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Abstract. We consider the deterministic finite tree-automata corre-
sponding to the atomic predicates of the monadic second-order logic
for graphs of treewidth at most k. For each of these automata, we give
the first non trivial upper bound on its minimum number of states. Our
bounds rely on a well specified set of operations that transform a tree-
decomposition of width at most & into a proper tree (i.e., a binary tree
with no unary branching). Our bounds also rely on a precise labeling sys-
tem that assigns labels of length O(k?) to the nodes of the proper tree
such that all the information about the tree-decomposition distribute
well over the proper tree. Every automaton is described by using either
the standard representation by transition table, or by a recursive proce-
dure that captures the behavior of the automaton. In the latter case, the
procedure simply writes a record value at each node, during a bottom-up
traversal of the tree. Each of these record values corresponds to a unique
state. In our approach, there is no need of translations from graph vo-
cabulary to tree vocabulary, as opposed to all the other approaches we
are aware of in the same context.

1 Introduction

The notion of treewidth was defined by Robertson and Seymour [RS86] in the
context of their investigations in the graph minor theory. Many of the graph
minors series results are discussed in [Joh87] in the context of algorithmic com-
putational complexity. Roughly speaking, treewidth measures how close a graph
is to a tree. Courcelle [Cou92] proved that the treewidth of a graph is related
to another parameter measuring the width of the expression of a term in an
algebra. Earlier results [Don65, TW68] established an equivalence between the
formulas of the monadic second-order logic (MSOL) and finite automata on the
terms of free algebras. All these contributions together gave raise to new ap-
proaches in algorithmic complexity of graphs. One of these approaches relies on
the decidability in linear time of MSOL on graphs of treewidth at most k. MSOL
is the extension of first-order logic by second-order variables (denoted here by
uppercase letters) that range over subsets of the domain. Corresponding atomic
formulas of the form X (z) are introduced for specifying that the element z of the
domain belongs to the subset X. MSOL is powerful enough to express various
NP-complete properties ([Cou97a,Cou97b]).
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The idea behind the decidability in linear time of the formulas of MSOL on
graphs of treewidth at most k is the following. For fixed k, all graphs of width
at most k can be transformed into O(n)-node trees inside which the original
graphs can be retrieved. The nodes of such a tree are encoded using a quantity
of information that depends on k only. Hence, these trees can be run by finite
tree-automata in time O(n).

However, linear-time decidability of MSOL on graphs of treewidth at most
k, remains hard to deal with for concrete algorithmic implementations. In par-
ticular, no practical bounds are known for the time required to achieve the con-
struction of the automaton, not even on the number of states of the automata
corresponding to the atomic predicates. The objective of this paper is to derive
such bounds.

The literature suggests two main directions for deriving an algorithm from
an MSOL-formula interpreted over graphs of bounded treewidth. One approach
is inspired by the work of Feferman-Vaught [FV59] and Shelah [She75]. It is
based on the recursive computation of the boolean reduction sequence [Cou90].
The second approach interprets a class of bounded treewidth graphs inside the
class of labeled binary trees [ALS91]. Our approach is inspired from this latter
method.

When dealing with automata in a practical way, the two significant factors
are the size of the alphabet, and the size of the state set. In our work, we use
a number of predicates that is at most 2(k + 1)(k + 2) + O(1) to interpret a
graph of treewidth at most k£ into a binary tree. Both the transformation of
the tree-decomposition into a binary tree, and the labeling system, are specified
using a set of well defined operations. We are interested in measuring the impact
that our specification has on the size of the automata corresponding to the
atomic predicates. It is obvious that reducing the size of the state set of the
atomic automata contributes in avoiding the blow-up of the state set of the final
automaton. Since, we are able to “write” the automata corresponding to the
atomic predicates via a direct interpretation in the tree, without any rewriting
of formulas from one vocabulary to another, our work is the first that allows an
interpretation of a graph class into trees without the use of the heavy and rigid
formalism of translation schemes. The reader interested in how such a scheme is
defined is referred to [Cou97a,Mak04].

