L R I # MONOTONY PROPERTIES OF CONNECTED VISIBLE GRAPH SEARCHING FRAIGNIAUD P / NISSE N Unité Mixte de Recherche 8623 CNRS-Université Paris Sud – LRI 07/2006 Rapport de Recherche N° 1456 #### **CNRS – Université de Paris Sud** Centre d'Orsay LABORATOIRE DE RECHERCHE EN INFORMATIQUE Bâtiment 490 91405 ORSAY Cedex (France) # Monotony Properties of Connected Visible Graph Searching Pierre Fraigniaud* LRI CNRS & University of Paris Sud 91405 Orsay, France pierre@lri.fr Nicolas Nisse* LRI University of Paris Sud 91405 Orsay, France nisse@lri.fr #### Abstract Search games are attractive for their correspondence with classical width parameters. For instance, the *invisible* search number (a.k.a. *node* search number) of a graph is equal to its pathwidth plus 1, and the *visible* search number of a graph is equal to its treewidth plus 1. The *connected* variants of these games ask for search strategies that are connected, i.e., at every step of the strategy, the searched part of the graph induces a connected subgraph. We focus on *monotone* search strategies, i.e., strategies for which every node is searched exactly once. It is known that the monotone connected visible search number of an *n*-node graph is at most $O(\log n)$ times its visible search number. First, we prove that this logarithmic bound is tight. Precisely, we prove that there is an infinite family of graphs for which the ratio monotone connected visible search number over visible search number is $\Omega(\log n)$. Second, we prove that, as opposed to the non-connected variant of visible graph searching, "recontamination helps" for connected visible search. Precisely, we describe an infinite family of graphs for which any monotone connected visible search strategy for any graph in this family requires strictly more searchers than the connected visible search number of the graph. ${\bf Keywords:} \ {\bf Graph} \ {\bf searching}, \ {\bf Treewidth}, \ {\bf Pathwidth}.$ ^{*}Both authors received additional supports from the project "PairAPair" of the ACI Masses de Données, from the project "Fragile" of the ACI Sécurité Informatique, and from the project "Grand Large" of INRIA. #### 1 Introduction Introduced in [5, 14], graph searching is a game between two players on a graph: one is playing the fugitive while the other is playing the searchers. They play alternatively. At each step: a searcher is placed at a node, or a searcher is removed from a node; then the fugitive can move from its current node u to any node v in the graph under the constraint that there is a path from u to v that does not cross any node occupied by a searcher. The fugitive is caught when a searcher is placed at the node it occupies. The goal is to find, for every graph G, the minimum k such that there is a winning search strategy with k searchers, i.e., a strategy using k searchers that captures any fugitive in G. This minimum k is called the search number of the graph. We refer to [3] for a survey on graph searching. Two main variants of the game have been considered: visible and invisible search. In visible search [6, 16], the fugitive is visible to the searchers, and they can thus adapt their search strategy according to the current position of the fugitive. The corresponding search number is called the *visible search* number, denoted by vs. In invisible search [4, 11], the fugitive is not visible to the searchers, and thus they have to perform a blind strategy to capture the fugitive. The corresponding search number is traditionally named the *node search* number. In this paper however, we call it the *invisible search* number for it measures the ability of a team of searchers to capture an invisible fugitive. The invisible search number is denoted by is. The importance of the search games comes from the correspondence between search numbers and standard width parameters [15], providing different interpretations of these parameters, and hence different ways of handling them. Precisely, it is known that, for any graph G: - is(G) = pw(G) + 1 where pw(G) denotes the pathwidth of G (cf. [7, 11]), and - vs(G) = tw(G) + 1 where tw(G) denotes the *treewidth* of G (cf. [6, 16]). Monotony plays a crucial role in graph searching (cf., [13]). A search strategy is monotone if once a node has been cleared (a node is cleared at a step of the strategy if the fugitive cannot access to this node at this step), the fugitive cannot ever have access to this node during the rest of the search. Since a monotone search strategy finds the fugitive in a linear number of steps, it gives a polynomially checkable certificate to the decision problem corresponding to a monotone game. Hence the importance of monotony. Proving that visible and invisible search are both monotone games were two major achievements within the theory of graph searching. Precisely, [4, 12] proved that if $is(G) \leq k$ then there exists a winning monotone invisible search strategy using at most k searchers in k. Similarly, [16] proved that if $vs(k) \leq k$ then there exists a winning monotone visible search strategy using at most k searchers in k. Connectedness also plays an important role in graph searching, as far as practical applications are concerned (e.g., network security [1], speleological rescue [5], etc). A search strategy in a graph G is connected if, at any step of the strategy, the clear part of the graph (i.e., the part of the graph where the fugitive cannot stand) forms a connected subgraph of G. The minimum k for which there is a winning connected search strategy in G using at most k searchers is called the connected search number of G. Considering invisible or visible search defines two parameters denoted by cis(G) and cvs(G), respectively. The connectivity constraints generally implies a higher number of searchers for capturing the fugitive. The ratio connected search number over search number can however be bounded. Precisely, it is known (see [10], and also [9]) that for any n-node graph G, we have $$\operatorname{cis}(G)/\operatorname{is}(G) \le \log n + 1 \text{ and } \operatorname{cvs}(G)/\operatorname{vs}(G) \le \log n + 1.