers, and they can thus adapt their search
strategy according to the current position of the fugitive. The corresponding search number is
called the wvisible search number, denoted by vs. In invisible search [4, 11], the fugitive is not
visible to the searchers, and thus they have to perform a blind strategy to capture the fugitive.
The corresponding search number is traditionally named the node search number. In this paper
however, we call it the invisible search number for it measures the ability of a team of searchers
to capture an invisible fugitive. The invisible search number is denoted by is.

The importance of the search games comes from the correspondence between search numbers
and standard width parameters [15], providing different interpretations of these parameters, and
hence different ways of handling them. Precisely, it is known that, for any graph G:

e is(G) = pw(G) + 1 where pw(G) denotes the pathwidth of G (cf. [7, 11]), and
e vs(G) = tw(G) + 1 where tw(G) denotes the treewidth of G (cf. [6, 16]).

Monotony plays a crucial role in graph searching (cf., [13]). A search strategy is monotone
if once a node has been cleared (a node is cleared at a step of the strategy if the fugitive cannot
access to this node at this step), the fugitive cannot ever have access to this node during the
rest of the search. Since a monotone search strategy finds the fugitive in a linear number of
steps, it gives a polynomially checkable certificate to the decision problem corresponding to a
monotone game. Hence the importance of monotony. Proving that visible and invisible search
are both monotone games were two major achievements within the theory of graph searching.
Precisely, [4, 12] proved that if is(G) < k then there exists a winning monotone invisible search
strategy using at most k searchers in G. Similarly, [16] proved that if vs(G) < k then there
exists a winning monotone visible search strategy using at most k searchers in G.

Connectedness also plays an important role in graph searching, as far as practical applica-
tions are concerned (e.g., network security [1], speleological rescue [5], etc). A search strategy in
a graph G is connected if, at any step of the strategy, the clear part of the graph (i.e., the part
of the graph where the fugitive cannot stand) forms a connected subgraph of G. The minimum
k for which there is a winning connected search strategy in G using at most k searchers is called
the connected search number of G. Considering invisible or visible search defines two parameters
denoted by cis(G) and cvs(G), respectively. The connectivity constraints generally implies a
higher number of searchers for capturing the fugitive. The ratio connected search number over
search number can however be bounded. Precisely, it is known (see [10], and also [9]) that for
any n-node graph G, we have

cis(@)/is(G) <logn+1 and cvs(G)/vs(G) <logn + 1. (1)

For trees, the bound for invisible search can be improved to cis(7")/is(T) < 2 (cf. [2]), and
this bound is tight. For visible search, it trivially holds that cvs(T") = vs(T') for any tree T

search connected search connected search
in arbitrary graphs in trees in arbitrary graphs
monotone monotone ratio monotone ratio
invisible yes yes <2 no <logn+1
fugitive [4, 12] [1] 2] [17] [9, 10]
visible yes yes 1 no O(logn) [9, 10]
fugitive [16] [trivial] | [trivial] | [this paper] | Q2(logn) [this paper]

Table 1: An overview of connected graph searching

As for standard (i.e., non-connected) search, monotony is a crucial property for connected
search strategies, and it is natural to ask whether monotony holds for connected search games
the same way it holds for standard search games. The answer is known to be no for invisible
search. Precisely, [17] proves that there is a graph G such that any monotone connected invisible
search strategy for G requires more searchers than cis(G). The impact of this result is impor-
tant because it is a priori difficult to design non-monotone search strategies, and therefore the
connected search problem seems significantly harder than the non-connected one. In particular,
it is not known whether the decision problem corresponding to connected search is in NP. The
good news though is that [1] proves that monotony holds for trees, i.e., for any tree T' there is
a winning monotone connected invisible search strategy using cis(7") searchers.

All these results are summarized in Table 1.

Our results

First, we prove that the bound on the right hand side of Equation 1 is asymptotically tight
when restricted to a monotone search strategy. That is, we prove that there is an infinite family
of graphs such that, for any n-node graph G in this family, the number of searchers of any
winning monotone connected visible search strategy for G is at least Q(vs(G)logn).

Second, we prove that, as for the connected invisible search game, the connected visible
search game is not monotone. Precisely, we describe an infinite family of graphs with arbitrarily
large connected visible search number for which any monotone connected visible search strategy
for any graph G in this family requires strictly more than cvs(G) searchers.

2 The Q(logn) lower bound

It is known (cf., [10]) that for any connected n-node graph G, there exists a winning monotone
connected invisible search using at most tw(G)(logn+ 1) searchers. Thus there exists a winning
monotone connected visible search using at most tw(G)(logn + 1) searchers. Since vs(G) =
tw(G) + 1, it follows that there exists a winning monotone connected visible search using at
most vs(G)(logn + 1) searchers. We prove that this bound is asymptotically tight.

Theorem 1 For any ny, there is n > ng and an n-node graph G such that any winning mono-
tone connected visible search for G uses at least Q(vs(G) -logn) searchers.