1.1 Owur framework

All considered graphs are undirected, have no isolated vertices, but can have
loops and multiple edges. Limiting ourselves to undirected graphs is only for the
sake of simplicity of the presentation.

We are interested in solving decision problems on input graphs of bounded
treewidth. The goal of this paper is to derive bounds on the space resource needed
to achieve the construction of the automaton corresponding to the formula ex-
pressing a graph property in the monadic second-order logic. Input graphs are
assumed to be given together with their tree-decomposition. Note that deter-
mining whether a graph has treewidth at most k£ is NP-complete if k is part
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of the input, but decidable in linear time for fixed k& ([Bod96]). In case of a
positive answer, a tree-decomposition is produced by the algorithm in [Bod96].
However, this linear time is not practical because of large constants depending
on k. Since the tree-decompositions we need do not have to be optimal, one can
use polynomial-time approximation algorithms for treewidth. The best known
approximation factor is O(v/log opt) [FHLO5].

1.2 Our results

There are two main contributions in our work. The first contribution is a tech-
nique for preprocessing the tree-decomposition in order to obtain a labeled binary
tree that can be processed by a tree-automaton. This is done by applying a set of
well defined operations that transform the tree-decomposition of the graph into
a binary tree over which all the information on the tree-decomposition distribute
in a well defined layout.

Our second contribution is a description of the automata associated to the
atomic predicates. The construction of the final automaton is obtained by the
classical inductive scheme where logical connectives are associated to automata-
theoretic operations. In our approach, the automatic inductive scheme construct-
ing the final automaton “reads” the graph-formula itself instead of reading a tree-
formula obtained by translation from one vocabulary to another. Our description
of the automata is obtained via a direct interpretation in the corresponding tree
and makes useless the definition of intermediary sub-formulae, as opposed to,
e.g., [ALS91]. Moreover, we reduce the construction in [ALS91] into a unique
phase of interpretation. We obtain the following result on the number of states,
where DFTA stands for deterministic finite tree-automaton:

Theorem 1.

(i) There exists a DFTA with at most 4k + 7 states that decides the equality
relation on any k-bounded treewidth graph.

(it) There exists a DFTA with at most 2k* + Tk + 8 states that decides the
incidence relation on any k-bounded treewidth graph.

The adjacency relation is not part of our vocabulary. The formula adj(z,y)
is expressed by “V(z) AV (y) A {3e (E(e) A inc(z,e) Ainc(y,e))}”, where inc,
the incidence relation is an atomic predicate in our vocabulary. The automatic
inductive process of constructing automata computes the set of states of the
product of two automata as the cartesian product of the two state sets. The (de-
terministic) automaton corresponding to a formula of the form 3X ¢ is obtained
by projecting (with respect to X) the automaton corresponding to . If the set
of states of the latter is S, the set of states of the former may be 25, the power
set of S (see [ALS91] for more details). Hence, the theoretic process of con-
structing automata yields a number of states for the automaton corresponding
to adj(z,y) that can be 2(2*"), which is unacceptable if we hope to go further
in the construction of automata corresponding to more complex graph proper-
ties. We prove that the minimum number of states of an automaton deciding
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the adjacency relation on any graph of treewidth at most k, is actually O(k?).
This result is obtained by a direct interpretation of the adjacency relation in the
corresponding tree. We believe that many (simple) properties can be interpreted
by analyzing what is the exact set of conditions in the tree that is equivalent to
the considered graph property.

Theorem 2. There exists a DFTA with at most 2k%+9k+10 states that decides
the adjacency relation on any k-bounded treewidth graph.

2 Definitions and notation

Tree automaton on proper trees. - A proper tree is a binary tree with no
unary branching,.

A (DFTA) on a proper tree is a quintuple M = (S, X, §, sg, A) where:
— S is a finite set of states,
— X is a finite set of letters, the alphabet, disjoint from .S,
— ¢ is a transition function § : S x S x X — S,
— s is the initial state, s € S,
— A is the set of accepting states, A C S.