$$ (1) For trees, the bound for invisible search can be improved to $cis(T)/is(T) \le 2$ (cf. [2]), and this bound is tight. For visible search, it trivially holds that cvs(T) = vs(T) for any tree T. | | search | connected search | | connected search | | |-----------|---------------------|------------------|-----------|---------------------|-------------------------------| | | in arbitrary graphs | in trees | | in arbitrary graphs | | | | monotone | monotone | ratio | monotone | ratio | | invisible | yes | yes | ≤ 2 | no | $\leq \log n + 1$ | | fugitive | $[4,\ 12]$ | [1] | [2] | [17] | [9, 10] | | visible | yes | yes | 1 | no | $O(\log n) \ [9, 10]$ | | fugitive | [16] | [trivial] | [trivial] | [this paper] | $\Omega(\log n)$ [this paper] | Table 1: An overview of connected graph searching As for standard (i.e., non-connected) search, monotony is a crucial property for connected search strategies, and it is natural to ask whether monotony holds for connected search games the same way it holds for standard search games. The answer is known to be no for invisible search. Precisely, [17] proves that there is a graph G such that any monotone connected invisible search strategy for G requires more searchers than $\operatorname{cis}(G)$. The impact of this result is important because it is a priori difficult to design non-monotone search strategies, and therefore the connected search problem seems significantly harder than the non-connected one. In particular, it is not known whether the decision problem corresponding to connected search is in NP. The good news though is that [1] proves that monotony holds for trees, i.e., for any tree T there is a winning monotone connected invisible search strategy using $\operatorname{cis}(T)$ searchers. All these results are summarized in Table 1. #### Our results First, we prove that the bound on the right hand side of Equation 1 is asymptotically tight when restricted to a monotone search strategy. That is, we prove that there is an infinite family of graphs such that, for any n-node graph G in this family, the number of searchers of any winning monotone connected visible search strategy for G is at least $\Omega(vs(G) \log n)$. Second, we prove that, as for the connected invisible search game, the connected visible search game is not monotone. Precisely, we describe an infinite family of graphs with arbitrarily large connected visible search number for which any monotone connected visible search strategy for any graph G in this family requires strictly more than $\mathtt{cvs}(G)$ searchers. ## 2 The $\Omega(\log n)$ lower bound It is known (cf., [10]) that for any connected n-node graph G, there exists a winning monotone connected invisible search using at most $\mathsf{tw}(G)(\log n + 1)$ searchers. Thus there exists a winning monotone connected visible search using at most $\mathsf{tw}(G)(\log n + 1)$ searchers. Since $\mathsf{vs}(G) = \mathsf{tw}(G) + 1$, it follows that there exists a winning monotone connected visible search using at most $\mathsf{vs}(G)(\log n + 1)$ searchers. We prove that this bound is asymptotically tight. **Theorem 1** For any n_0 , there is $n \ge n_0$ and an n-node graph G such that any winning monotone connected visible search for G uses at least $\Omega(vs(G) \cdot \log n)$ searchers. **Proof.** We construct an infinite family of connected graphs such that any winning monotone connected visible search for any n-node graph G in this family uses at least $c vs(G) \log n$ searchers for some constant c > 0. For this purpose, we construct an infinite family $\{G_i, i \geq 1\}$ of connected graphs as follows. Figure 1: A scale of length k = 10 (left), and the graph G_1 (right) Figure 2: Recursive construction of G_{i+1} (right) from G_i (left). The dotted lines represent sets of connections. We define the scale of length k>0 to be the graph of 2k vertices $u_1,\ldots,u_k,v_1,\ldots,v_k$ where the u_i 's are called top nodes, and the v_i 's are called bottom nodes (cf. Fig. 1). There is an edge between u_i and u_{i+1} for all $i=1,\ldots,k-1$; there is an edge between v_i and v_{i+1} for all $i=1,\ldots,k-1$; and there is an edge between u_i and v_j for all i,j such that $|i-j|\leq 1$. The center of a scale of even length 2k is the subgraph induced by the four nodes u_k,u_{k+1},v_k,v_{k+1} . The extremities of a scale of length k are the four nodes u_1,v_1 , and u_k,v_k , respectively called the left and right extremities. G_1 is defined as the scale of length k = 10, plus one node r_1 called the *root*, and connected to the two extremities u_1 and u_k of the scale (cf. Fig. 1). For any $i \geq 1$, the *base* of G_i is a subgraph of G_i that is a scale of even length, and the *kernel* of G_i is the center of its base. For instance, the base of G_1 is the scale of length 10, and the kernel of G_1 is the set $\{u_5, v_5, u_6, v_6\}$, where v_5 and v_6 are the bottom nodes of the kernel of G_1 . Given G_i for $i \geq 1$, we construct G_{i+1} as follows (cf. Fig. 2). Let S_i be the base of G_i (i.e., a scale of even length 2k), and let r_i be the root of G_i . First, take a copy H of G_i . Let $u_k, u_{k+1}, v_k, v_{k+1}$ be the four nodes of the kernel of H (i.e., the center of the base of H). This kernel is replaced by a scale of length 6, that is: the edges $\{u_k, u_{k+1}\}$, $\{u_k, v_{k+1}\}$, $\{v_k, v_{k+1}\}$, and $\{v_k, u_{k+1}\}$ are removed, u_k and v_k are identified to the left extremities of the length-6 scale, and u_{k+1} and v_{k+1} are identified to the right extremities of the length-6 scale. This operation results in a scale S_{i+1} of length 2k+4, that becomes the