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Abstract

We introduce a self-stabilizing algorithm that builds and maintains
a spanning tree topology on any large scale system. We assume that
the existing topology is a complete graph and that nodes may arrive or
leave at any time. To cope with the large number of processes of a grid
or a peer to peer system, we limit the memory usage of each process
to a small constant number of variables, combining this with previous
results concerning failure detectors and resource discovery. We provide
a formal proof of the algorithm and the results of experiments on a
cluster.

Keywords: Distributed Algorithm, Large Scale Systems, Self-Stabilization,
Spanning Tree Construction, Failure Detectors.

∗This work is partially funded by the PCRI/INRIA Futurs - Project Grand-Large and
ACI Grid (French incentive)

†{herault,lemarini,peres,pilard,jb}@lri.fr

1



1 Introduction

Peer to peer networks and grids are emerging large scale systems that gather
thousands of nodes. These networks usually rely on IP to communicate: each
node has a unique address used by other nodes to communicate with it.

Classical distributed applications need a notion of neighborhood. Large
scale systems shall provide such a notion as a basic system feature to address
two issues: provide a list of contacts in the network for each node (their
neighbors) and bound the amount of processes with which each node has
to communicate. The first issue implies that the virtual topology provided
by the system via the neighbor lists should be fully connected, in order
to ensure that although only communicating with its neighbors, any node
may access any information in the system. The second issue arises because
it is not practical to multiplex many communication streams on today’s
operating systems. As a first attempt to address this issue we choose to
build a spanning tree which provides nice properties for efficient diffusion
and routing in peer to peer systems.

Since large scale systems are subject to failures that happen mostly be-
cause of node departures and link congestion, an algorithm that maintains a
topology in such a system needs to tolerate them. A self-stabilizing system is
a system that eventually behaves according to its specification whatever the
initial configuration is. A set of failures (network failures, topology changes
due to process departures or arrivals, or even memory corruptions) leaves the
distributed system in a given configuration. Due to its convergence property,
the self-stabilizing system will then reach a legitimate configuration. From
then on, the system conforms to its specification. The idea of self-stabilizing
systems was introduced by Dijkstra [4]. The way self-stabilization abstracts
any kind of faults by allowing the execution to start from any initial config-
uration provides a suitable tool to handle the high variety of faults that can
happen in large scale systems.

Usually, self-stabilizing algorithms are designed for distributed systems
defined by their topology. Each process has a finite set of communication
links to exchange messages with its neighbors. In our model, we replace the
existence of a complete topology with the notion of neighborhood, based
on resource discovery. No process knows the set of its links and, since this
set is very large, no process attemps to build it. Moreover, if we compose
a higher-level algorithm with ours, it will then benefit from the classical
notion of neighborhood, i.e. we provide it as a service.

This model is consistent with most of the Internet peer-to-peer systems,
where a process may send messages to another one if and only if it knows its
IP address. To discover identifiers, a process may receive them from another
process. Of course, every process needs an entry point in the system. In
this work we abstract it out using a simple resource discovery service that
provides identifiers of other processes to processes that query it.
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Since processes can leave the system at any time, it is necessary for
the neighbors of a process to be able to decide whether it is still part of
the system. Otherwise, the identifiers of crashed processes could not be
removed and would prevent the system from converging. Detecting such
failures in a purely asynchronous system is impossible [7], so in practice,
protocols such as TCP rely on timers, assuming that the Internet is not
really asynchronous. In this paper, we use theoretical devices called failure
detectors [2] to abstract out this partial synchrony: rather than making
timing assumptions, we suppose that the system provides a failure detection
service.

The issue addressed in this work is the following: we consider a large
asynchronous distributed system in which processes communicate by mes-
sage passing and the capacity of the links is bounded by an unknown con-
stant. Every process p has a unique identifier idp and may communicate with
any other process q, if and only if p knows idq. Moreover, every process is
fitted with two services: a resource discovery service that provides process
identifiers, and a failure detection service that provides accurate informa-
tion on the status of processes from their identifiers. In Section 2, we define
formally our computation model. The notion of neighborhood is abstracted
out using these two devices. This means that no process ever builds a list
of all the identifiers in the system, as it is the case classically, as shown in
Section 3. In section 4, we propose a self-stabilizing algorithm in this new
model to build a virtual tree, whose degree is bounded by a parameter δ,
including all the processes in the system, and we prove its correctness in
Section 5. Since we expect our model to bring benefits in terms of scalabil-
ity, we measure the performances of an experimental implementation and
show the results in Section 6. We conclude in Section 7.

2 Model

We denote by (I, <) the totally ordered finite set of process identifiers in
a system and by P ⊆ I the set of correct processes, i.e. those that do
not stop (crash) during an execution. We assume the existence of lossless
unidirectional FIFO links, each having a capacity bounded by an unknown
constant, between each pair of processes. We address the issue of writing an
algorithm as if the channels were of unbounded capacity in a system where
this is not the case in the same way as Afek and Bremler [1].

2.1 Services

The oracle is a formalized version of the concept of resource discovery, as
used in large scale systems. It is intended to replace for the neighbor list
used in classical distributed systems. A process executing a guarded rule can
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query it, and the answer is an identifier in I. However, no property is guar-
anteed on the corresponding process; in particular, it could have crashed.
Obviously, in order to ensure the connection of the virtual topology, the
collection of all the oracles has to satisfy a global property. Formally, if
p queries the resource discovery service infinitely many times, it gets the
highest identifier of P , and potentially others, infinitely often. It is impor-
tant to notice that this oracle does not extend the model in any way over
the classical asynchronous model: indeed, an oracle that enumerates all the
well-formed identifiers in an infinite loop meets the specification.