Let M = (S, X,4,s0,A) be a tree-automaton. Let T be a proper tree whose
nodes are labeled with elements from Y. M executes T' by assigning states to
its nodes during a bottom-up traversal. More precisely, a leaf with the label a,
is assigned the state d(sg, s0,a). For every node v, if v has label a, and if s
and s, are the states assigned to the children of v, then v is assigned the state
0(s1, 8r,a). The automaton M accepts T iff the state assigned to its root is in A.
A tree-automaton executes a tree in time that is linear in the size of the tree.

Graphs as relational structures. - A graph G is represented by the relational
structure (D, VY E9 PP, ... B¢, Inc®) where:

— DY is the domain of the structure, namely the set of both vertices and edges,

— V and E are unary predicates distinguishing vertices and edges respectively.
That is, V(z) holds iff  is a vertex, and E(z) holds iff z is an edge,

- P]-G(x), 1 < j < p, are unary predicates that give the possibility to define
subsets of the domain of distinguished vertices or edges.

— Inc® is a binary predicate defined by: Inc%(z,y) holds iff z is a vertex
incident with the edge y.

A sequence of predicates defining relational structures for a language £ is called
a vocabulary for L. If o is a vocabulary for £, we denote by L(o) the set of
MSOL-formulas expressed over o. In the sequel, we denote by G the relational
structure associated to the graph G.

The MSOL language on the relational structures defined above for graphs is
strictly more expressive than the one on graph relational structures with only the
vertices in the domain. For instance, the property of a graph of being hamiltonian
is expressible in the former but not in the latter language.
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The treewidth of a graph. - A tree-decomposition of a graph G is a pair
(T, F), where T is a tree and F is a family of subsets of D (the domain of G)
indexed by the nodes of T' satisfying:

- UXteth =D

— For any y such that E(y) holds, there exists a unique X; € F such that
y € Xy; and if z satisfies Inc(z,y), then z € X;.

— For all z € D the subgraph of T induced by {t|z € X;} is connected.

The width of a tree-decomposition is max {z|z € X;,V(z) holds}| —1

The graph G has treewidth w if w is the smallest integer such that G has a
tree-decomposition of width w.
An example is depicted in figure 1 in the appendix.

3 From a tree-decomposition to a proper tree

We derive an algorithm that, given a fixed integer k and a tree-decomposition of
a graph G of width at most k, produces a labeled proper tree whose labels encode
all the information about the tree-decomposition. The starting point of our work
is the paper by Arnborg at al. [ALS91]. As far as concrete implementation is
concerned, there is a lack, in their work, of the specification of well defined
operations to generate the proper trees. We define such a set of operations. This
enables us to generate trees with a shape that is more constrained.

All considered tree-decompositions have no bag with a single vertex. Indeed,
if such a bag exists then the vertex it contains, appears in at least one neighbor
bag (since there are no isolated vertices in the graph). Then, we tansform the
tree-decomposition to a one with the same width by fusing the two bags (and
contracting the edge between them).

3.1 The preprocessing operations

The terminals coloring - . Let G be a graph of treewidth at most k, and let
(T, (Xt)tevy) be a tree-decomposition of G of width at most k, rooted at t9. For
each t, all the elements in X; are assigned a color as follows. Every vertex has
a color that is the same over all the bags containing it. Two distinct vertices
occurring in adjacent bags receive distinct colors. As mentioned in [ALS91], this
can be done using at most 2(k + 1) colors. We denote by Ci, ..., C, the assigned
colors. We arrange the set of these colors in a list fixed arbitrarily. For each
t # to, we denote by S(¢) the induced list of colors occurring in the parent bag
of X (t). We set S(to) = 0. For each ¢, we also denote by ADJ(¢) all the pairs
of adjacent colors. Hence, a pair {z,y} of adjacent vertices is tracked by the
corresponding pair of adjacent colors in all bags containing both z and y. We
use the notation [i — j] to denote that color 7 is adjacent to color j with ¢ < j. For
each t, we organize ADJ(t) in a list with the property that, a pair [ — j] occurs



6 Selma Djelloul and David Soguet

before the pair [ir — j/] iff i < ir. A tree-decomposition with such a coloring is
said to be colored at the terminals.