Proof. We construct an infinite family of connected graphs such that any winning mono-
tone connected visible search for any n-node graph G in this family uses at least cvs(G) logn
searchers for some constant ¢ > 0. For this purpose, we construct an infinite family {G;,7 > 1}
of connected graphs as follows.

O [[AA AN

U S, U2ie3 Uoieg U4iso i i

L 2i43 U2itg

V2it3 V2itd N oo 0 0¢ =
1 S. W2it5 U2it6 4i+10
i+1
Y Y Y Y

Vi3 V2i+s V2iv6 V2it8

Figure 2: Recursive construction of G4 (right) from G; (left). The dotted lines represent sets
of connections.

We define the scale of length k& > 0 to be the graph of 2k vertices u1, ..., ug,v1,..., v where
the wu;’s are called top nodes, and the v;’s are called bottom nodes (cf. Fig. 1). There is an
edge between u; and wu;q for all i = 1,...,k — 1; there is an edge between v; and v;y; for all
i=1,...,k — 1; and there is an edge between u; and v; for all ¢, j such that | — j| < 1. The
center of a scale of even length 2k is the subgraph induced by the four nodes ug, ugt1, Vg, Vg+1-
The extremities of a scale of length k are the four nodes u1,v1, and ug, vk, respectively called
the left and right extremities.

(G1 is defined as the scale of length k£ = 10, plus one node r; called the root, and connected
to the two extremities u; and uy of the scale (cf. Fig. 1). For any ¢ > 1, the base of G; is a
subgraph of G; that is a scale of even length, and the kernel of G; is the center of its base. For
instance, the base of G is the scale of length 10, and the kernel of G is the set {us, vs, ug, v},
where vs and ve are the bottom nodes of the kernel of G;.

Given G; for i > 1, we construct G;y; as follows (cf. Fig. 2). Let S; be the base of G;
(i.e., a scale of even length 2k), and let r; be the root of G;. First, take a copy H of G;. Let
Uk, Uk+1,Vk, Ukt1 be the four nodes of the kernel of H (i.e., the center of the base of H). This
kernel is replaced by a scale of length 6, that is: the edges {uk, ur+1}, {uk, ve+1}, {Vk, Vkt1},
and {vg, ugy1} are removed, uy and vy, are identified to the left extremities of the length-6 scale,
and ug4+1 and vk are identified to the right extremities of the length-6 scale. This operation
results in a scale S;11 of length 2k + 4, that becomes the base of G; 1. Next, we take two copies
H; and H; of GG, and connect the two copies of ; to the root of H, that becomes the root r;;
of G;11. Finally, a complete set of connections are added between the two nodes uy and vy of
H, and the two bottom nodes of the kernel of Hi, and a complete set of connections are added
between the two nodes ugy1 and vgy1 of H, and the two bottom nodes of the kernel of Hs.

We have |V(Git1)| = 1+ 2|V(G))| + (|[V(G:)| — 1+ 8) = 3|V(G;)| + 8. Thus |V(G;)| =
25-3-1 — 4.

To summarize, we have the base of G; consisting of a scale of length 2k for k = 2i +
3, with top nodes uq,...,us, and bottom nodes vq,...,v9,. The kernel of GG; is the center
{uk, Vg, Ug+1,Vg+1} of this base. Thus the bottom nodes of this kernel are the two nodes v and
vk+1. The two nodes u; and wugy are the top extremities of the base of G;.

1 Foranyi>1, tw(G;) < 4.

Proof. We establish the claim by proving the property P;: there exists a tree-decomposition T' of
G; such that: (1) T" has width at most 4, (2) T contains a bag B = {ug, vg, ug+1, Vk+1, 7} where
Uk, Vg, Ug+1, Uk+1 1S the center of the base S; of G;, and r; is the root of G;, (3) B is degree-two
node in 7', and (4) the two neighbors B" and B"” of B in T satisfy B N B’ = {ug,vg, 7} and
BNnB" = {uk+1, Vk+15 Tz'}-

The bag B is called the root bag of T', and B’ and B" are called the left and right neighbor
of B. On Fig. 3, the tree-decomposition of G; is depicted on the left side: F' is the root bag,
and E' and E” are the left and right bags, respectively.

For i = 1, there is a tree-decomposition 7' (which is actualy a path-decomposition) of Gy
composed by nine bags, each bag containing exactly five vertices (one K4 plus the root ri). T
clearly satisfies P;.

Assume P; holds, and let us prove P; 1. Gj41 is obtained by ”placing” two copies H; and Hy
of G; ”inside” a third copy H of G;. Let T and 15 be tree-decompositions of H; and Hs, satisfy-
ing P;, and let T3 be a tree-decomposition of H, satisfying P;. We construct a tree-decomposition
T of G4 satisfying P;11 (cf. Fig. 3). We define the bag B = {ug, vk, Uk+1,Vk+1, 7541} where
Uk, Vg, Uk+1, Vg+1 18 the center of the base S;11 of Gi4+1, and ;11 is the root of Gj41. B has two
neighbors B = {ug_1,vk_1, Uk, Vg, ri+1} and B" = {ugy1, ki1, Ukr2, Vkr2,7i+1} in T. These
two neighbors are of degree 2, i.e., each of them has one neighbor different from B. We describe
the decomposition from B’. The decomposition from B" is similar by the symmetric construc-
tion of Gj4+1. The neighbor of B’ distinct from B is C' = {ug—2, Vg—2, Ug—1,0k—1,7i+1}. At C,
there is a branching in 7T'.