The failure detector follows the definition given by Chandra and Toueg [2]:
a process can query it as part of the execution of a rule, and it returns infor-
mation on the other processes in the system. This information is generally
unreliable, the constraints depend on the class of detectors in which the
device is. Our model is slightly different from that of Chandra and Toueg
since we cannot afford to have a device that returns a list of potentially all
the process identifiers in the system due to its large size. Therefore, our
detectors provide instead a function suspect : I → boolean. This model
is equivalent to the original one. To map Chandra and Toueg’s model to
ours, the suspect predicate can be implemented as follows: true if the pro-
cess does not belong to the suspect list, false otherwise. Reciprocally, to
simulate Chandra and Toueg’s model in ours, it is enough to build the list
of suspects by applying the suspect predicate to the whole set I.

In this work, all the failure detectors are, according to Chandra and
Toueg’s nomenclature, in class �P, i.e. eventually perfect detectors. In our
model, where all runs are failure-free since all failures are captured in the
initial configuration by the self-stabilization model, this class can be defined
as follows:

Definition 1. A failure detector is in �P if and only if after a finite number
of queries, its suspect function returns true if and only if the given identifier
is in P and this property remains true from then on.

This is a different formalization of an assumption found in all the related
papers. For example, Afek and Bremler [1] suppose that a process knows
whether a link is down and Gupta and Srimani [12] use beacon messages to
maintain the neighbor lists. This assumption is widely considered necessary,
and indeed we prove it in Appendix A.

2.2 Execution

The algorithm is given as a set of guarded rules. Each guard is a boolean
expression that can involve the availability of an incoming message, and
each rule consumes the message (if any), then can modify the process local
state and send messages. We assume a centralized scheduler in the proof for
the sake of simplicity. Note that because of the communication model, no
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two processes can interfere with each other if we consider a more realistic
distributed scheduler, and therefore such an extension is indeed possible.
We assume that the scheduler is fair, i.e. any transition that is enabled
infinitely many times is eventually triggered.

To account for process identifiers that correspond to stopped (crashed)
processes or to no process at all, we adopt the convention that any message
sent to a stopped process is lost and that the only entity in the system that
may send a message is a correct process.

Definition 2. The state of a process is the set of its variables and their
values. The state of a channel is the ordered list of the messages it contains.
A configuration is a set I of process identifiers, a state for each i ∈ I and
a state for each channel ca→b∀a, b ∈ I2.

Definition 3. An execution is an alternate sequence C1, A1, . . . , Ci, Ai, . . .
such that ∀i ∈ N∗, applying transition Ai to configuration Ci yields config-
uration Ci+1.

Definition 4. An algorithm is self-stabilizing to L if and only if (correction)
every execution starting from a configuration of L verifies the specification,
(closure) every configuration of all executions starting from a configuration
of L is a configuration of L and (convergence) starting from any configura-
tion, every execution reaches a configuration of L.

3 Related Works

Besides being interesting in itself, the problem of building a spanning tree in
a system is a basic block used in many higher-level algorithms like routing,
mutual exclusion, etc. It is therefore particularly relevant to self-stabilizing
algorithms since they can be composed, and thus reused.

As an example of an algorithm that relies on this kind of composition,
Dolev and Kat [6] designed a distributed self-stabilizing file system that is
divided into two components: an algorithm that builds a spanning tree,
and a higher-level protocol that makes use of it. The same idea is used
by Shen and Tirthapura, who present their routing algorithm for publish-
subscribe systems [17] as a protocol that needs to be composed with an
existing algorithm that builds a spanning tree. The ability to design algo-
rithms in a modular way is now an acknowledged fundamental feature of
self-stabilization.

Classically, self-stabilizing algorithms are most often designed in the clas-
sical shared memory model. Dolev, Israeli and Moran [5] studied the differ-
ences that have to be taken into account when switching to a message pass-
ing paradigm, suitable for describing a system made of geographically dis-
tributed machines that exchange messages via communication links, which
is currently the only known way to build the large systems we are studying.
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Many algorithms were designed to build a spanning tree in the classical
shared memory model [11]. In addition to this, they all make at least one
hypothesis that we do not want to make, i.e. the existence of a list of
neighbors or a predefined topology that is not a complete graph.

Afek and Bremler’s power supply framework [1] does build a spanning
tree in a self-stabilizing fashion in a message-passing model, but it requires
every process to know the list of all its outgoing links. It also assumes that
the underlying topology is not equivalent to a complete graph. Gupta and
Srimani [12] proposed self-stabilizing protocols to build broadcast trees in
ad hoc networks, again with the same assumptions.

Garg and Agarwal [10] show another method for building a spanning
tree in a message passing model. However, it assumes that the processes
are numbered sequentially, which is not the case in practice. We chose the
strictly weaker and more realistic hypothesis of only requiring a total order
on the process identifiers. Another shortcoming is that part of the algorithm
requires all the nodes to send a message to the root, which would lead to
link congestion in a large scale system.

Existing peer to peer overlays do need to build trees in a way that is
essentially self-stabilizing. The actual structures that are built are usually
tailored for their purposes, e.g. a trie [9], a hash table [8], or a Plaxton
tree [14]. This is one of the reasons that led us to chose this problem for
demonstrating our model.

In order to decide who will be the parent or child of whom, currently
implemented algorithms use ad hoc mechanisms, e.g. Dolev and Kat [6] rely
on IP multicast and Pastry [15] needs a user-provided metric. In these pa-
pers, the resource discovery problem is usually left to the user, or addressed
by an ad hoc mechanism such as IP multicasting. By contrast, we define
a higher-level mechanism called an oracle that provides the calling process
with process identifiers. Our goal in doing so is to enable the design of algo-
rithms that do not make explicit use of the low-level characteristics of the
underlying network. Furthermore, this allows every process to store only a
bounded number of identifiers, thus making our algorithm highly scalable.