Let (T, (X)) be a rooted tree-decomposition colored at the terminals. For
each node ¢, we denote by ¢(t) the number of children of ¢. Fix a BF'S ordering of
the nodes of T'. If c(t) # 0, let t1,2, ... be the induced ordering of the children of
t, from the leftmost to the rightmost. The size of the bag X; is denoted by z(t).
For every bag X (), we fix an enumeration ay ;,as s, ..., a5, of its elements.

Quartering a bag - . Let X; be a bag. Consider a path L(t) with z(¢) — 1 nodes:
li(t),. .., lp)—1 rooted at 11(t), and, if (t) > 3, l;11(t) is the left child of I;(t),
1<i<z(t)—2. If ¢(t) = 0, then I1(¢) has also the name €(t). If ¢(t) # 0, add
a new vertex denoted €(t). In this case, we make I;(¢) the left child of e(t). If
c(t) > 2, let R(t) be a path with c(t) — 1 nodes: r1(t),...,rc¢)—1- Make ry(t)
the right child of €(t), and if ¢(t) > 3, make 7;41(t) the right child of r;(¢),
1 < i < ¢(t) — 2. All the nodes of an L(t)-path (resp. R(t)-path) are of type |
(resp. r). A node of the form €(¢) has type b. It has both types b and | if ¢(t) = 0;
and it has both types b and r if ¢(¢) = 1.

The binary tree obtained by applying the previous operation is called the quarter
with respect to the node t (figure 2 in the appendix).

Fizing the terminals of a quarter consists in adding | X (¢)| leaves to the quarter
with respect to ¢ as follows. The new nodes are organized in a list that is in
bijection with the list {a1,:, a2, ..,0,(),¢}. Assign the type t (standing for
“terminal”) to all these new nodes and make a, () the left child of I,)—1(2),
and for every i, 1 <14 < z(t) — 1, a;; the right child of ;(¢). The quarter Q(t) for
which the fixing terminals operation has been applied is denoted again by Q(¥).

Preprocessing a tree-decomposition (T, (X;);) consists in performing the fol-
lowing;:

Stepl: Define a terminals coloring.
Step2: For each node t, fill the lists S(t) and ADJ(t).
Step3: For each node t, construct the quarter Q(¢) and fix the terminals for

Q(#).

3.2 Constructing and labeling the proper tree

In binary words, we number the bits starting from 1. We define how all the
quarters are connected together. This is performed using:

The affiliation operator. - Let @ and T be two binary trees. Let go be the root of
Q, and let ¢t be a node of T that has not a left (resp. right) child. The left (resp.
right) affiliation of Q in T at t, is the operation that consists in connecting the
root of @) and t making go the left (resp. right) child of ¢. The resulting binary
tree is denoted by @ 7 [T, t] (resp. [T,t]'\. Q).

Now, the preprocessing phase has been performed and we have a family
(Q(t))tevy of quarters with fixed terminals for all ¢ € Vr, together with the
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corresponding family (S(t), ADJ(t))¢cv, defined above. The following procedure
is then called. It proceeds in a top-down traversal of T'. During this traversal, at
each node ¢, two 0, 1-words, W (t) and A(t) are set.

— W (t) has length q. The i** bit of W (t) is 1 iff the color C; € S(t).

— A(t) has length ¢(q + 1)/2. Tt is decoded as a sequence of ¢ words of length
q,(q¢—1),...,1respectively. The first word encodes the adjacency list of color
1 (in X (t)), the second word encodes the adjacency list of color 2, etc. Hence,
foreachi, 0<i<(¢g—1)andforeachyj, i <j<(¢g—1),[(i+1)—(j+1)] €
ADJ(t) iff the bit of A(t) at position (2¢ —i+1)i/2+ (j —i) + 1 is set. This
means that, in X(t), there is an adjacency between the colors (i + 1) and
(G+1).