base of G_{i+1} . Next, we take two copies H_1 and H_2 of G_i , and connect the two copies of r_i to the root of H, that becomes the root v_{i+1} of G_{i+1} . Finally, a complete set of connections are added between the two nodes v_k and v_k of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and the two bottom nodes of the kernel of v_k and v_k of v_k and v_k of v_k and v_k of v_k and v_k and v_k of v_k and v_k of v_k and v_k and v_k of v_k and v_k and v_k of v_k and v_k and v_k and v_k of v_k and are identified to the representation of v_k and v_k and v_k are identified to v_k and v_k are identified to v_k and $v_$ We have $|V(G_{i+1})| = 1 + 2|V(G_i)| + (|V(G_i)| - 1 + 8) = 3|V(G_i)| + 8$. Thus $|V(G_i)| = 25 \cdot 3^{i-1} - 4$. To summarize, we have the base of G_i consisting of a scale of length 2k for k = 2i + 3, with top nodes u_1, \ldots, u_{2k} , and bottom nodes v_1, \ldots, v_{2k} . The kernel of G_i is the center $\{u_k, v_k, u_{k+1}, v_{k+1}\}$ of this base. Thus the bottom nodes of this kernel are the two nodes v_k and v_{k+1} . The two nodes u_1 and u_{2k} are the top extremities of the base of G_i . 1 For any $i \geq 1$, $tw(G_i) \leq 4$. *Proof.* We establish the claim by proving the property \mathcal{P}_i : there exists a tree-decomposition T of G_i such that: (1) T has width at most 4, (2) T contains a bag $B = \{u_k, v_k, u_{k+1}, v_{k+1}, r_i\}$ where $u_k, v_k, u_{k+1}, v_{k+1}$ is the center of the base S_i of G_i , and r_i is the root of G_i , (3) B is degree-two node in T, and (4) the two neighbors B' and B'' of B in T satisfy $B \cap B' = \{u_k, v_k, r_i\}$ and $B \cap B'' = \{u_{k+1}, v_{k+1}, r_i\}$. The bag B is called the *root* bag of T, and B' and B'' are called the *left* and *right* neighbor of B. On Fig. 3, the tree-decomposition of G_i is depicted on the left side: F is the root bag, and E' and E'' are the left and right bags, respectively. For i = 1, there is a tree-decomposition T (which is actually a path-decomposition) of G_1 composed by nine bags, each bag containing exactly five vertices (one K_4 plus the root r_1). T clearly satisfies \mathcal{P}_1 . Assume \mathcal{P}_i holds, and let us prove \mathcal{P}_{i+1} . G_{i+1} is obtained by "placing" two copies H_1 and H_2 of G_i "inside" a third copy H of G_i . Let T_1 and T_2 be tree-decompositions of H_1 and H_2 , satisfying \mathcal{P}_i , and let T_3 be a tree-decomposition of H, satisfying \mathcal{P}_i . We construct a tree-decomposition T of G_{i+1} satisfying \mathcal{P}_{i+1} (cf. Fig. 3). We define the bag $B = \{u_k, v_k, u_{k+1}, v_{k+1}, r_{i+1}\}$ where $u_k, v_k, u_{k+1}, v_{k+1}$ is the center of the base S_{i+1} of G_{i+1} , and r_{i+1} is the root of G_{i+1} . B has two neighbors $B' = \{u_{k-1}, v_{k-1}, u_k, v_k, r_{i+1}\}$ and $B'' = \{u_{k+1}, v_{k+1}, u_{k+2}, v_{k+2}, r_{i+1}\}$ in T. These two neighbors are of degree 2, i.e., each of them has one neighbor different from B. We describe the decomposition from B'. The decomposition from B' is similar by the symmetric construction of G_{i+1} . The neighbor of B' distinct from B is $C = \{u_{k-2}, v_{k-2}, u_{k-1}, v_{k-1}, r_{i+1}\}$. At C, there is a branching in T. Figure 3: Recursive tree-decomposition of G_{i+1} (right) from a tree-decomposition of G_i (left) One of the two neighbors of C distinct from B' is $D = \{u_{k-2}, v_{k-2}, r_i, r_{i+1}\}$ where r_i is the root of H_1 . D has degree 2 in T, and its neighbor distinct from C is $E = \{u_{k-2}, v_{k-2}, x, y, r_i\}$ where x and y are the two bottom nodes in the kernel of H_1 . E has degree 2 in T, and its neighbor distinct from D is $F = \{x, y, z, t, r_i\}$ where x, y, z, t is the kernel of H_1 . By induction hypothesis, F is the root bag of T_1 . We attach T_1 at F in T. The other neighbor of C distinct from B' is $D' = \{u_{k-2}, v_{k-2}, r_{i+1}\}$. Since a scale of length 6 was inserted in the base of H, the bag D' is, by induction hypothesis, equal to the intersection of the root bag of T_3 with its left neighbor in T_3 . In T, D' has degree 2, and its neighbor distinct from C is E' defined as the left neighbor of the root bag of T_3 . At E' we attach the part of the tree-decomposition T_3 resulting from the removal of the edge between its root bag and its left neighbor. Figure 4: Alternative definition of G_{i+1} By construction, T is a tree-decomposition of G_{i+1} satisfying \mathcal{P}_{i+1} . Since for any graph G, vs(G) = tw(G) + 1, a consequence of Claim 1 is that $vs(G_i) \leq 5$ for all $i \geq 1$. Before going further in the proof of Theorem 1, we need to present another vision of the graphs G_i . From the definition of G_{i+1} , one can check that it consists of two copies of G_j , for $j = 1, \ldots, i$, connected to a scale of length 2k = 4i + 10 (cf. Fig. 4). This holds even for i = 0 by defining G_0 as the empty graph. More precisely the copies of the G_j 's are placed back-to-back in order $G_1, G_2, \ldots, G_i, G_i, \ldots, G_2, G_1$. For every j, the root r_j of any of the two copies of G_j is connected to the root r_{i+1} of G_{i+1} . The two bottom nodes in the kernel of the first copy of G_j are connected to the nodes u_{2j+3} and v_{2j+3} of the base of G_{i+1} , and the two bottom nodes in the kernel of the second copy of G_j are connected to the nodes $u_{2k-(2j+2)}$ and $v_{2k-(2j+2)}$ of the base of G_{i+1} . Finally, the two extremities u_1 and u_{4i+10} of the base scale of G_{i+1} are connected to r_{i+1} . This vision of the graphs G_i 's enables us to prove the following. **2** For any $i \geq 1$, any winning monotone connected search strategy for G_i whose two first steps consist in placing a searcher at each node v_k and v_{k+1} of the kernel of G_i uses at least 2i + 4 searchers. Proof. The proof is by induction on $i \geq 1$. In fact we prove that any monotone connected search strategy starting from v_k and v_{k+1} in G_i