To account for the need to know whether a process that has a given
identifier is part of the system, we use failure detectors. Introduced by
Chandra and Toueg [2], they serve to overcome in a simple and elegant
way the impossibility of solving the consensus problem in a purely asyn-
chronous system [7]. They achieve this by allowing processes to access
information, possibly wrong, about the liveliness of the others. Their im-
plementation was studied by Chen, Toueg and Aguilera [3]. Interestingly,
Chandra and Toueg’s view of their failure detectors in practice matches the
self-stabilization paradigm: the system behaves according to its specifica-
tion most of the time and may experience infrequent transient failures. This
can be modeled by initializing it arbitrarily and then assuming a failure-free
run. This is how failure detectors are used in this paper.
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4 Spanning Tree Algorithm

Constants:

− idp : id unique identifier of process p

− δ : N∗ bound on the degree of the tree

Variables: (per process p)

− parentp : id identifier of the parent of
p

− childrenp : setofid the children of p

Messages:

− Exists(id) : sent by root processes
to contact new processes to merge with
them

− Y ouAreMyChild(id) : sent by pro-
cesses to accept a new process as its
child

− Neighbor?(id) : sent by all processes
to check consistency of their neighbors

− NotNeighbor(id) : negative acknowl-
edge of the Neighbor? request

Procedures and functions:

− Neighborhood(p : process) :
setofid =

{idq ∈
childrenp

⋃
{parentp}}\{idp}

− Sanity check(p : process) : V oid =
SC1 if parentp < idp then parentp = idp

SC2 if |childrenp| > δ then childrenp = ∅
SC3 childrenp = {idq ∈ childrenp/idq < idp}

− Detect failures(p : process) :
V oid =
DF1 if parentp 6= idp ∧ Suspect(parentp)

then parentp = idp

DF2 ∀idq ∈childrenp if Suspect(idq)
then childrenp = childrenp\{idq}

− RD Get() : id returns an identifier
according to the specification of the re-
source discovery service

− Suspect(idp : id) : Bool returns true
if and only if p is suspect according to
the failure detection service

Figure 1: Definitions for the Spanning Tree Algorithm

In this section, we present the self-stabilizing spanning tree algorithm.
The tree is distributed among all the processes and described by their parent
and children fields.

We keep the topology free of cycles by means of the following global
invariant : the identifier of a process must be lower than that of its parent
and greater than these of its children. In graph theory, this is known as the
heap invariant.

Roughly speaking, every process is responsible for checking the consis-
tency of its neighborhood, i.e. its parent and its children, using its failure
detector to eliminate stopped processes, making sure its parent considers it
as a child and vice versa.

In addition, every process that is its own parent, i.e. is root, is respon-
sible for connecting to new processes via the resource discovery service that
provides it with identifiers. The root r only sends to the new process p a
connection request message (Exists) if p > r in order to enforce the global
invariant.

The complete algorithm is given in Figures 1 (constants and procedures)
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and 2 (guarded rules). Each process has two fields (local variables): parent,
to store the identifier of its parent in the tree (or its own identifier for a
root), and children, where it writes the set of its children.

The global invariant is enforced by the Sanity check procedure. Line
SC2 simply ensures that childrenp sets initialized with too many compo-
nents are reset. The other procedure, Detect failures, checks that the
processes in the neighborhood of p are still members of the system. This is
the only point where a process sends a query to the failure detection service,
thus a process will eventually check the availability of its neighbors only.
Both procedures are called at the beginning of each guarded rule. This
makes sure that all the rules are executed in a clean environment.

true →
T1 Sanity check(p)
T2 Detect failures(p)
T3 ∀idq∈ Neighborhood(p)

send Neighbor?(idp) to q
T4 if parentp == idp

T5 then let idq : idq = RD Get()
T6 if idq > idp

then send Exists(idp) to q

Reception of Neighbor?(idq) →
N?1 Sanity check(p)
N?2 if idp < idq

then
N?3 if parentp == idp then parentp = idq

N?4 else if idq 6∈ childrenp then
N?5 if ( |childrenp| < δ ) ∨ ( |childrenp| = δ∧

∃idr ∈ childrenp s.t. idr < idq )
N?6 then childrenp = (childrenp \ idr) ∪ idq

N?7 else if idp 6= idq then
N?8 send NotNeighbor(idp) to q

Reception of NotNeighbor(idq) →
¬N1 Sanity check(p)
¬N2 if parentp == idq then parentp = idp

¬N3 childrenp = childrenp\{idq}

Reception of Exists(idq) →
E1 Sanity check(p)
E2 if idq < idp ∧ idq 6∈ childrenp then
E3 if |childrenp| < δ then
E4 childrenp = childrenp

⋃
{idq}

E5 send Y ouAreMyChild(idp) to q
E6 else if {idr ∈ childrenp|idr > idq} 6= ∅
E7 then let ids ∈ {idr ∈ childrenp/idr > idq},

send Exists(idq) to s
E8 else
E9 let ids ∈ childrenp,

childrenp = (childrenp\{ids})
⋃
{idq}

E10 send Y ouAreMyChild(idp) to q

Reception of Y ouAreMyChild(idq) →
Y1 Sanity check(p)
Y2 if parentp == idp ∧ idq > idp then parentp = idq

Figure 2: Guarded Rules for the Spanning Tree Algorithm

There are five guarded rules in the algorithm (Figure 2). The first one is
guarded by true, which means in practice that it is called regularly by each
process. It performs the verifications described above in the neighborhood
of the process.