Start with ¢ = to and B := Q(to), where to denotes the root of the tree-
decomposition. All words W (t) and A(t) are zeroed.

quarters2ptree(T,t,Q, B) {
begin
For each j in S(t)
set the j'* bit of W(t);
For all i:=0...(¢—1)
For all j:=i...(g—1)
if [(i+1)-(j+1)] € ADJ(t) then
set the bit of A(t) at position (2¢—i+1)i/2+ (j—1i)+1;
if ¢(t) #0 then
begin
if ¢(t) =1 then B:= [B,e(t)]\ Q(t');
else
begin
B :=[B,r.z-1]\ Q(t°®);
For all i:=1...¢(t) —1
B:=Q(t") /[B,ri(t)];
end
end
For all i such that t! is a child of t
quarters2ptree(T,t),Q, B);
end; }

The tree depicted in figure 3 of appendix is an example of a proper tree
obtained from the tree-decomposition in figure 1.

The previous procedure runs in a time linear in the number of nodes in T'. It
produces a proper tree B together with the family (W (¢), A(t))tcvy of 0, 1-words.
The number of nodes in B is linear in the number of nodes in T'.

The labeling system. - We arrange the PJf s predicates in a list fixed arbitrarily.
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The nodes of the proper tree are labeled by words @ € {0,1}+a(a+1)/2+p+6
where p is the number of the P]fs and ¢ is the number of the colors assigned in
the preprocessing phase. The labels are of the form tvecap. We begin with all
labels cleared with zero. The proper tree B is processed in a top-down traversal.

— & = t1tatsty is the type encoding part. The ts bits correspond to the types
b, t, | and r respectively. For instance, a node with both types b and r has
a label beginning with 1001.

— The bit v (resp. e) is set iff the node corresponds to a vertex (resp. an edge)
in the graph. Note that, in case one of v or e is set then, the type encoding
part is 0100.

— The part p encodes the membership to the Pjs of the vertex/edge the current
node represents. The p/;s flags are arranged in the same order as in the list
of the P/s.

— The color encoding part ¢ has length q. If v is set, and if C; is the color
that the corresponding vertex gets in the preprocessing phase, then the i*?
bit in € is set. If e is set, and if C; and C are the colors of the ends of the
corresponding edge (with i = j in case of a loop), then the it* and j** bits
of ¢ are set. The last case where ¢ has bits set to 1 is when the current node
corresponds to the root of a quarter Q(s). This case occurs iff the current
node has bit ¢; set. In this case, we let ¢ = W (s).

— The adjacency encoding part @ has length ¢(¢ + 1)/2. It maintains, for each
node of type b, the lists of adjacency in terms of colors. More precisely, if the
current node corresponds to the root of a quarter Q(s), then we let a = A(s).

Labeling all the proper tree B is performed in a unique traversal of the tree.
At each node, the quantity of information to be encoded is of length at most
(k+1)(2k +5) + p+ 6, where k is the treewidth of the input graph. Hence, the
labeling of the tree is accomplished in a time linear in the size of B.

4 The atomic automata

In this section, we give the automata that correspond to the atomic formulas
expressed on graphs and interpreted in proper trees.

If the formula expresses a property of the graph then it is a sentence (a closed
formula). Every formula can be (re)written using only the logical connectives —,
A and 3. The theoretic automata-operations that are the complementation, the
product and the projection are associated to these three connectives respectively.
This suggests that the process of constructing the automaton is automatic as
soon as the automata corresponding to the interpretation of the atomic predi-
cates are given. All the individual variables in a formula can be treated as set
variables which are constrained to be singleton sets. Hence, we deal with set
variables only. All the nodes of the tree are labeled by the labeling system in
section 3.2. We prefix the labels by 2 bits. The first bit of this prefix, specifies
the node of the tree that interprets one of the singleton set variables. If a node
has the second bit in the latter prefix set to 1, then it belongs to the set of nodes
that interprets the second set variable.
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Remark 1. On any graph G, atomic formulae of the form X (x) where X is a set
variable or one of the fixed sets V, E or P;, 1 < j < p, are decidable by a DFTA
of at most 3 states.