Figure 3: Recursive tree-decomposition of G;4; (right) from a tree-decomposition of G; (left)

One of the two neighbors of C' distinct from B’ is D = {ug_9,vk_2,7i, 7i+1} where r; is the
root of Hy. D has degree 2 in T, and its neighbor distinct from C is E = {ug_2,v5—2,%,y,7;}
where x and y are the two bottom nodes in the kernel of Hi. E has degree 2 in T, and its
neighbor distinct from D is F' = {x,y, z,¢,7;} where z,y, z,t is the kernel of H;. By induction
hypothesis, F' is the root bag of T1. We attach T7 at F in T.

The other neighbor of C distinct from B’ is D' = {ug_9,vk—2,7i+1}. Since a scale of length
6 was inserted in the base of H, the bag D' is, by induction hypothesis, equal to the intersection
of the root bag of T3 with its left neighbor in T3. In T', D’ has degree 2, and its neighbor distinct
from C is E' defined as the left neighbor of the root bag of T5. At E' we attach the part of the
tree-decomposition 73 resulting from the removal of the edge between its root bag and its left
neighbor.

Figure 4: Alternative definition of G4

By construction, 7' is a tree-decomposition of G;41 satisfying P; . o

Since for any graph G, vs(G) = tw(G) + 1, a consequence of Claim 1 is that vs(G;) < 5 for
all ¢+ > 1. Before going further in the proof of Theorem 1, we need to present another vision
of the graphs G;. From the definition of G;11, one can check that it consists of two copies of
Gj, for j = 1,...,14, connected to a scale of length 2k = 4¢ + 10 (cf. Fig. 4). This holds even
for i = 0 by defining G as the empty graph. More precisely the copies of the G;’s are placed
back-to-back in order G1,Gb,...,G;,G;,...,G2,G1. For every j, the root r; of any of the two
copies of G is connected to the root r;41 of G;11. The two bottom nodes in the kernel of the
first copy of G are connected to the nodes ugj;3 and vg;13 of the base of G;11, and the two
bottom nodes in the kernel of the second copy of G; are connected to the nodes ugg (2542) and
Vok—(2j+2) of the base of G;11. Finally, the two extremities u; and wug;+10 of the base scale of
Gj+1 are connected to r; 1. This vision of the graphs G;’s enables us to prove the following.

2 For any i > 1, any winning monotone connected search strategy for G; whose two
first steps consist in placing a searcher at each node vy and vgi1 of the kernel of G; uses at
least 2i + 4 searchers.

Proof. The proof is by induction on ¢ > 1. In fact we prove that any monotone connected
search strategy starting from v and vi41 in G; has at least 2 + 4 searchers placed in G; at the
step before it clears the root r; of G;. One can easily check (cf. Fig. 1) that the result holds
for G1, that is any monotone connected search strategy starting from vs and vg in G7 has at
least 6 searchers placed in GGy before it clears the root r1. Let ¢ > 1 and let us assume that
the result holds for any 1 < j <. Let S be a winning monotone connected search strategy for
G;+1 starting from the two nodes vy and vgy1 of the kernel of G;11. Consider G;11 as depicted
in Fig. 4. To access r;4+1 from vy and vg41 in a monotone connected way, S must clear the root
r; of one of the two copies of some G; for 1 < j <4, or one of the two extremities u; or uo of
the base of G;41. Let R be the set of nodes composed of all the roots of the G;’s composing
Gi+1, plus the two extremities 4 and wugr. R contains 27 + 2 nodes. Let v be the first node in
R that is cleared by S. We consider two cases.

The first case assumes that v is one of the two extremities of the base of G;41. By symmetry
of G;11, one can assume, w.L.o.g., that v = u;. Consider every G; that is connected to nodes of
the base between u; and ug. Recall that the two bottom nodes in the kernel of G; are connected
to the nodes u2;43 and vo;43 of the base. There are two vertex-disjoint paths between the root r;
of the considered G; to any of the nodes ug;43 and v9j43 of the base. Therefore, if less than two
nodes in V(Gj)U{ugj3,v2543} are occupied by searchers, then one searcher must occupy either
U243 Or v2;j4+3 because otherwise the search will not be connected. Indeed, ug;3 and vg;3 could

be contaminated by r;. Moreover, if one searcher only occupies ugj;3 or vo9;13, then another
searcher must occupy either ugjy4 or vy;4 because otherwise the search will not be connected.
As a consequence, for any 1 < j <1, at least two nodes of V(Gj)U{u2;j3, V213, U2j+4,V2j44} are
occupied by searchers. Moreover, two searchers must occupy nodes in {u;, k < j < 2k}U{v;,k <
Jj < 2k} to avoid recontamination of vg and vg41 from ugg. Finally, at least four searchers are
occupying nodes in {u1,v1,ug, v, us, v3, us,vs} to connect u; with the clear part of G;y1. This
yields a total of at least 2¢ 4+ 6 searchers in the graph when wu is cleared, hence S uses at least
2(i + 1) + 4 searchers in G;y;.