The purpose of the rules that react to Neighbor? and NotNeighbor is
to maintain the consistency of the process neighborhood. The Neighbor?
message is sent spontaneously, and silently ignored by the receiver if it is
in the sender’s neighborhood. If it is not, the receiver attemps to add the
sender to its neighborhood. If this is impossible, it sends back a negative ac-
knowledgement (NotNeighbor) that causes the sender to delete the receiver
from its neighborhood.
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The rules that handle Exists and Y ouAreMyChild messages control
the merging of trees. Informally, a process p sends Exists(idp) to q in order
to ask q to adopt p. Then q checks whether it should do so (in particular
w.r.t. the global invariant), and whether it can (this requires having less
than δ children). If q should adopt p but cannot, a finer analysis decides
whether q drops a child in favor of p or forwards the Exists(p) message
to one of its own children. In any case, q makes sure that p’s request is
eventually satisfied.

When a process p adds q to its set of children, it sends Y ouAreMyChild(p)
to q. Upon receiving this message, q checks whether it should accept q as
its parent and does so if and only if it does not break the global invariant
and q is root. This last condition reduces the number of topology changes
during the convergence period.

When the system is stabilized, only the process with the highest identifier
is a root and there is a single tree. Every process communicates only with
its neighbors and the only messages transmitted between two processes are
Neighbor? requests. Moreover, only the root continues to query the resource
discovery service. If the root receives an identifier, it is lower than its own if
it is part of the system, so Exists(idroot) messages do not circulate. Every
process checks, through the failure detection service, the availability of its
neighborhood only.

5 Stabilization of the Algorithm

In this section, we prove that our spanning tree algorithm is self-stabilizing
to L, defined below.

Definition 5 (L). Let Max be the process with the highest identifier in
system S, P the set of processes of S and {cp→q,∀p, q ∈ Ps.t.p 6= q} the set
of communication channels. Since the set of processes does not change dur-
ing the executions we consider for the purpose of proving the algorithm, we
refer to the processes as ρ0 . . . ρ|P |−1 where ρ0 = Max and ∀i ∈ [1..|P |−1, ρi

is the process with the highest identifier in P \{ρ0 . . . ρi−1}. A configuration
C is in L if and only if, in C,

∀p ∈ P


p 6= Max ⇒ ∃p1, p2 . . . pn ∈ P s.t. (1)

(p = p1) ∧ (pn = Max)
∧n−1

i=1 (parentpi = idpi+1 ∧ idpi ∈ childrenpi+1)
parentp ≥ idp (2)
childrenp = {q ∈ P s.t. parentq = idp} (3)
|childrenp| ≤ δ (4)

Additionally, ∀p, q ∈ Ps.t.p 6= q, cp→q may either be empty or, if q ∈
neighborhood(p), contain any number of Neighbor?(p) messages (5).

Condition (1) implies that there exists a unique path from any process to
Max. Conditions (1) and (2) imply that Max is the only root and that any
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legitimate configuration satisfies the global invariant. Condition (3) ensures
that any process but Max is a child of another process in the system and
that only processes of the system are in the tree. Condition (5) implies that
no message will break the spanning tree.

The proofs of correction and closure are straightforward. They are given
in Appendix B.

The proof of convergence is done in three steps. Firstly, we prove that
every execution of the system eventually reaches a configuration from which
a few basic properties remain true throughout the execution. Secondly,
we define a notion of stable process that formalizes the fact of irrevocably
choosing a parent. We prove that a stable process remains so and that every
process eventually becomes stable. Thirdly, we prove that a system in which
all the processes are stable eventually reaches a legitimate configuration.

Definition 6 (Consistent configuration). Let C be a configuration of system
S and p be a process of S, the state of p is consistent in C iff |childrenp| ≤
δ ∧ parentp ≥ idp ∧ ∀idq ∈ childrenp, idq < idp ∧ ¬suspect(parentp) ∧ c ∈
childrenp ⇒ ¬suspect(c).

Similarly, a message in a communication channel is consistent if it results
from the complete application of a guarded rule.

Remark 1. Since the global invariant holds for all processes, a consistent
configuration does not contain any cycle, i.e. any set of processes P1 . . . Pn

where ∀i ∈ [1..n− 1], parentPi+1 = Pi ∧ parentP1 = Pn.
It is straightforward to see that from any initial configuration, the system

eventually reaches a consistent configuration. Inconsistent states are han-
dled by procedure Sanity Check, as already discussed. Inconsistent mes-
sages eventually reach their destination because all channels are FIFO and
the scheduler is fair. The only message that can be forwarded is Exists, but
only to a child whose identifier is higher than the parameter of the message,
thus it can only happen a bounded number of times.

For the purpose of proving the algorithm, we consider an execution
starting in a consistent configuration, in which all the failure detectors
are converged and no process ever stops (crashes), therefore suspect(idp)
is true if and only if p does not belong to the system. The spontaneous
rule calls Detect Failures, which eliminates such processes, and new iden-
tifiers are only written in a process field upon reception of Exists(idp) or
Neighbor?(idp), where the message was originally sent by p, which is thus
alive. Therefore, the Detect Failures procedure has no effect during the ex-
ecutions shown below and is not considered. Moreover, the Sanity Check
procedure does not alter the state of a consistent process. Thus, in what
follows, we do not consider the execution of this procedure.