The transition table of the corresponding automaton is given below. The first
and second columns give the states that have been assigned to the left and right
child of the current node. The third an fourth columns are the values of the
first and second bit in the label of the current node. The character — is the
“don’t care” symbol. The value of the transition is taken from the first row that
matches.

|left|right|bit 1]bit 2]| 6]

So | So 0 — [|So
sa| so | O | — |82
So | S2 0 — |82
S0 | So 1 1 89
— — — — ||s1

The set of accepting states is {sg , s2}.

Wee need the following operations on 0, 1-words.

— The projection. - Let [ be a positive integer, S C {1,...,l} a set of s fixed
positions and w € {0,1}!. We denote by pr, (w) € {0,1}° the projection of
w on the dimensions in S.

— If w is a binary word, we denote by subwrd(w,i,n) the sub-word of w of
length n starting from the bit at the position i.

— Recall that, in A(t), we set the bit at the position (2¢—i+1)i/24 (j—i)+1
iff, in the bag X, color i is adjacent to color j (j > 7). It is convenient
to view this position number as being accessed by the following operator,
Dipl(Base, Jump),. The Base argument is a word of length g(g + 1)/2. The
Jump argument is a non-negative integer. It indicates that the information
we want to access in the Base argument has to be searched immediately after
(2q — Jump + 1)Jump/2 bit-positions further from the beginning of Base. The
value of the Dipl argument is at least the value of Jump. It is used to perform
the final displacement that accesses the desired bit. The amount of this
additional displacement is (Displ — Jump + 1). For instance, if we want to
encode that, in X;, color 3 is adjacent to color 7, we set, in A(t), the bit at
the position 6(A(t),2)q. If we want to encode that, in Xy, color 1 is adjacent
to color 1, we set, in A(t), the bit at the position 0(A(t),0)q.

Sketch of the proofs of theorem 1 and theorem 2. - The labels are of
lengthl = q+q(qg+1)/2+p+8. Let f : Vg — {0,1} be the corresponding
mapping. For each of the proofs, we define below a set S of bit-positions. Let
g = pr;s o f. We consider the resulting labels. The corresponding binary words
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are renumbered starting from 1. Each of the automata will be described using a
recursive function whose argument is a proper tree labeled by g. For the sake of
simplicity, each of the three functions will be referred to by the same name run.
The functions assign a record value to each node, during a bottom-up traversal.
For each function, we define below the set of record values it uses. The field
values in the records have the following nice feature. If the transition of the
corresponding automaton is symmetric relatively to the states that have been
assigned to the left and right child, then run captures all the corresponding rows
of the automaton by the result of a single operation. The operands of the latter
operation are field values from the records that have been assigned to the children
of the current node. The functions are entirely described in the appendix.

In our notation, the fields are separated by the dot symbol. If R is a record,
we write R_,; for the first field, R_,» for the second one, etc. If B is a proper
tree, we denote by B; (resp. B,) the left (resp. right) subtree of B.

In the proof of theorem 1,

i) §=1{1,...,4,7,...,q + 8}. The records have two fields. The first field
“tells”, for each node, whether it is or not in the first/second set variable.
At each node corresponding to a vertex, the second field keeps track of the
color. If the node is not a terminal, the second field of the assigned record
reports the information it receives from its subtree about the colors. We
use the value 0, if we want to specify that we do not care about the color
of the node. There are 2¢q 4+ 3 code record values for the terminals:

[code record] meaning |
0.0 Bits at positions 1, 2,4 are set
1.0 The label begins with 00
4.0 Bit 4,6 are set and the label does not begin with 11
2.4 Bits 1,4,5,¢ 4+ 6 are set
3.1 Bits 2,4,5,i + 6 are set

A state is associated to each code record. The state associated to the code
record value 1.0 is the initial state. The state associated to the code record
value 0.0 is the unique accepting state.