has at least 2i+4 searchers placed in G_i at the step before it clears the root r_i of G_i . One can easily check (cf. Fig. 1) that the result holds for G_1 , that is any monotone connected search strategy starting from v_5 and v_6 in G_1 has at least 6 searchers placed in G_1 before it clears the root r_1 . Let $i \geq 1$ and let us assume that the result holds for any $1 \leq j \leq i$. Let S be a winning monotone connected search strategy for G_{i+1} starting from the two nodes v_k and v_{k+1} of the kernel of G_{i+1} . Consider G_{i+1} as depicted in Fig. 4. To access r_{i+1} from v_k and v_{k+1} in a monotone connected way, S must clear the root r_j of one of the two copies of some G_j for $1 \leq j \leq i$, or one of the two extremities u_1 or u_{2k} of the base of G_{i+1} . Let R be the set of nodes composed of all the roots of the G_j 's composing G_{i+1} , plus the two extremities u_1 and u_{2k} . R contains 2i+2 nodes. Let v be the first node in R that is cleared by S. We consider two cases. The first case assumes that v is one of the two extremities of the base of G_{i+1} . By symmetry of G_{i+1} , one can assume, w.l.o.g., that $v = u_1$. Consider every G_j that is connected to nodes of the base between u_1 and u_k . Recall that the two bottom nodes in the kernel of G_j are connected to the nodes u_{2j+3} and v_{2j+3} of the base. There are two vertex-disjoint paths between the root r_j of the considered G_j to any of the nodes u_{2j+3} and v_{2j+3} of the base. Therefore, if less than two nodes in $V(G_j) \cup \{u_{2j+3}, v_{2j+3}\}$ are occupied by searchers, then one searcher must occupy either u_{2j+3} or v_{2j+3} because otherwise the search will not be connected. Indeed, u_{2j+3} and v_{2j+3} could be contaminated by r_j . Moreover, if one searcher only occupies u_{2j+3} or v_{2j+3} , then another searcher must occupy either u_{2j+4} or v_{2j+4} because otherwise the search will not be connected. As a consequence, for any $1 \leq j \leq i$, at least two nodes of $V(G_j) \cup \{u_{2j+3}, v_{2j+3}, u_{2j+4}, v_{2j+4}\}$ are occupied by searchers. Moreover, two searchers must occupy nodes in $\{u_j, k \leq j \leq 2k\} \cup \{v_j, k \leq j \leq 2k\}$ to avoid recontamination of v_k and v_{k+1} from u_{2k} . Finally, at least four searchers are occupying nodes in $\{u_1, v_1, u_2, v_2, u_3, v_3, u_4, v_4\}$ to connect u_1 with the clear part of G_{i+1} . This yields a total of at least 2i + 6 searchers in the graph when u_1 is cleared, hence S uses at least 2(i+1) + 4 searchers in G_{i+1} . The second case assumes that the first node $v \in R$ that is cleared by S is the root of some G_j , $1 \le j \le i$. Again, by symmetry of G_{i+1} , one can assume, w.l.o.g., that $v = r_j$ where r_j is a root of the copy of G_j attached to nodes u_{2j+3} and v_{2j+3} of the base of G_{i+1} . By the same argument as in the first case, for $j < t \le i$, at least two nodes of $V(G_t) \cup \{u_{2t+3}, v_{2t+3}, u_{2t+4}, v_{2t+4}\}$ are occupied by searchers, resulting in a total of 2(i-j-1) searchers for this part of G_{i+1} . By induction hypothesis, when r_j is cleared, 2j+4 searchers are occupying nodes of G_j . Moreover, two searchers must occupy nodes in $\{u_t, 1 \le t \le 2j+4\} \cup \{v_t, 1 \le t \le 2j+4\}$ to avoid recontamination of G_j from u_1 . Finally, two searchers must occupy nodes in $\{u_t, k \le t \le 2k\} \cup \{v_t, k \le t \le 2k\}$ to avoid recontamination of v_k and v_{k+1} from u_{2k} . This yields a total of at least 2i+6 searchers in the graph when r_j is cleared, hence S uses at least 2(i+1)+4 searchers in G_{i+1} . This completes the induction step, and thus the proof of the claim. Let G be connected graph, and let $e = \{u, v\} \in E(G)$. We define the *symmeric* graph of G with respect to e as the graph obtained from two copies of G linked by a set of complete connections between the four nodes resulting from the two copies of $\{u, v\}$ (cf. Fig. 5). The symmetric of G with respect to $e = \{u, v\}$ is denoted by $G_{u,v}^*$. The K_4 connecting the two copies of G in $G_{u,v}^*$ is called the *center* of $G_{u,v}^*$. Figure 5: Symmetric graph of G with respect to edge $\{u, v\}$ (the two copies of G are indexed by 1 and 2) 3 Let G be a connected graph, and let $\{u,v\} \in E(G)$. Let k be the minimum number of searchers required to clear $G_{u,v}^*$ by a monotone connected visible search strategy. There exists a monotone connected visible search strategy for G using at most k searchers, and whose two first steps consist in placing a searcher at u and a searcher at v. Proof. Since $G_{u,v}^*$ contains a 4-clique as a subgraph (its center), we have $k \geq 4$. Let S be an winning monotone connected visible search strategy of $G_{u,v}^*$ using k searchers. $G_{u,v}^*$ consists of two copies G_1 and G_2 of G. Nodes u_1 and u_2 (resp., v_1 and v_2) are the two copies of node u (resp., v), corresponding to G_1 and G_2 , respectively. W.l.o.g., let us assume that the first step of S consists in placing a searcher at a vertex of G_1 . Since S results in catching any fugitive, S must consider the case where the fugitive is in G_2 . Thus, let t > 1 be the first step of S where a searcher is placed at a vertex of G_2 . Since the strategy S is connected, this vertex must be u_2 or v_2 . Let us assume it is u_2 . At step t, there must a searcher at u_1 or v_1 because the strategy S is connected. Let us assume it is u_1 . Let t' > t be the first step of S when v_2 is clear. Note that, between steps t and t', searchers must at u_2 and u_1 to preserve them of recontamination from v_2 , for insuring monotony. Thus, between steps t and t', at most k-1 searchers are at a vertex of $G_2 \setminus \{v_2\}$. Let S' be the subsequence of S obtained by keeping only the operation of S that either place a searcher at a vertex of G_2 , or remove a searcher from a vertex of G_2 . For instance, the first step of S' is exactly the step t of S. Let t'' be the step number in S' of the step t' in S. S' is a monotone connected visible search strategy for G_2 using at most k searchers, and starting from u_2 . Let S_0 be the following 3-phase search strategy: - 1. Place a searcher at each of the vertex u_1, v_1, u_2 and v_2 . - 2. If the fugitive is in G_i , $i \in \{1, 2\}$, then remove the searchers from u_{3-i} and v_{3-i} . - 3. Apply the strategy S' in G_i (but steps 1 as there is already a searcher at u_1 ; moreover, if step t'' of S' consists in placing a searcher at v_2 , then this step is removed from S_0 , and otherwise remove the searcher from v_2 immediately after step t''). Note that S' has been defined for G_2 but can of course be applied to G_1 too since G_1 and G_2 are two isomorphic copies of the same graph G. S_0 is monotone and connected. We prove that it uses at most k searchers. During the six first steps of S_0 , four searchers are used. Between steps t and t' of S, there are at most k-2 searchers at vertices of $G_2 \setminus \{v_2\}$ (including one searcher at u_2). Thus, between steps 7 and t''+4 of S_0 , at most k searchers are required. Finally, at any step s>t''+4, the number of searchers required by S_0 in G_i is equal to the number of searchers required by S' in G_2 . Thus, it is at most k. In the proof above we assumed that u_1 and u_2 were the two first cleared node. The three other combinations (u_1, v_2) , (v_1, u_2) , and (v_1, v_2) can obviously be treated the same. For any $i \geq 1$, let \mathcal{G}_i be the symmetric of G_i with respect to $\{v_k, v_{k+1}\}$ where v_k and v_{k+1} are the two bottom nodes of the kernel of G_i . We have $|V(\mathcal{G}_i)| = n_i = 2(25 \cdot 3^{i-1} - 4)$. We have $\mathsf{tw}(\mathcal{G}_i) \leq \max\{\mathsf{tw}(G_i), 3\}$ by connecting a bag containing $\{v_k, v_{k+1}\}$ in the tree-decomposition of the first copy of G_i with a bag containing $\{v_k, v_{k+1}\}$ in the tree-decomposition of the second copy of G_i by a path of length two containing a 4-node bag in the middle with two copies of v_k and two copies of v_{k+1} . Hence, from Claim 1, $\mathsf{tw}(\mathcal{G}_i) \leq 4$, and thus $\mathsf{vs}(\mathcal{G}_i) \leq 5$. On the other hand, by combining Claim 2 with Claim 3, we get that any winning monotone connected visible search strategy for \mathcal{G}_i uses at least 2i + 4 searchers. Therefore, any winning monotone connected visible search strategy for \mathcal{G}_i uses at least $2\log_3(\frac{n_i+4}{25}) + 6$ searchers. ### 3 Monotony In this section, we prove that the connected visible search game does not satisfy the monotony property. **Theorem 2** For any $k \ge 4$, there exists a graph G such that cvs(G) = 4k + 1 and any winning monotone connected visible search strategy uses at least 4k + 2 searchers. **Proof.** The proof is constructive. For the construction of the graphs mentioned in the statement of the theorem, we reuse the family $\{G_i, i \geq 1\}$ introduced for proving Theorem 1. The intuition of the proof is the following. Consider the graph $I^{(k)}$ depicted in Figure 6. We will show that the symmetric of this graph with respect from $\{u, v\}$ cannot be cleared optimally by a monotone search strategy. In this figure, the graphs E and F are two copies of a graph G_i . Roughly, the placements of these graphs force the strategy to clear them from nodes D and B. We show that it is not possible to do that with the minimal number of searchers in a monotone way. 4 There exists a connected visible search strategy for G_i , using at most 5 searchers, and starting from r_i (i.e., the first step of the search consists in placing a searcher at r_i , and the strategy clears the graph by expanding from r_i). Proof. We introduce some new terminology. Let $i \geq 1$. Removing the root r_i from G_i as well as the edges connecting nodes in the kernel of G_i results in two components. Let L_i be the component that contains the left extremity u_1 of the base of G_i , and let R_i be the component that contains the right extremity u_{2k} of the base of G_i . A straightforward induction on i prove that, for any $i \geq 1$, L_i and R_i are 2-connected. Moreover, for any $i \geq 1$ and any $1 \leq j \leq i$, L_j and R_j are two subgraphs of G_i . This is because G_i contains all G_j 's as subgraphs for $j \leq i$. In fact, as already mentioned in the proof of Theorem 1, removing r_i from G_i , and removing the base of G_i , results in 2(i-1) components $G_1, G_2, \ldots, G_{i-1}, G_{i-1}, \ldots, G_2, G_1$ (cf. Fig. 4). The G_j included in L_i (resp., R_i) is called the jth We prove the following property \mathcal{P}_i : given 5 searchers placed at r_i and in the four nodes of the kernel of G_i , and assuming L_i or R_i is clear, there exists a connected visible search strategy for G_i starting from this situation and using at most 5 searchers, that captures the fugitive. Note that, whereas the placement of the 5 searchers is not connected, the part of the graph that is initially clear, is connected. The proof is by induction on $i \geq 1$. \mathcal{P}_1 clearly holds. Let us assume that \mathcal{P}_j holds for any $1 \leq j \leq i$. Consider \mathcal{P}_{i+1} . We show how to complete clearing G_{i+1} using 5 searchers. By symmetry of G_{i+1} , assume, w.l.o.g., that the fugitive is in R_{i+1} , i.e., L_{i+1} is clear. First, the four searchers in the kernel of G_{i+1} can reach the access to the first branch of R_{i+1} , leading to G_i . If the fugitive is not in this first branch, then the searchers move to the access of the next branch leading to G_{i-1} . And so one. If the fugitive is in none of the branches, then it is eventually caught at the extremity of R_{i+1} . Thus assume that the fugitive is seen in the jth branch when the searchers are occupying the access to this branch. Two