Roughly speaking, in a given configuration, the stable processes will not
change their parents in the rest of the execution and are connected to the
“final” tree.
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Definition 7 (Stable(C)). Let P be the set of processes of system S, V =
{cp→q, (p, q) ∈ P 2} the set of communication channels between any couple
p, q of P 2, and let Max denote the process with the highest identifier. Let
C be a configuration of S. The stable processes of C, denoted by Stable(C),
is the set of processes such that:

p ∈ Stable(C) ⇔

p ∈ P
∧



∀q ∈ P, idq > idp ⇒ q ∈ Stable(C) (Srec)
p 6= Max ⇒ ∃p1, p2 . . . pn ∈ P s.t.

(p = p1) ∧ (pn = Max)
∧n−1

i=1 (parentpi = idpi+1 ∧ idpi ∈ childrenpi+1) (Spath)
parentp ≥ idp (Sparent)
∀q1, q2 ∈ P,Exists(p) 6∈ cq1→q2 (Se)
NotNeighbor(idp) 6∈ cp→parentp ∧NotNeighbor(idparentp) 6∈ cparentp→p (Snn)

Condition Srec implies that p is stable only if processes with higher iden-
tifiers are also stable. This will lead to a progression of the Stable set from
the highest identifiers to the lowest. The Spath condition ensures that stable
processes are part of the tree and, in conjunction with the Sparent condition,
that the path to the root is made of stable processes. Spath also ensures that
the parent of p acknowledges the stability of p, since its parent knows that
p is its child and will remain so (since there is no NotNeighbor message be-
tween p and its parent according to Snn). Condition Se also implies that no
previous connection request (Exists() messages) originating from a stable
process remains in the system. Se and Sn ensure that no process will reject
a child.

We first prove that when a process is stable, it remains so for the rest
of the execution. Then, we prove that the set of stable processes eventually
grows until all processes are stable.

Stable processes remain stable

Theorem 1. Let C0, A0, C1, . . . be an execution of the system. Then Stable(C0) ⊆
Stable(C1).

Proof. By induction. Let us first consider a configuration C0 s.t. Stable(C0) =
{Max} and show that Max remains stable in C1. Srec and Spath are true
for Max.

Se is true because the only place in the algorithm where an Exists
message is sent out is line T6, where this is done only to a strictly greater
process. Snn is true as well because the only place in the algorithm where a
process sends out a NotNeighbor message is sent out is line N?8, where it
does not send it to itself. Sparent is not broken because in all the places in
the algorithm where a value different from idp is written in parentp, namely
N?3 and Y2, this value cannot be lower than idp.
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Let us now consider a configuration C0 such that Stable(C0) = ρ0, . . . , ρk.
Our induction hypothesis is: ρ0 = Max . . . ρk−1 ∈ Stable(C1). We now show
that ρk ∈ Stable(C1).

Since all the higher processes remain stable, Srec still holds. For the
same reason, there are only two ways of breaking Spath: either p changes the
value of parentp, or parentp deletes p from its set of children.

The former requires the execution by p of one of the following lines: 1)
N?3 and Y2 are not executed because parentp 6= idp. 2) ¬N2 is not executed
because there was no NotNeighbor message in cparentp→p.

The latter requires the execution by parentp of one of the following
lines: 1) N?4 is not executed because parentp is stable and thus verifies
condition SN?: if it receives Neighbor? from a stable process q, then q ∈
Neighborhood(p). 2) ¬N3 is not executed because there was no NotNeighbor
message in cp→parentp . 3) E9 is not executed because this requires receiving
a message Exists(idq) s.t. q > p, but then q is stable and thus verifies Se,
i.e. there is no such message.

Sparent cannot be broken because this would require that p change the
value in parentp, which is proven impossible above. Se is not broken because
the only places in the algorithm where an Exists message is sent out are line
T6, where this is done only by roots, and E7, where a message Exists(idq),∀q
can only exist in C1 if there was already such a message in C0, which is not
the case here. Snn is not broken because this would require the execution
of line N?8 by either p or parentp, but this is impossible because p and
parentp are in Stable(C0), moreover parentp ∈ Neighborhood(p) and p ∈
Neighborhood(parentp).

We conclude that Stable(C0) ⊆ Stable(C1).

Eventually all processes are stable
Let C be a configuration where there is at least one non-stable process and
m be the highest non-stable process in C. In this section, we prove that m
eventually becomes stable.

Lemma 2. In an execution starting with C, no process s ∈ Stable(C) s.t.
|childrens ∩ Stable(C)| < δ can send NotNeighbor(ids) to m.

Proof. The only place in the algorithm where NotNeighbor messages are
produced is upon reception of Neighbor?. If s receives this message, then
since ids > idm by definition of Stable and m, s takes m as a child because it
has at least one child lower than idm and does not produce a NotNeighbor
message.

Lemma 3. There exists a stable process p such that |childrenp∩Stable(C)| <
δ such that m irrevocably writes idp in its field parentm and p irrevocably
writes idm in its field childrenp.

12



Proof. The proof of this technical lemma is given in Appendix C.

Corollary 4. m eventually becomes stable.

Proof. m already satisfies conditions Srec, Spath, Sparent and Snn. The only
line in the algorithm where m could send Exists(idm) is T6, but it does not
do so because parentm 6= idm. It is thus enough to show that the remaining
Exists(idm) messages are consumed.

Upon reception of an Exist(idm) message, a process that is lower than
m, i.e. any unstable process, ignores it (line E2). It it however possible that
a stable process s s.t. ids 6= parentm add idm to its set of children and send
Y ouAreMyChild(ids) to it. Then the following properties apply: 1) Since
parentm is now permanently set to another process (Lemma 3), m ignores
this message (line Y2). 2) s eventually executes its spontaneous rule (by
hypothesis on the scheduler) and thus sends Neighbor? to m (line T3). 3)
Upon reception of Neighbor?(ids), s 6∈ Neighborhood(m). This is because
(a) ids > idm and thus ids 6∈ childrenm and (b) ids 6= parentm. Therefore,
m replies by sending NotNeighbor(idm) to s (line N?8). 4) Upon reception
of NotNeighbor(idm), s removes idm from its set of children (line ¬N3).