The second case assumes that the first node v € R that is cleared by S is the root of some G,
1 < j <1i. Again, by symmetry of G;1, one can assume, w.l.o.g., that v = r; where r; is a root of
the copy of Gj attached to nodes uo;13 and vg; 43 of the base of G; 1. By the same argument as in
the first case, for j < t < i, at least two nodes of V(Gt)U{u2t+3, V2t+3, Uat+4,V2t14} are occupied
by searchers, resulting in a total of 2(i — j — 1) searchers for this part of G;;1. By induction
hypothesis, when r; is cleared, 2j 4+ 4 searchers are occupying nodes of Gj. Moreover, two
searchers must occupy nodes in {us, 1 < ¢ < 2j+4}U{vy, 1 <t < 2j+4} to avoid recontamination
of G from u;. Finally, two searchers must occupy nodes in {us, k <t <2k} U {v, k <t < 2k}
to avoid recontamination of vy and vg41 from uok. This yields a total of at least 2¢ + 6 searchers
in the graph when r; is cleared, hence S uses at least 2(i + 1) + 4 searchers in G;1;. This
completes the induction step, and thus the proof of the claim. o

Let G be connected graph, and let e = {u,v} € E(G). We define the symmeric graph of
G with respect to e as the graph obtained from two copies of G linked by a set of complete
connections between the four nodes resulting from the two copies of {u,v} (cf. Fig. 5). The
symmetric of G' with respect to e = {u,v} is denoted by Gy, ,. The K4 connecting the two
copies of G in G, , is called the center of G, ,,.

Figure 5: Symmetric graph of G with respect to edge {u,v} (the two copies of G are indexed
by 1 and 2)

3 Let G be a connected graph, and let {u,v} € E(G). Let k be the minimum number of
searchers required to clear Gy, ,, by a monotone connected visible search strategy. There exists a
monotone connected visible search strategy for G using at most k searchers, and whose two first
steps consist in placing a searcher at u and a searcher at v.

Proof. Since Gy, , contains a 4-clique as a subgraph (its center), we have k > 4. Let S be an
winning monotone connected visible search strategy of G, , using k searchers. Gy, , consists of
two copies G and G9 of G. Nodes u; and ugy (resp., v1 and vy) are the two copies of node u
(resp., v), corresponding to G; and Go, respectively. W.l.o.g., let us assume that the first step
of S consists in placing a searcher at a vertex of G;. Since S results in catching any fugitive, S
must consider the case where the fugitive is in G5. Thus, let ¢ > 1 be the first step of S where
a searcher is placed at a vertex of Ga. Since the strategy S is connected, this vertex must be ug
or ve. Let us assume it is ug. At step ¢, there must a searcher at u; or v; because the strategy
S is connected. Let us assume it is ui. Let ¢ > t be the first step of S when v is clear. Note
that, between steps ¢t and #', searchers must at us and u; to preserve them of recontamination

from v9, for insuring monotony. Thus, between steps ¢ and ', at most k — 1 searchers are at
a vertex of Gy \ {v2}. Let S’ be the subsequence of S obtained by keeping only the operation
of S that either place a searcher at a vertex of G, or remove a searcher from a vertex of Gs.
For instance, the first step of S’ is exactly the step ¢t of S. Let ¢’ be the step number in S’
of the step ¢ in S. S’ is a monotone connected visible search strategy for G2 using at most k
searchers, and starting from ws.

Let Sy be the following 3-phase search strategy:

1. Place a searcher at each of the vertex ui,v1,us and vs.
2. If the fugitive is in Gj, @ € {1,2}, then remove the searchers from u3_; and v3_;.

3. Apply the strategy S’ in G; (but steps 1 as there is already a searcher at u;; moreover, if
step t" of S’ consists in placing a searcher at vo, then this step is removed from Sy, and
otherwise remove the searcher from vo immediately after step t”).

Note that S’ has been defined for G5 but can of course be applied to G too since G1 and G2
are two isomorphic copies of the same graph G. Sy is monotone and connected. We prove that
it uses at most k searchers. During the six first steps of Sy, four searchers are used. Between
steps ¢t and ¢’ of S, there are at most k — 2 searchers at vertices of Gy \ {v2} (including one
searcher at us). Thus, between steps 7 and ¢’ + 4 of Sy, at most k searchers are required.
Finally, at any step s > ¢’ + 4, the number of searchers required by Sy in G; is equal to the
number of searchers required by S’ in G. Thus, it is at most k.