searchers guard the access while a third searcher is still occupying the root of G_{i+1} . Two searchers are free. One of them is placed at the root r_i of G_i . The searcher occupying the root of G_{i+1} is then removed from r_{i+1} . The two free searchers are placed at the bottom nodes of the kernel of G_i . Then the two searchers occupying the access to the jth branch are removed, and placed on the top nodes of the kernel of G_j . Since the fugitive is visible, either L_j or R_j is clear. We complete the search by using the induction property \mathcal{P}_i . Hence \mathcal{P}_{i+1} holds. We now describe a search strategy satisfying the hypotheses of the claim, by induction on $i \geq 1$. Clearly there exists a connected visible search strategy S_1 for G_1 that uses at most 5 searchers, and start from r_1 . Let $i \geq 1$, and assume that, for any $1 \leq j \leq i$, there is a connected visible search strategy S_j for G_j , using at most 5 searchers, and starting from r_j . Let us consider the connected visible search strategy S_{i+1} for G_{i+1} defined as follows. A searcher is placed at r_{j+1} . Then two searchers are placed on the left extremities of the base of G_{i+1} . Two other searchers are placed on the two nodes adjacent to these searchers. Then the four searchers move towards the kernel of G_{i+1} . While so, they detect at each crossing of an access to a branch whether the fugitive is in this branch or not. There are two cases. If the searchers cross the access to a branch leading to some G_j where the fugitive is, then they proceed to reach the situation in which one searcher occupy the root r_j of G_j , while the four other searchers are occupying the kernel of G_j . At this point the search completes by applying property \mathcal{P}_j . Otherwise, the four searchers move towards the extremities of the base of G_{i+1} , while the fifth searcher at the root block the fugitive, which is eventually caught. \diamond Let P_n be the *n*-node path. Let $P_{k,n}$ be the graph obtained by replacing every vertex of P_n by a complete graph on k vertices, and replacing every edge of P_n by a perfect matching between the complete graphs corresponding to the two extremities of the edge. A graph $P_{k,n}$ is called a *clique-path*. - 5 For any $n \geq 1$ and any $k \geq 1$: - There exists a connected visible search strategy for $P_{k,n}$ using at most k+1 searchers, and starting from any vertex of the clique corresponding to an extremity of P_n . - If $n \ge k+1$, then any monotone connected visible search strategy for $P_{k,n}$, using at most k searchers, and starting from any vertex of the clique corresponding to an extremity of P_n cannot clear any vertex of the clique at the other extremity of $P_{k,n}$. The proof is straightforward and is thus omitted. For $k \geq 1$, let $I^{(k)}$ be the graph represented in Fig. 6. This representation uses the following coding: - A black point represents a vertex. - A circle represents a clique with the indicated number of vertices. - A thin line between two vertices represents an edge. - A thin line between a vertex x an a clique represents an edge between x and a vertex of the clique; - A double line between two cliques represents a perfect matching between them if they are of same size, or between the smallest one and a sub-clique of the largest one if they are of different size. - a double dotted line between two cliques of same size s represents a path of cliques of size s linked by perfect matchings. - The graphs K_A , K_B , K_C and K_D are pairwise disjoint k-cliques, all subgraphs of the clique K of size 4k + 1, and extremities of clique-paths. - The subgraphs E and F are isomorphic to $G_{\lceil 3k/2 \rceil}$ (the marked nodes are the root, and the two bottom nodes of the kernel of $G_{\lceil 3k/2 \rceil}$). 6 For any $k \ge 1$, there exists a connected visible search strategy for $I^{(k)}$, starting from u and v, and using at most 4k + 1 searchers. *Proof.* The following (non-monotone) strategy uses 4k + 1 searchers. Place searchers at u and v, and use k + 1 searchers to clear the clique-path leading to A. Let P be a shortest path from A to B going through the central clique K. Place a searcher at every vertex of P, using 2k + 3 searchers (in addition to the k searchers occupying nodes in A). If the fugitive is in the subgraph E, then, from Claim 4, one can use 5 searchers to clear E starting from its root. Thus we assume that the fugitive is not in E. Remove all searchers but k + 1 searchers occupying A and B, thus E remains isolated. (Note that the strategy is not monotone because of this step). Use the 3k remaining searchers to clear the clique-path between B and C (cf. point 1 of Claim 5). After this step, k searchers occupy vertices of A, one searcher occupies B and one Figure 6: The graph $I^{(k)}$ searcher occupies C. Place a searcher at D. If the fugitive is in the subgraph F, then, from Claim 4, one can use 5 searchers to clear F starting from its root. Thus we assume that the fugitive is not in F. Use the k searchers at A, plus one extra searcher, to clear the clique-path between A and K_A . At this step, k searchers occupy vertices of K_A , and three searchers occupy B, C, and D. Let us place k searchers at K_D . If the fugitive is in one of the cliques D_i , then remove all searchers but those occupying K_D and D, and use the k searchers at K_D and the 3k remaining searchers to clear the clique-path between K_D and D. Thus we assume that the fugitive is not in one of the cliques D_i . Place k searchers at k_C and k_C and use the k searchers at k_C and the k remaining searchers to clear the clique-path between k_C and k_C . Thus we assume that the fugitive is not in one of the cliques k_C and k_C and k_C and the k_C and the k_C and an Note that, since $I^{(k)}$ contains a 4k + 1-clique, the strategy above is optimal. 