Toward a legitimate configuration

Lemma 5. Let E be an execution of the system S starting from a configu-
ration C s.t. ∀p ∈ P , the state of p is consistent and p ∈ Stable(C). There
exists a configuration L of E such that L ∈ L.

The proof consists in showing that the last condition on L is verified. It
is given in Appendix D. We conclude that the algorithm is self-stabilizing
to L.

6 Experimental Measurements

We measured the performances of a simple implementation of our algorithm
on an experimental cluster platform. It consists in 150 bi-Opteron machines
linked by Gigabit Ethernet adapters, part of the Grid Explorer platform.
This high-performance cluster allows us to run large scale experiments in
a reproducible way. We consider that such an environment is suitable for
measuring the performance of a system dedicated to large peer-to-peer en-
vironments, since we may carry out large experiments and expect more
performance from the network than would be available in an Internet-wide
deployment. The details about software are described in Appendix E.
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Experimental Method
Measuring the convergence time of self-stabilizing algorithms is not a straight-
forward process. Indeed, since a self-stabilizing system is distributed, gener-
ally no single node has a complete and accurate view of a whole configura-
tion. Since convergence is a predicate on the configurations, determining at
which point of the execution the system has converged may imply commu-
nications. Such communications could modify the behavior of the system,
and may not provide enough accuracy in the measurement.

We instrumented the program implementing the spanning tree protocol
with a logging mechanism to record every modification of the state, either
due to message receptions or to the execution of the spontaneous transition.
This list of states (recorded with the date of the local machine) constitutes
the local history of the node. The logging is done in main memory in order to
minimize the impact on the behavior of the node compared to disk logging,
which requires I/O and much more time. When the user ends the execution,
the processes dump their local histories to disk for post-mortem analysis.

A logical clock mechanism based on Lamport clocks [13] was added to
the system, so that it is possible to extract a configuration consistent with
the real execution from the set of local histories. Processes measure the
physical time since the beginning of the execution using the local physical
clock of the machines, which is assumed to have a jitter smaller than 1ms.
Processes synchronize the start of their execution using a simple broadcast
mechanism.

Running an experiment consists in deploying all the components on the
machines, have all of them wait for a broadcast signal, send it, wait for a
time long enough to reach a configuration where the expected predicate, e.g.
convergence, holds, terminate the experiment, collect the local histories and
do a post-mortem analysis of the collection of histories. This analysis con-
sists in extracting the first configuration (according to the Lamport order)
where the predicate holds, and returning the maximum value of the physi-
cal dates from all the nodes. If the predicate holds in no configuration, the
experiment is run again during a longer time. Once an upper bound is de-
termined, we run the experiment 20 times to obtain the mean and standard
deviation that are used to plot the curves.

In order to simulate the presence of a high number of machines, we ran
several instances of the program on each physical machine. We verified
experimentally that this did not saturate the available CPU and network
resources.

Results

To measure the scalability of the algorithm, we start it each time from
a totally disconnected configuration. This is the worst case: as soon as
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Figure 3: Scalability of the spanning tree algorithm.

some processes start earlier than others the convergence time is shorter. We
compare two heuristics in the only place in the algorithm left up to the
user : the choice of the child that is deleted (line E9) or to which Exists
messages are forwarded (line E7). The first one consists in always selecting
the highest identifier, the second one in randomly choosing an eligible child
following a homogeneous distribution.

The experiment consisted in building binary trees gathering between 50
and 10050 processes, which meant running 1 to 67 instances of the program
on each machine. We present in figure 3 the convergence time and the depth
of the tree for 750 to 10050 processes. This figure shows that the convergence
phase is divided into two stages: at first the main operation is the insertion
of a process in a tree, at this point its depth is optimal, i.e. logarithmic in the
number of processes. This is made more efficient by increasing the degree
and thus giving each process more children slots. When the main operation
becomes tree merging, the depth begins to progress linearly with the number
of tree merging, that is linear in the number of nodes. Figure 3(b) shows
that the second heuristics yields better performances than the first one. We
explain this result below, using other experiments.

Figure 4 displays other characteristics of the algorithm: figure 4(a) re-
flects the average depth of nodes, an indicator of the quality of the trees that
shows that the trees built using the second heuristics have a higher filling
rate, due to the random choice for descending Exists messages. This is why
the second heuristics gives a better convergence time.

Figure 4(b) shows the influence of δ on the convergence time. As ex-
pected, one can see that a higher number of children slots allows the loga-
rithmic phase to last longer, thus improving the performances.

7 Conclusion and Future Works

In this work, we address the issue of building virtual topologies for large
scale distributed systems, like peer-to-peer or grid systems. In such systems
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a node should not have to manage the complete list of participants. For
example, it is not desirable to let a node connect to all others because this
would be too costly in terms of system resources. We propose to build a
bounded degree spanning tree above the virtual complete topology provided
by Internet Protocols.

In order to avoid making unnecessary assumptions to solve the spanning
tree problem, we consider asynchronous message-passing distributed systems
where each node is fitted with the two fundamental services: a resource
discovery service and a failure detector. This addresses in a simple way the
crucial problems of obtaining an entry point in the system and information
about the liveness of other nodes without assuming the presence of user-
provided information (entry point) or partial synchrony (failure detection).

