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Abstract

Given a graph G and an edge coloring C' of GG, a heterochromatic cycle of G is
a cycle in which any pair of edges have distinct colors. Let d°(v), named the color
degree of a vertex v, be the maximum number of distinct colored edges incident with
v. In this paper, some color degree conditions for the existence of heterochromatic
cycles are obtained.
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1 Introduction and notation

We use [3] for terminology and notations not defined here. Let G = (V, E) be a graph.
An edge-coloring of G is a function C': E — N(N is the set of nonnegative integers). If
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G is assigned such a coloring C, then we say that G is an edge-colored graph, or simply
colored graph. Denote by (G, C) the graph G together with the coloring C' and by C/(e)
the color of the edge e € E. The CN(v) of v is defined as the set {C(e) : e is incident
with v}. For a subgraph H of G, let C(H) = {C(e) : e € E(H)} and ¢(H) = |C(H)].
Given a subset S C V(G), the subgraph of G induced by S is denoted by G[S].

A subgraph H of G is called heterochromatic, or rainbow, or color ful if any pair of
edges in H have distinct colors. Existences of heterochromatic subgraphs have been stud-
ied since long time ago. In particular, there are many results on heterochromatic hamil-
tonian cycles and heterochromatic matchings. A problem of heterochromatic hamiltonian
cycles in a colored complete graphs was mentioned in [9] by Erdos, Nesetfil and Rodl.
This problem was also studied by Hahn and Thomassen(see [11]), R6dl and Winkler(see
[10]), Albert,Frieze and Reed (see [1]), respectively. For the heterochromatic matchings,
see the references [12, 14, 15, 16]. It can be easily seen that the heterochromatic matchings
in colored bipartite graphs are in another terminology matchings in 3-partite 3-uniform
hypergraphs.

If we regard an uncolored graph G as a colored graph (G, (') in which all edges have
different colors, then G contains a cycle of length at least [ if and only if (G, C) contains
a heterochromatic cycle of length at least [. The problem of deciding whether there is a
cycle of length at least [ in an (uncolored) graph is N P-complete. Therefore the problem
of deciding whether there is a heterochromatic cycle of length at least [ in a colored graph
is N P-complete, too.

For a vertex set S C V(G), a color neighbourhood of S is defined as a set T C N(5)
such that there are |7’ distinct colored edges between S and T that are incident with
distinct vertices of T. A mazimum color neighborhood N¢(S) of S is a color neighborhood
of S with maximum size. Given a set S and a color neighborhood T of S, denote by
C(S,T) a set of |T| distinct colors on the |T'| edges between S and distinct vertices of
T. In particular, if S = {v}, we denote d°(v) = |N¢(v)| and call it the color degree of v.
Clearly d°(v) = |C'N(v)|.

For | > 3, let HC) denote a heterochromatic cycle with length [. The existence of
heterochromatic cycles has been studied in [4] by Broersma, Li, Woegingerr and Zhang
and they obtained the following results.

Theorem 1[4]. Let G be a colored graph of order n such that ¢(G) > n. Then G contains
a heterochromatic cycle of length at least 2¢(G)

n—1"

Theorem 2[4]. Let G be a colored graph of order n > 4, such that |CN(u) U CN(v)| >
n — 1 for every pair of vertices u and v of G. Then G contains at least one HC5 or one
HCy.



2 The main results

We are interested in Dirac type conditions (i.e., minimum color degree conditions) for
existence of heterochromatic cycle, in particular the shortest heterochromatic cycles (het-
erochromatic girth) and the longest heterochromatic cycles (heterochromatic circumfer-
ence).

We begin with a study of the existence of a heterochromatic cycle. Existence of a
heterochromatic cycle can be insured by Theorem 1 when ¢(G) > n. Under color degree
conditions, we have

Theorem 3. Let G be a colored graph with order n > 3. If d°(v) > ”T“ for every
v € V(G), then G has a heterochromatic cycle.

For the shortest heterochromatic cycles (heterochromatic girth), we get results on HC3
or HCy with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order n > 3. If for every v € V(G),
dc(v) > (4—‘? —1n+3— 4—‘7ﬁ, then G has either an HC3 or an HCY.

Note that #—1%0.515-~- and3—4—‘7ﬁz1.488--~.

Theorem 5. Let G be a colored graph with order n > 3. If for every v € V(G),
d°(v) > @n, then G has an HCj.

Note that @ ~ 0.608 - - -. In fact, we think that the bound in Theorem 5 is not sharp.
We propose the following conjecture.

Conjecture. Let G be a colored graph with order n > 3. If d(v) > ”TH for every
v e V(G), then G has an HCj.

We have the following example to show that if the above conjecture is true, it would
be best possible. For any even integer n, let B, /2,2 be an edge-proper-colored complete
balance bipartite graph with order n. Then for every vertex v of By, /2,/2 , it holds that
d°(v) = %, and B, 2./2 has no HC.

It is natural to ask the following problem about the existence of the heterochromatic
cycles:

Does there exists a function f(n) such that for any colored graph G with order n, if
d°(v) > f(n) for every vertex v € V(G), then G contains a heterochromatic cycle?