7 For any $k \geq 4$, any winning monotone connected visible search strategy for $I^{(k)}$ starting from u and v uses at least 4k + 3 searchers. *Proof.* The proof is inspired from the non-monotony proof for connected invisible search in [17]. In the following, we say that two paths P and P' between a vertex v and a clique are vertex-disjoint if $P \cap P' \in \{v\}$. Let us consider a winning monotone connected visible search strategy S for $I^{(k)}$, starting from u and v. Let us first assume that the root r_E of E is cleared before vertex B is cleared. Let s be the step at which r_E is cleared in S. Let P be a clear path between u and r_E , and let P' be the subpath of P from u to a vertex in A. Since there are k vertex-disjoint paths between B and P', all passing through the clique K of $I^{(k)}$, k searchers have to guard these paths until step s to avoid recontamination. Moreover, from Claim 2, $G_{\lceil 3k/2 \rceil}$ cannot be cleared by a monotone connected visible search strategy starting from x_E and y_E using less than 3k+4 searchers. Thus if r_E is cleared before B then S needs at least 4k+4 searchers. Similarly, one can prove that if r_F is cleared before D then S needs at least 4k+4 searchers. Thus, for S to use less searchers, B must be cleared before r_E , and D must be cleared before r_F . Thus, there is a vertex in K_A that is cleared before any of the vertices B, C, and D. Let x be the first vertex of K_A to be cleared by S, say at step s'. (Note that, while none of the vertices B, C and D are cleared, they belong to the same component of the contaminated part, and thus the fact that the fugitive is visible does not help to clear any of these vertices). Let P_0 be a clear path between u and x at step s'. Let P_1 (resp., P_2) be the subpath of P_0 that goes from u to A (resp., from A_1 to x). Let us assume that, among B, C, and D, D is the first vertex to be cleared in S. Let s'' > s' be the step when D is cleared. Let P'_1 and P'_2 be two vertex-disjoint paths from r_E to two distinct nodes of P_1 . Let P'_3 and P'_4 be two vertex-disjoint paths from r_F to two distinct nodes of P_1 that are as well pairwise distinct from the two extremities of P'_1 and P'_2 . Finally, let P'_5, \ldots, P'_{k+4} be k vertex-disjoint paths from B to k distinct nodes of P_2 . Since $k \geq 4$, these k+4 paths can be chosen pairwise vertex-disjoint, and disjoint from any clique D_i . Thus, for any $1 \leq i \leq k+4$, and for any step in [s',s''], there must be a distinct searcher occupying a vertex of P'_i to avoid recontamination of P_0 from r_E , r_F , or B. Point 2 of Claim 5 says that, starting from a vertex of D_1 , clearing a vertex of D_{3k+2} in a monotone connected visible way requires at least 3k+2 searchers. Hence the total number of searchers used by S is at least 4k+6. Thus, for S to use less searchers, D should not be the first vertex among B, C, and D to be cleared. Similarly, one can prove that for S to use less searchers, C should not be the first vertex among B, C, and D to be cleared. Thus, for S to use less searchers, B must be, among B, C, and D, the first node to be cleared by S. Let s'' > s' be the step when B is cleared. At this step, there is a clear path from x to B, through the cliques B_i — recall that we are assuming that B is cleared before r_E . (Note that while C and D are not cleared, both these vertices belong to the same component of the contaminated part, and thus the fact that the fugitive is visible does not help to clear these vertices). Let P_3 be a clear path from x to B at step s''. We now consider the two cases depending on whether D is cleared before C, or the other way around. The first case assumes that D is cleared before C by S. Let s''' > s'' be the first step when a searcher is placed at D. Let P'_1 and P'_2 be two vertex-disjoint paths from r_F to two distinct nodes of P_1 , and let P'_3, \ldots, P'_{k+2} be k vertex-disjoint paths from C to k disjoint nodes of P_2 . Since $k \geq 2$, the k+2 paths P'_1, \ldots, P'_{k+2} can be taken pairwise vertex-disjoint, and disjoint from any D_i clique. Thus, for any $1 \leq i \leq k+2$, and for any step in [s', s'''], there must be a searcher at a vertex of P'_i to avoid recontamination of P_0 from r_F or C. Point 2 of Claim 5 says that, starting from a vertex of D_1 , clearing a vertex of D_{3k+2} in a monotone connected visible way requires at least 3k+2 searchers. Hence the total number of searchers used by S is at least 4k+4. The second case assumes that C is cleared before D by S. Let s''' > s'' be the first step when a searcher is placed at C. Node C can be reached in two different manners: either along the clique-path from C_1 to C_{3k+2} , or along the clique-path from R_1 to R_{3k} . We consider these sub-cases separately. Figure 7: A graph G such that cvs(G) = 4, but for which any winning monotone connected graph searching strategy requires at least 5 searchers - Assume that C is reached along the clique-path from C_1 to C_{3k+2} . Let P'_1 and P'_2 be two vertex-disjoint paths from r_F to two distinct nodes of P_1 . Let P'_3, \ldots, P'_{k+2} be k vertex-disjoint paths from D to k distinct nodes of P_2 . Since $k \geq 2$, the k+2 paths P'_1, \ldots, P'_{k+2} can be taken pairwise vertex-disjoint, and disjoint from any C_i clique. Thus, for any $1 \leq i \leq k+2$, and for any step in [s', s'''], there must be a searcher at a vertex of P'_i to avoid recontamination of P_0 from r_F or D. Point 2 of Claim 5 says that, starting from a vertex of C_1 , clearing a vertex of C_{3k+2} in a monotone connected visible way requires at least 3k+2 searchers. Hence the total number of searchers used by S is at least 4k+4. - Assume that C is reached along the clique-path from R_1 to R_{3k} . There is a vertex $y \in C_i$, for some i, that is not clear at step s'''. Let P'_1 and P'_2 be two