The paper presents a self-stabilizing algorithm that uses only δ + 1 pro-
cess identifiers to build a spanning tree (δ being a bound on the degree of
the tree). We present a formal proof of convergence and performance mea-
surements of a prototype implementation of this algorithm and its services
for clusters. From a theoretical point of view, the main novelty is that no
node of our self-stabilizing algorithm ever knows the list of its neighbors,
thus making it highly scalable. On the experimental side, we show that the
algorithm performs well enough to argue in favor of the actual application
of self-stabilization in practice.

Our intended followup on this work is to design other protocols, building
on it, in the same model, so as to explore its viability and efficiency for
different problems. We will also study other topologies suitable for large
scale systems. It would also be interesting to try to define the notion of
stabilisation time in this model. This would require stronger assumptions on
the resource discovery service, but which ones exactly is an open question.
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A Proof that a failure detector in �P is necessary

Theorem 6. A self-stabilizing algorithm that builds a spanning tree in an
asynchronous system augmented with failure detectors requires these detec-
tors to be in �P.

Proof. We use Segall’s Propagation of Information with Feedback (PIF)
algorithm [16]. It allows any process p to obtain the list of all the processes
in the prebuilt spanning tree.

In the terminology of failure detection, a detector D′ is weaker than a
detector D if and only if there exists a reduction algorithm that transforms
D into D′. Our proof consists in taking any asynchronous distributed system
augmented with a failure detector FD in which a spanning tree can be built
by a self-stabilizing algorithm and show that it is possible to implement an
eventually perfect failure detector from it. As a result, any failure detector
in �P is weaker than FD, which implies that we need an eventually perfect
failure detector to solve the spanning tree problem.

Consider a system in which the spanning tree problem is built by an
algorithm A. Let AP be the following algorithm: in an infinite loop, execute
A then PIF. From AP , let us build a failure detector DAP as follows: when
it is queried, DAP gives as its suspect list all the identifiers in P except
itself and those it obtained from the last completed call to PIF. When A is
stabilized, PIF returns exactly the list of all process in the system and this
property remains true. Thus DAP is then a perfect failure detector, i.e. it
belongs to class �P.

B Proofs of Correction and Closure

Lemma 7 (Closure). Let E = C1, A1, . . . , Ci, Ai, . . . be an execution of the
system. If C1 ∈ L then ∀i ∈ N∗, Ci ∈ L.

Proof. Let us consider the set of legal actions for a process p:

• Guard true.

– T1: Sanity check: the condition in SC1 is false because of Con-
dition (2) of the definition of Land that of SC2 is false be-
cause of Condition (4). If the condition in SC3 was true for
idq ∈ childrenp then, by Condition (3), this would mean that
parentq = idp and thus parentq < idq, which would break Con-
dition (2). Therefore, nothing happens.

– T2: Detect failures: the condition in DF1 is false because Con-
dition (3) of the definition of Limplies all children of p are in P .
The condition in DF2 is false because if p 6= Max, Condition (1)
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of the definition of Limplies that the parent of p is in P , and if
p = Max, Condition (2) implies the parent of Max is Max, and
thus is in P .

– T3: Neighbor?(p) messages are sent in communication channels
cp→q for all q ∈ neighborhood(p), which matches the condition
on messages in L.

– T4: because of Conditions (1) and (2), the condition is only true
for Max. However, by definition of Max, there is no q ∈ P
s.t. idq > idMax. Therefore, Max does not send a message to a
process in P . It can send an Exists message to a stopped process,
but then it is lost and thus does not contradict the definition.

• Reception of a Neighbor? message: for Sanity check (N?1) see above.
The condition in line N?2 cannot be true because of the condition on
messages in a legitimate configuration: p can only receive a Neighbor(q)
message from a process q ∈ Neighborhood(p). Notice that consum-
ing the Neighbor? message could not make the resulting configuration
illegitimate since it does not break the condition on messages in L.

• All other guards are closed by definition of L.

Lemma 8 (Correction). Let E be an execution of the system starting in
configuration C. If C ∈ L then E verifies the specification.

Proof. First, notice that because of closure (Lemma 7), it is enough to prove
that any legitimate configuration is correct with respect to the specification.

Conditions (1) and (2) of the definition of L imply the existence of a
unique root, namely Max. Condition (1) implies the existence of a unique
path from any node to the root. This means that in any legitimate configu-
ration, the topology described by the processes is a tree. By Condition (4),
the degree of this tree is bounded by δ.

C Proof of Lemma 3

Proof. Suppose parentm 6∈ Stable(C). Then, by definition of m, parentm <
idm, and thus the next execution of Sanity Check will reset parentm to idm.
This eventually happens because of the spontaneous rule. Subsequently, m
will only accept a parent greater than itself: the check is performed in each
place in the algorithm where a write operation is performed on parentm.

Suppose parentm = idm, i.e. m is root. Then m satisfies the following
properties: 1) m executes its spontaneous transition an infinite number
of times. This is true by hypothesis on the scheduler. 2) As part of the
spontaneous transition, m queries its oracle (line T5). Since it does so an
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infinite number of times, m gets the address of at least one process h, higher
than itself (idh > idm) by definition of the oracle. 3) m sends an Exists(idm)
message to h (line T6).

Let us now turn to r, the receiver of one of the Exists(idm) messages
that are sent out by m. There are three cases: 1) r has less than δ children.
It then adds m to its set of children and sends Y ouAreMyChild(idr) to it
(line E4). 2) r has δ children and none of them is greater than m. It then
also adds m to its set of children and sends Y ouAreMyChild(idr) to it (line
E9). 3) r has δ children and at least one of them, t, is greater than m. This
implies that t is stable. Then r forwards the Exists(idm) message to t (line
E7).