(ii) S is the same as the one of the previous function. The records have 3
fields. The first one has the same role as above. The next fields either deal
with the color(s) of the node itself if it is a terminal, or report what the
node “learns” from its subtree about the colors. We use the code 0.0 if we
want to specify that we do not care about the color of the node. There are
g+ 2+ q(qg+1)/2 code record values for the terminals:
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[code record| meaning |
1.0.0 |Bit 4 is set and the label begins with 00
4.0.0 Bits 1, 2,4 are set
2.i.0 Bits 1,4,5,7 + 6 are set
3.i.j Bits 2,4,6,7+ 6,5 + 6 are set

In the proof of theorem 2, S = {1,...,4,7,...,¢+8+q(g+1)/2}. The records
have 3 fields and have the same role as for the function corresponding to the
incidence relation. There are 3q + 2 code record values for the terminals:

|code record| meaning |
1.0.0 Bits 4 is set and the label begins with 00
4.0.0 |Bits 4,6 are set and the label does not begin with 00
2.i.0 Bits 1,4, 5,7 + 6 are set
3.1.0 Bits 2,4,5,7+ 6 are set
6.1.0 Bits 1, 2,4, 5 are set
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run for the equality

run(B) {
begin
lab = g(root(B)) ;
if subwrd(lab,4,1) =1 {This is a terminal} then
begin
w = subwrd(lab, 1,2) ;
if w = 00 then return(1.0);
if w = 11 then return(0.0);
if subwrd(lab,5,1) =1 {This is a vertex} then

begin
for i=1...q do
begin
if subwrd(lab,i+6,1) =1 then
begin

if subwrd(lab,1,1)=1 then return(2.i);
return(3.i);
end
end
end

return(4.0); {An edge that is not in both set variables }
end
{If we are taken here, the current node is not a terminal}
if subwrd(lab,1,2) # 00 then return(4.0);

{If we are taken here, the current label begins with 00}
1 =run(B:) ; r=run(B:) ;
if ((151) #* (r—1) = 1) then return(1.0);
if ((151) # (r—1) = 2) then
begin
i= (1—>2) + (1‘—>2) H
if (subwrd(lab,3,1) =0) then return(2.i);
{If we are taken here, the current node corresponds to a bag}
if (subwrd(lab,i +6,1) =1) {The parent bag contains color C:} then
return(2.i);
{If we are taken here, the color vanishes or the last set variable
is empty, hence not a singleton}
return(4.0);
end
if ((1-1) # (r51) =3) then
begin
i= (1—72) + (I'—>2) H
if (subwrd(lab,3,1) =0) then return(3.i);
if (subwrd(lab,i +6,1) =1) then return(3.i);
{If we are taken here, the color vanishes or the first set
variable is empty, hence not a singleton}
return(4.0);
end
if ((151) # (r—1) =6) and (12 =r_2) then return(0.0);
if ((151) + (r51) = 1) then return(0.0);
{All other cases}
return(4.0);
end

}
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run for the incidence

run(B) {
begin
lab = g(root(B)) ;
if subwrd(lab,4,1) =1 {This is a terminal} then
begin
w = subwrd(lab, 1,2) ;
if w= 00 then return(1.0.0)
if w =11 then return(4.0.0);
if subwrd(lab,5,1) =1 {This is a vertex} then

)

begin
for i=1...q do
begin
if subwrd(lab,i+6,1) =1 then
begin

if subwrd(lab,1,1)=1 then return(2.i.0)
return(4.0.0) ;
end
end
end
else {This is an edge}
begin
for i=1...q do
begin
if subwrd(lab,i+6,1) =1 then
begin
for j=(i+1)...q do
begin
if subwrd(lab,j +6,1) =1 then
begin
if subwrd(lab,2,1)=1 then return(3.i.j);
return(4.0.0) ;
end
end
if subwrd(lab,2,1)=1 then return(3.i.i);
return(4.0.0);
end
end
end
end
{If we are taken here, the current node is not a terminal}
if subwrd(lab,1,2) # 00 then return(4.0.0) ;

Incidence (1/2)