vertex-disjoint paths from r_F to two distinct nodes of P_1 . Let P'_3, \ldots, P'_{k+2} be k vertex-disjoint paths from D to k distinct nodes of P_2 . Let P'_{k+3} be a path from y to P_3 . Since $k \geq 2$, the k+3 paths P'_1, \ldots, P'_{k+3} can be taken pairwise vertex-disjoint, and disjoint from any R_i clique. Thus, for any $1 \leq i \leq k+3$, and for any step in [s', s'''], there must be a searcher at a vertex of P'_i to avoid recontamination of P_0 from p_i , p_i , or p_i . Point 2 of Claim 5 says that, starting from a vertex of P_i , clearing a vertex of P_i in a monotone connected visible way requires at least p_i searchers. Hence the total number of searchers used by p_i is at least p_i in a monotone connected visible way requires Therefore, the monotone connected visible strategy S for $I^{(k)}$ uses at least 4k + 3 searchers. \diamond Let $k \geq 4$. Let $G = I_{u,v}^{(k)*}$ be the symmetric of $I^{(k)}$ with respect to the edge $\{u,v\}$. From Claim 6, there exists a connected visible search strategy for $I^{(k)}$, starting from u and v, and using at most 4k+1 searchers. Therefore $\operatorname{cvs}(G) \leq 4k+1$. On the other hand, Claim 7 states that any winning monotone connected visible search strategy for $I^{(k)}$ starting from u and v uses at least 4k+3 searchers. By Claim 3, this implies that any winning monotone connected visible search strategy for G uses at least 4k+3 searchers, that is strictly more than $\operatorname{cvs}(G)$. This completes the proof of the theorem. The graphs used in the proof of Theorem 2 have a connected visible search number equal to 4k + 1 for $k \ge 4$, thus at least 17. We can however design examples with smallest search number. For instance, one can check that the following holds: **Property 1** Let G be the graph depicted on Fig. 7. We have cvs(G) = 4 and any winning monotone connected visible search strategy for G uses at least 5 searchers. #### 4 Conclusion In this paper, we first prove that the connectedness requirement for monotone visible search leads to a logarithmic factor in the number of searchers needed. The second result is that the connected visible search is not monotone. A quick glance at Table 1 indicates that our results combined with the previous results in this field let only one problem to be solved, as far as connected search is concerned. Namely: is the bound on the left hand side of Equation 1, i.e., $\operatorname{cis}(G)/\operatorname{is}(G) \leq O(\log n)$, tight? In [2], the authors express their belief that, for any graph G, $\operatorname{cis}(G)/\operatorname{is}(G) \leq 2$. That is, the worst case for connected invisible search is actually reached for trees. Up to now, no one was able to prove or disprove this belief. We also want to rise the question of minimality for counter examples to monotony of connected search games. Precisely, what is the minimum k such that there is a graph G with $\operatorname{cvs}(G) = k$ for which any winning monotone connected visible search strategy uses more than k searchers. Trivially, $k \geq 3$. Moreover, according to the Property 1, $k \leq 4$. The same question seems far more complex in the context of invisible search (i.e., node search). Indeed, the minimum value that is known for this setting is... k = 281 (cf. [17]). Is it possible to design counter examples with smaller connected search numbers? Finally, what is the complexity of the decision problems " $cis(G) \le k$?" and " $cvs(G) \le k$?". Both are known to be NP-hard, but are they in NP? #### References - [1] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 200-209, 2002. - [2] L. Barrière, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal Graph Searching. In 29th Workshop on Graph Theoretic Concepts in Computer Science (WG), Springer-Verlag, LNCS 2880, pages 34–45, 2003. - [3] D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey). DIMACS Series in Discrete Mathematics and Theoretical Computer Science 5, pages 33-49, 1991. - [4] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms 12, pages 239-245, 1991. - [5] R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5), pages 72-78, 1967. - [6] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive search games on graphs and related parameters. Theoretical Computer Science vol. 172, No. 1, pages 233-254, 1997. - [7] J. A. Ellis, I.H. Sudborough, J.S. Turner. The Vertex Separation and Search Number of a Graph Information and computation 113, pages 50-79, 1994. - [8] F. V. Fomin, P. Fraigniaud and N. Nisse. Nondeterministic Graph Searching: From Pathwidth to Treewidth. In 30th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 3618, pages 364-375, 2005. - [9] F. Fomin, P. Fraigniaud, D. Thilikos. The Price of Connectedness in Expansions. Technical Report LSI-04-28-R, UPC Barcelona, 2004. - [10] P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching. Proceedings of Latin American Theoretical Informatics Symposium (LATIN), LNCS 3887, pages 479-490, 2006. - [11] L. Kirousis, C. Papadimitriou. Searching and Pebbling. Theoretical Computer Science 47, pages 205-218, 1986. - [12] A. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM 40(2), pages 224-245, 1993. - [13] N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The complexity of searching a graph. Journal of the ACM 35(1), pages 18-44, 1988. - [14] T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture Notes in Mathematics, Springer-Verlag, pages 426-441, 1976. - [15] N. Robertson and P. D. Seymour. Graph minors II, Algorithmic Aspects of Tree-Width. Journal of Algorithms 7, pages 309-322, 1986. - [16] P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width, J. Combin. Theory Ser. B, 58, pages 22-33, 1993. - [17] B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In 5th International Symposium on Algorithms and Computation (ISAAC), Springer, LNCS 3341, pages 908-920, 2004.