In the proof above we assumed that ui and uo were the two first cleared node. The three
other combinations (u1,v2), (v1,us2), and (vi,ve) can obviously be treated the same. o

For any ¢ > 1, let G; be the symmetric of G; with respect to {vg, vg+1} where vy, and vy qare
the two bottom nodes of the kernel of G;. We have |V (G;)| = n; = 2(25-3""1 — 4). We have
tw(G;) < max{tw(G;),3} by connecting a bag containing {vg,vg+1} in the tree-decomposition
of the first copy of G; with a bag containing {vk,vk+1} in the tree-decomposition of the second
copy of G; by a path of length two containing a 4-node bag in the middle with two copies of
vg and two copies of vgy1. Hence, from Claim 1, tw(G;) < 4, and thus vs(G;) < 5. On the
other hand, by combining Claim 2 with Claim 3, we get that any winning monotone connected
visible search strategy for G; uses at least 2i + 4 searchers. Therefore, any winning monotone

connected visible search strategy for G; uses at least 2 log3(_2l2—;4) + 6 searchers. [|

3 Monotony

In this section, we prove that the connected visible search game does not satisfy the monotony
property.

Theorem 2 For any k > 4, there exists a graph G such that cvs(G) = 4k+ 1 and any winning
monotone connected visible search strategy uses at least 4k + 2 searchers.

Proof. The proof is constructive. For the construction of the graphs mentioned in the statement
of the theorem, we reuse the family {G;,7 > 1} introduced for proving Theorem 1. The intuition
of the proof is the following. Consider the graph I*) depicted in Figure 6. We will show that
the symmetric of this graph with respect from {u, v} cannot be cleared optimally by a monotone
search strategy. In this figure, the graphs E and F' are two copies of a graph G;. Roughly, the
placements of these graphs force the strategy to clear them from nodes D and B. We show that
it is not possible to do that with the minimal number of searchers in a monotone way.

4 There exists a connected visible search strategy for G;, using at most 5 searchers, and
starting from r; (i.e., the first step of the search consists in placing a searcher at r;, and the
strategy clears the graph by expanding from r;).

Proof. We introduce some new terminology. Let ¢ > 1. Removing the root r; from G; as well
as the edges connecting nodes in the kernel of G; results in two components. Let L; be the
component that contains the left extremity u; of the base of G;, and let R; be the component
that contains the right extremity ugy of the base of G;. A straightforward induction on i prove
that, for any ¢ > 1, L; and R; are 2-connected. Moreover, for any 4 > 1 and any 1 < j <4, L;
and R; are two subgraphs of ;. This is because G; contains all G;’s as subgraphs for j <. In
fact, as already mentioned in the proof of Theorem 1, removing r; from G;, and removing the
base of G, results in 2(i — 1) components G1,Go,...,G;i—1,Gi_1,...,G2,G1 (cf. Fig. 4). The
G; included in L; (resp., R;) is called the jth branch of L; (resp., R;). The nodes ugj4+3 and
v2j+3 (r€sp., Ugg_(2j+3) and vop_(2j43)) connecting the jth branch of L; (resp., R;) to the base
of G; are called the access nodes to the branch.

We prove the following property P;: given § searchers placed at r; and in the four nodes of
the kernel of G;, and assuming L; or R; is clear, there exists a connected visible search strategy
for G; starting from this situation and using at most 5 searchers, that captures the fugitive.
Note that, whereas the placement of the 5 searchers is not connected, the part of the graph
that is initially clear, is connected. The proof is by induction on ¢ > 1. P; clearly holds. Let
us assume that P; holds for any 1 < j <. Consider P;;1. We show how to complete clearing
Gi41 using 5 searchers. By symmetry of G;41, assume, w.l.o.g., that the fugitive is in R;;1,
i.e., L;;11 is clear. First, the four searchers in the kernel of G;;; can reach the access to the
first branch of R;;1, leading to G;. If the fugitive is not in this first branch, then the searchers
move to the access of the next branch leading to G; 1. And so one. If the fugitive is in none
of the branches, then it is eventually caught at the extremity of R;11. Thus assume that the
fugitive is seen in the jth branch when the searchers are occupying the access to this branch.
Two searchers guard the access while a third searcher is still occupying the root of G;4+1. Two
searchers are free. One of them is placed at the root r; of Gj. The searcher occupying the root
of G441 is then removed from r;;1. The two free searchers are placed at the bottom nodes of
the kernel of GG;. Then the two searchers occupying the access to the jth branch are removed,
and placed on the top nodes of the kernel of GG;. Since the fugitive is visible, either L; or R; is
clear. We complete the search by using the induction property P;. Hence P;;1 holds.

We now describe a search strategy satisfying the hypotheses of the claim, by induction on
i > 1. Clearly there exists a connected visible search strategy S; for GG1 that uses at most
5 searchers, and start from r;. Let ¢ > 1, and assume that, for any 1 < j < 4, there is a
connected visible search strategy S; for G, using at most 5 searchers, and starting from r;. Let
us consider the connected visible search strategy S;+1 for G;41 defined as follows. A searcher
is placed at rj;1. Then two searchers are placed on the left extremities of the base of Gy 1.
Two other searchers are placed on the two nodes adjacent to these searchers. Then the four
searchers move towards the kernel of G;11. While so, they detect at each crossing of an access
to a branch whether the fugitive is in this branch or not. There are two cases.