15
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{If we are taken here, the current label begins with 00}
1 =run(B:) ; r =run(B;) ;
if (1,1 *r_; =1) then return(1.0.0) ;
if (1,1 *r_1; =2) then
begin
i=1,24+7r52 ; {Only one of the two is mnot 0 }
if (subwrd(lab,3,1) =0) {Not a bag} then return(2.i.0) ;
if (subwrd(lab,i +6,1) =1) {The parent bag contains color C;} then
return(2.i.0) ;
{If we are taken here, the color vanishes or the other set
variable is empty, hence not a singleton}
return(4.0.0) ;
end
if (1,4 *r_; =3) then
begin
i=1l,+rs ; j=las+ras ;
if (subwrd(lab,3,1) =0) then return(3.i.j) ;
B = subwrd(lab,i + 6,1) ; -y = subwrd(lab,j+6,1) ;
if (=0 and v =0) then
{Both end colors vanish or the other set variable is empty,
hence not a singleton}
return(4.0.0) ;
return(3.(i ¥ 8).(j *v)) ;
end
if (1_>1 *¥Tr 4 = 6) then
{One child has been assigned 2.x.0,
the other one has been assigned 3.*.x}
begin
if (11 =2) then
c=1,2 ; i=r,2; j=ros ;
else
c=rop ; i=1,2; j=1,3 ;
if (¢ =1i or ¢ =j) then return(0.0.0);
return(4.0.0) ;
end
if (151 4+ 11 =1) then return(0.0.0) ;
{A11 other cases}
return(4.0.0) ;
end

}

Incidence (2/2)

The state associated to the code record value 1.0.0 is the initial state. The
state associated to the code record value 0.0.0 is the unique accepting state.
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run for the Adjacency

17

run(B) {
begin
lab = g(root(B)) ;
if subwrd(lab,1,4) =1 then {A terminal}
begin
w = subwrd(lab, 1,2) ;
if w = 00 then return(1.0.0);
if subwrd(lab,5,1) =1 {A vertex} then
begin
if w= 11 then
begin
for i=1...q do
begin
if subwrd(lab,i+6,1) =1 then return(6.i.0);
end
end
for i=1...q do
begin
if subwrd(lab,i + 6,1) then
begin
if subwrd(lab,1,1) =1 return(2.i.0);
return(3.i.0);
end
end
end
return(4.0.0); {An edge in one of the set variables}
end
{If we are taken here, the current node is not a terminal}
if subwrd(lab,1,2) # 00 then return(4.0.0);

{If we are taken here, the current label begins with 00}
1 =run(B:) ; r =run(B;) ;
if ((151) # (r—1) = 1) then return(1.0.0);
if ((1-1) # (r—1) =2) then
begin
i=(152)+ (r52)
if (subwrd(lab,3,1) =0) {Not a bag} then return(2.i.0);
if (subwrd(lab,i +6,1) =1) {The parent bag contains color C;} then
return(2.1i.0);
{If we are taken here, the color vanishes or the last set variable
is empty, hence not a singleton}
return(4.0.0);
end

Adjacency (1/2)
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if ((1-4) # (r51) =3) then
begin
i=(152)+(r52) ;
if (subwrd(lab, 3,1) =0) then return(3.i.0);
if (subwrd(lab,i+6,1) =1) then return(3.i.0);
return(4.0.0); {the color vanishes}
end
if ((1_>1) * (I‘_>1) =6) then
{One of the two cases: 1) One child has been assigned 2.3.0,
the other one has been assigned 3.7.0, or 2) One child has been
assigned 6.5.y, the other one has been assigned 1.0.0}
begin
i=152 5 J=rs2 3
if i*xj#0 { Case 1) } then
begin
if (i>j) then
begin k=i ; i=j ; j=k; end
end
else {Case 2)} begin i = (152)+ (r52); j=(1-3)+(r=s); end
if (subwrd(lab,3,1) =0) then
begin
if i=j then {Case 1)} return(6.i.0);
{If we are taken here then,
it is either case 1) with 0<i < j
or case 2) with (i< j or j=0)}
return(6.i.j);
end
w = subwrd(lab,q + 7,a(q+1)/2) ; {the adjacency encoding part }
if at the position (j —1)(w,(i —1))q is 1 then return(0.0.0);
end
if ((1-1) 4+ (r—=1) =1) then return(0.0.0);
{All other cases}
return(4.0.0);
end

}

Adjacency (2/2)

The state associated to the code record value 1.0.0 is the initial state. The
state associated to the code record value 0.0.0 is the unique accepting state.
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