Since the forwarding only takes place downwards in the tree and among
stable process, it can only occur a finite number of times. Thus, eventually a
stable process u writes idm in its set of children and sends Y ouAreMyChild(idu)
to it. Upon reception of this message, since idu > idm, if parentm is still
idm then m sets parentm to idu (line Y2).

Now suppose parentm ∈ Stable(C) and let us examine the possibilities
for m to write another value into this field. There are three places in the
algorithm where such a write operation takes place: 1) In the Sanity Check
procedure, parentm is erased if it is lower than idm, which is not the case
here. 2) Upon reception of Y ouAreMyChild, a write operation can only
take place if parentm = idm, which is not the case here. 3) Upon reception
of NotNeighbor(idp), if idp = parentm then parentm is reset to idm (line
¬N2). However, by Lemma 2, no such message is produced. Therefore, this
case cannot happen.

Since parentm = idp holds for the rest of the execution, idm ∈ childrenp

immediately follows.

D Towards a legitimate configuration

We prove that a system started in a configuration where all processes are
stable eventually reaches a legitimate configuration.

Proof. Spath is the same as condition (1) of the definition of L and Sparent

is the same as condition (2). Condition (4) is satisfied because all processes
are always in a consistent state during E by assumption.

If in C, condition (3) is not satisfied, then ∃p, q ∈ P s.t. idp ∈ childrenq∧
idq 6= parentp. If p 6∈ P , process q eventually rejects p from its children
by executing DF2. If p ∈ P , process q eventually rejects p from its chil-
dren: q eventually sends Neighbor?(idq) to p, and p eventually answers
NotNeighbor(idp) to q (because idq 6∈ childrenp since q and p are in a
consistent state and it is impossible that idp < idq ∧ idq < idp), and then q
rejects p from its children. Thus, every process eventually satisfies condition
(3). Moreover, if a process satisfies condition (3) in some configuration of
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E, then this process satisfies this condition in all subsequent configuration.
Indeed, a process p can add a process q to its children iff p receives a message
Exists(idq). But this cannot happen because of condition Se.

Thus there exists a suffix E′ of E s.t. in all configurations of E′, condi-
tions (1), (2), (3) and (4) are satisfied.

Conditions Snn and (3) implies that in all configurations of E′, we have
∀p, q ∈ P s.t. p 6= q, Notneighbor(idp) 6∈ cp→q. Moreover, condition Se

implies that in all configurations of E′, ∀p, q, r ∈ P s.t. p 6= q, Exists(idr) 6∈
cp→q, and so there exists a suffix E′′ of E′ in which: ∀p, q, r ∈ P s.t. p 6=
q, Y ouAreMyChild(idr) 6∈ cp→q. Thus, condition (5) of the definition of L
is always satisfied in E′′.

E Details on the experiments

E.1 Algorithm

We measured the performances of our algorithm on a straightforward im-
plementation. The only part that requires explanations is the spontaneous
rule. Classically, it is triggered by a timeout. We use a simple heuristic
to dynamically adapt the duration of this timeout to the activity of the
system. It takes five time arguments, namely initial, minimum, maximum,
increment and decrement. At startup, the process triggers the spontaneous
rule with a period of initial time units. Every time the process changes its
state, it subtracts decrement from its current timeout, with a lower limit
of minimum. Every time the application of the spontaneous rule does not
change its state, it adds increment to its timeout value up to maximum.
Since the algorithm induces state modifications only when the system has
not converged, this heuristic is expected to reduce the time lost in waiting
for a message from a process during the convergence phase, and lower the
amount of processor and network usage when convergence is achieved.

E.2 Services

In order to run the protocol in a real Internet-based network, one has to
implement the two abstractions of which it makes use: the resource discovery
service and the failure detector.

We implemented a simple version of a failure detector, as proposed by
Chen, Toueg and Aguilera [3]. In their paper, each monitored process knows
from the beginning that it should send heartbeat messages to its monitor pro-
cess. The latter considers that the former is alive if it receives a heartbeat
message before a given time computed as a function of the networks charac-
teristics, that it permanently keeps estimating, and of the quality of service
requested by the user. We adapted this algorithm to our needs by moni-
toring only the processes that need it and by not suspecting the processes
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initially.
Another assumption of the protocol is the existence of a resource dis-

covery service to provide new process identifiers when processes arrive in
the system. We assumed that this service is eventually reliable, i.e. that
every process which queries the service infinitely often will obtain infinitely
often idMax, where Max is the process that has the highest identifier in the
system. It may obtain any other identifiers as well.

We designed our resource discovery service to be efficient on a cluster,
since this is the experimental testbed we used. Each machine that runs at
least one process of the spanning tree algorithm runs a resource discovery
daemon. These daemons communicate with each other through multicast
channels.

Each resource discovery daemon maintains a bounded list of process
identifiers. Every time a process needs to query the resource discovery ser-
vice, it sends the query (which includes its own identifier) to the daemon
running on the same machine. This daemon selects an identifier in its list
and returns it to the caller. Regularly, every daemon randomly chooses an
identifier in its list and multicasts it to all the other daemons. Every time
a daemon receives an identifier (from a process querying for another pro-
cess, or from the multicast channel), it updates its list using an LRU sorting
algorithm.

This algorithm introduces a bias in the answers from the daemon (be-
cause of the LRU reordering). Processes that query the daemon are more
likely to appear in the answers of the other daemons. This is suitable for
our spanning tree protocol, since only the processes that root of their trees
request new identifiers. This makes roots likely to obtain each other’s iden-
tifier and thus facilitates tree merging.
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