If the searchers cross the access to a branch leading to some G; where the fugitive is, then
they proceed to reach the situation in which one searcher occupy the root r; of G, while the
four other searchers are occupying the kernel of G;. At this point the search completes by
applying property P;.

Otherwise, the four searchers move towards the extremities of the base of G;;1, while the
fifth searcher at the root block the fugitive, which is eventually caught. o

Let P, be the n-node path. Let Fj, be the graph obtained by replacing every vertex of
P, by a complete graph on k vertices, and replacing every edge of F,, by a perfect matching
between the complete graphs corresponding to the two extremities of the edge. A graph Py, is
called a clique-path.

5 Foranyn>1and any k > 1:

o There exists a connected visible search strategy for Py, using at most k+1 searchers, and
starting from any vertex of the clique corresponding to an extremity of P,.

e Ifn >k +1, then any monotone connected visible search strategy for Py ,, using at most
k searchers, and starting from any vertex of the clique corresponding to an extremity of
P, cannot clear any vertex of the clique at the other extremity of Py, .

The proof is straightforward and is thus omitted.

For k > 1, let 1) be the graph represented in Fig. 6. This representation uses the following
coding:

e A black point represents a vertex.

A circle represents a clique with the indicated number of vertices.

A thin line between two vertices represents an edge.

A thin line between a vertex x an a clique represents an edge between x and a vertex of
the clique;

e A double line between two cliques represents a perfect matching between them if they are
of same size, or between the smallest one and a sub-clique of the largest one if they are of
different size.

e a double dotted line between two cliques of same size s represents a path of cliques of size
s linked by perfect matchings.

e The graphs K4, Kp, K¢ and Kp are pairwise disjoint k-cliques, all subgraphs of the
clique K of size 4k + 1, and extremities of clique-paths.

e The subgraphs E and F are isomorphic to G3;/9) (the marked nodes are the root, and
the two bottom nodes of the kernel of Gysy/27)-

6 For any k > 1, there exists a connected visible search strategy for I'¥) | starting from
u and v, and using at most 4k + 1 searchers.

Proof. The following (non-monotone) strategy uses 4k + 1 searchers. Place searchers at u and
v, and use k + 1 searchers to clear the clique-path leading to A. Let P be a shortest path
from A to B going through the central clique K. Place a searcher at every vertex of P, using
2k + 3 searchers (in addition to the k searchers occupying nodes in A). If the fugitive is in the
subgraph E, then, from Claim 4, one can use 5 searchers to clear F starting from its root. Thus
we assume that the fugitive is not in E. Remove all searchers but k 4 1 searchers occupying
A and B, thus FE remains isolated. (Note that the strategy is not monotone because of this
step). Use the 3k remaining searchers to clear the clique-path between B and C (cf. point 1
of Claim 5). After this step, k searchers occupy vertices of A, one searcher occupies B and one

Figure 6: The graph (%)

searcher occupies C. Place a searcher at D. If the fugitive is in the subgraph F, then, from
Claim 4, one can use 5 searchers to clear F' starting from its root. Thus we assume that the
fugitive is not in F. Use the k searchers at A, plus one extra searcher, to clear the clique-path
between A and K 4. At this step, k searchers occupy vertices of K 4, and three searchers occupy
B, C, and D. Let us place k searchers at Kp. If the fugitive is in one of the cliques D;, then
remove all searchers but those occupying Kp and D, and use the k searchers at Kp and the
3k remaining searchers to clear the clique-path between Kp and D. Thus we assume that the
fugitive is not in one of the cliques D;. Place k searchers at K¢. If the fugitive is in one of the
cliques Cj, then remove all searchers but those occupying K¢ and C, and use the k searchers
at K¢ and the 3k remaining searchers to clear the clique-path between K¢ and C. Thus we
assume that the fugitive is not in one of the cliques C;. Use the searcher at B, and the k
remaining searchers to clear the clique-path from B to Kp. At this point, 4k searchers occupy
vertices of K4, Kp, K¢ and Kp. Use the remaining searcher to clear the last vertex of K. The
fugitive is caught, which concludes the strategy. o

Note that, since I¥) contains a 4k + 1-clique, the strategy above is optimal.

7 For any k > 4, any winning monotone connected visible search strategy for I%) start-
ing from u and v uses at least 4k + 3 searchers.

Proof. The proof is inspired from the non-monotony proof for connected invisible search in [17].
In the following, we say that two paths P and P’ between a vertex v and a clique are vertex-
disjoint if PN P’ € {v}. Let us consider a winning monotone connected visible search strategy
S for I®) | starting from u and v.

Let us first assume that the root rg of E is cleared before vertex B is cleared. Let s be the
step at which rg is cleared in S. Let P be a clear path between v and rg, and let P’ be the
subpath of P from u to a vertex in A. Since there are k vertex-disjoint paths between B and
P', all passing through the clique K of I®¥)| k searchers have to guard these paths until step s
to avoid recontamination. Moreover, from Claim 2, G3;/91 cannot be cleared by a monotone

10

connected visible search strategy starting from xg and yg using less than 3%+ 4 searchers. Thus
if rg is cleared before B then S needs at least 4k + 4 searchers.

Similarly, one can prove that if rp is cleared before D then S needs at least 4k + 4 searchers.

Thus, for S to use less searchers, B must be cleared before rg, and D must be cleared before
rr. Thus, there is a vertex in K 4 that is cleared before any of the vertices B, C', and D. Let
x be the first vertex of K4 to be cleared by S, say at step s’. (Note that, while none of the
vertices B, C' and D are cleared, they belong to the same component of the contaminated part,
and thus the fact that the fugitive is visible does not help to clear any of these vertices).

Let Py be a clear path between u and z at step s’. Let P; (resp., P») be the subpath of P
that goes from u to A (resp., from A; to x).

Let us assume that, among B, C, and D, D is the first vertex to be cleared in S. Let
s > s' be the step when D is cleared. Let P and Pj be two vertex-disjoint paths from rg to
two distinct nodes of P;. Let P; and P, be two vertex-disjoint paths from rp to two distinct
nodes of P; that are as well pairwise distinct from the two extremities of P| and Pj. Finally,
let P5,..., Py, be k vertex-disjoint paths from B to k distinct nodes of P,. Since k > 4, these
k + 4 paths can be chosen pairwise vertex-disjoint, and disjoint from any clique D;. Thus, for
any 1 < i < k+ 4, and for any step in [¢/,s"], there must be a distinct searcher occupying a
vertex of P! to avoid recontamination of Py from rg, rg, or B. Point 2 of Claim 5 says that,
starting from a vertex of Dy, clearing a vertex of Dsx.o in a monotone connected visible way
requires at least 3k + 2 searchers. Hence the total number of searchers used by S is at least
4k + 6.

Thus, for S to use less searchers, D should not be the first vertex among B, C, and D to
be cleared.

Similarly, one can prove that for S to use less searchers, C' should not be the first vertex
among B, C, and D to be cleared.

Thus, for S to use less searchers, B must be, among B, C, and D, the first node to be
cleared by S. Let s” > s’ be the step when B is cleared. At this step, there is a clear path
from z to B, through the cliques B; — recall that we are assuming that B is cleared before rg.
(Note that while C' and D are not cleared, both these vertices belong to the same component
of the contaminated part, and thus the fact that the fugitive is visible does not help to clear
these vertices).

Let P3 be a clear path from z to B at step s”.

We now consider the two cases depending on whether D is cleared before C, or the other
way around.

The first case assumes that D is cleared before C by S. Let s > s” be the first step when
a searcher is placed at D. Let P| and Pj be two vertex-disjoint paths from 7 to two distinct
nodes of Py, and let P,..., P 4o be k vertex-disjoint paths from C to k disjoint nodes of P.
Since k > 2, the k + 2 paths P[,..., P, , can be taken pairwise vertex-disjoint, and disjoint
from any D; clique. Thus, for any 1 < i < k + 2, and for any step in [¢', "], there must be a
searcher at a vertex of P, to avoid recontamination of Py from rp or C. Point 2 of Claim 5 says
that, starting from a vertex of D, clearing a vertex of D32 in a monotone connected visible
way requires at least 3k + 2 searchers. Hence the total number of searchers used by S is at least
4k + 4.

The second case assumes that C' is cleared before D by S. Let s” > s” be the first step
when a searcher is placed at C. Node C can be reached in two different manners: either along
the clique-path from C to Csi49, or along the clique-path from R; to Rsi. We consider these
sub-cases separately.

11

Figure 7: A graph G such that cvs(G) = 4, but for which any winning monotone connected
graph searching strategy requires at least 5 searchers

e Assume that C is reached along the clique-path from C; to Csgio. Let P{ and Pj be two
vertex-disjoint paths from rr to two distinct nodes of P;. Let Pj,..., P, 4o be k vertex-
disjoint paths from D to k distinct nodes of P,. Since k > 2, the k + 2 paths Pj,..., P;_,
can be taken pairwise vertex-disjoint, and disjoint from any C; clique. Thus, for any
1 <i < k+2, and for any step in [/, s"], there must be a searcher at a vertex of P] to
avoid recontamination of Py from rr or D. Point 2 of Claim 5 says that, starting from a
vertex of C1, clearing a vertex of Csi49 in a monotone connected visible way requires at
least 3k + 2 searchers. Hence the total number of searchers used by S is at least 4k + 4.

e Assume that C is reached along the clique-path from R; to Rs. There is a vertex y € C;,
for some %, that is not clear at step s”. Let P and Pj be two vertex-disjoint paths from
rr to two distinct nodes of P;. Let P, ..., P, 4o be k vertex-disjoint paths from D to k
distinct nodes of P». Let P,é+3 be a path from y to Ps. Since k > 2, the k + 3 paths
P,...,P 43 can be taken pairwise vertex-disjoint, and disjoint from any R; clique. Thus,
for any 1 < i < k+ 3, and for any step in [s', s"'], there must be a searcher at a vertex of
P! to avoid recontamination of P from y, D, or rr. Point 2 of Claim 5 says that, starting
from a vertex of Ri, clearing a vertex of Rg3; in a monotone connected visible way requires
at least 3k searchers. Hence the total number of searchers used by S is at least 4k + 3.

Therefore, the monotone connected visible strategy S for 1) uses at least 4k + 3 searchers. o

Let £k > 4. Let G = Lskg* be the symmetric of (%) with respect to the edge {u,v}. From
Claim 6, there exists a connected visible search strategy for I¥), starting from u and v, and
using at most 4k + 1 searchers. Therefore cvs(G) < 4k + 1. On the other hand, Claim 7 states
that any winning monotone connected visible search strategy for I*) starting from u and v uses
at least 4k 4 3 searchers. By Claim 3, this implies that any winning monotone connected visible
search strategy for G uses at least 4k + 3 searchers, that is strictly more than cvs(G). This
completes the proof of the theorem. [|

The graphs used in the proof of Theorem 2 have a connected visible search number equal
to 4k + 1 for k > 4, thus at least 17. We can however design examples with smallest search
number. For instance, one can check that the following holds:

Property 1 Let G be the graph depicted on Fig. 7. We have cvs(G) = 4 and any winning
monotone connected visible search strategy for G uses at least 5 searchers.

12

4 Conclusion

In this paper, we first prove that the connectedness requirement for monotone visible search
leads to a logarithmic factor in the number of searchers needed. The second result is that the
connected visible search is not monotone. A quick glance at Table 1 indicates that our results
combined with the previous results in this field let only one problem to be solved, as far as
connected search is concerned. Namely: is the bound on the left hand side of Equation 1, i.e.,
cis(G)/is(G) < O(logn), tight? In [2], the authors express their belief that, for any graph G,
cis(G)/is(G) < 2. That is, the worst case for connected invisible search is actually reached
for trees. Up to now, no one was able to prove or disprove this belief.

We also want to rise the question of minimality for counter examples to monotony of con-
nected search games. Precisely, what is the minimum k such that there is a graph G with
cvs(G) = k for which any winning monotone connected visible search strategy uses more than
k searchers. Trivially, k& > 3. Moreover, according to the Property 1, k < 4. The same question
seems far more complex in the context of invisible search (i.e., node search). Indeed, the mini-
mum value that is known for this setting is... k = 281 (cf. [17]). Is it possible to design counter
examples with smaller connected search numbers?

Finally, what is the complexity of the decision problems “cis(G) < k7” and “cvs(G) < k7”.
Both are known to be NP-hard, but are they in NP?

13

References

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents.
In 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 200-209, 2002.

L. Barriere, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal Graph Searching. In
29th Workshop on Graph Theoretic Concepts in Computer Science (WG), Springer-Verlag, LNCS
2880, pages 34-45, 2003.

D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey). DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 5, pages 33-49, 1991.

D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms 12, pages
239-245, 1991.

R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5), pages 72-78, 1967.

N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive search games on graphs and related
parameters. Theoretical Computer Science vol. 172, No. 1, pages 233-254, 1997.

J. A. Ellis, I.H. Sudborough, J.S. Turner. The Vertex Separation and Search Number of a Graph
Information and computation 113, pages 50-79, 1994.

F. V. Fomin, P. Fraigniaud and N. Nisse. Nondeterministic Graph Searching: From Pathwidth to
Treewidth. In 30th International Symposium on Mathematical Foundations of Computer Science
(MFCS), LNCS 3618, pages 364-375, 2005.

F. Fomin, P. Fraigniaud, D. Thilikos. The Price of Connectedness in Expansions. Technical Report
LSI-04-28-R, UPC Barcelona, 2004.

P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching. Proceedings of
Latin American Theoretical Informatics Symposium (LATIN), LNCS 3887, pages 479-490, 2006.

L. Kirousis, C. Papadimitriou. Searching and Pebbling. Theoretical Computer Science 47, pages
205-218, 1986.

A. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM 40(2), pages
224-245, 1993.

N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The complexity of searching
a graph. Journal of the ACM 35(1), pages 18-44, 1988.

T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture Notes in
Mathematics, Springer-Verlag, pages 426-441, 1976.

N. Robertson and P. D. Seymour. Graph minors II, Algorithmic Aspects of Tree-Width. Journal
of Algorithms 7, pages 309-322, 1986.

P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width, J. Combin.
Theory Ser. B, 58, pages 22-33, 1993.

B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In 5th International
Symposium on Algorithms and Computation (ISAAC), Springer, LNCS 3341, pages 908-920, 2004.

14

	RR1456entête.pdf
	RR1456rapp.pdf