The following two propositions show that the function f(n) must be greater than log, n.



Proposition 1. For any non-negative integer k, there exists an edge colored bipartite
graph B with order n = 2% such that d°(v) = k = logyn, for every vertex v € V(B), and
B has no heterochromatic cycles.

To show Proposition 1, we construct the following example by induction.

Let G; be an edge e with colors C(e) = 1. Given a G; for i > 1, define G;;; as
follows. First we construct a graph G; which is a copy of GG;. Then add the edges between
v € V(G;) and v' € V(G)), in which v is the copy of v in Gj. And color the new edge
with color ¢ + 1.

Then put B = G; which is an edge colored bipartite graphs with order n = 2¢. Thus
d(v) =i = logyn for every vertex v € B. Clearly B has no any heterochromatic cycles.

Proposition 2. For any non-negative integer k, there exists an edge colored complete
graph K with order n = 2% such that d°(v) = k = logy n, for every vertex v € V(K), and
K has no heterochromatic cycles.

We construct graphs in a way slightly different with the above example. Let G be an
edge e with colors C(e) = 1. Given a G} for ¢ > 1, we construct G}, as follows. Let the
graph G** be a copy of G¥. For any u € V(G¥),u € V(G}*), we add the new edge uu’
and let C(uu') =i+ 1.

Then K = G is a colored complete graph with order n = 2. Tt gives d°(v) = i = logy n
for every vertex v € K. Clearly, K has no heterochromatic cycles.

Here we obtain a bound for the longest heterochromatic cycles (heterochromatic cir-
cumference) and we think it may not be the best.

Theorem 6. Let G be a colored graph with order n > 3. If d°(v) > d > 2 + 1 for every
v € V(G), then G has an HC; such that | > d — 2 + 2.

The proofs of the main results in Theorems 3,4,5 and 6 will be given in Section 3.
3 Proofs of the main results

Proof of Theorem 5.

By contradiction. Suppose G is a colored graphs with d¢(v) > @n for every vertex
v of G, and G contains no heterochromatic triangles. Let v be an arbitrary vertex of
G. Choose a maximum color neighborhood N¢(v) of v. And assume that 7" = N¢(v) =
{vi,v2, -+, v}, where k = d°(v). Since G has no heterochromatic triangles, if e = v;v; €
E(G[T]), 1 <i,j <k, then C(e) = vv; or C(e) = vv;.



Give an orientation of G[T'] by the following rule: For an edge e = v;v;, if C(e) = vv;,
then the orientation of v;v; is from v; to v;; Otherwise the orientation is from v; to v;.
After the orientation, the oriented graph is denoted by D. For any vertex u € V(D), let
N} (u) denote the outneighbors of w in D and dj,(u) = | N} (u)].

Lemma 1.1. Let ¢ > 3. If there exists a directed cycle C_’; in D, then C, is a heterochro-
matic cycle of G.

Proof. Without loss of generality, we assume that the directed cycle of D is C_>'q DU —
vy — -+ — v, — v1. Then by the above orientation rule, we conclude that C(v;v;41) =
C(vvigq) for 1 <i < g—1 and C(v,v1) = C(vvy). Since T = N¢(v) is a maximum color
neighborhood of v, we have that C(vv;) # C(vv;) for i # j. Thus C, is a heterochromatic
cycle of G. 0.

Lemma 1.2[17]. If a« = 3 — /7 = 0.3542---, then any digraph on m vertices with
minimum outdegree at least am contains a directed triangle.

Since G has no heterochromatic triangles, by Lemma 1.1, D has no directed triangles.
Then by Lemma 1.2, we conclude that there exists a vertex v; in D such that df,(v;) <
ad®(v). Let Gy = G[T' U {v}], and denote a maximum color neighborhood of v; in graph
Go by N§,(v;). Then by the orientation rule, |[N& (v;)] = |Nj(v)| + |v] = |df(v:)] +1 <
ad(v) + 1. Let N¢(v;) be a maximum color neighborhood of v; in G. Then it follows that
IN(v)\(T'U {v})] > d°(v;) — [N§, (vi)] > d°(v;) — ad®(v) — 1. It follows that

w2 [NGNTU D]+ 1T+ ol > () + (1 - a)d() > (2 — ) !

n=nmn.

This contradiction completes the proof of Theorem 5. O

Proof of Theorem 3.

The technique is similar to the proof of Theorem 5. By contradiction. Otherwise let G
be a graph with d°(v) > ”TH for every vertex v of GG, and G has no heterochromatic cycles.
Let v be an arbitrary vertex of G. Similarly we choose a maximum color neighborhood
N¢(v) of v. Since G contains no heterochromatic cycles, by the same orientation rule as
above, we can get an oriented graph Dy. The following fact is clear.

Fact 2.1. FEvery simple m-vertex digraph with minimum out-degree at least 1 has a
directed cycle.

By Lemma 1.1 and the above fact, we know that there exists a vertex v; of D, such
that df, (v;) = 0. Let N°(v;) be a maximum color neighborhood of v; in G. Then we
conclude that |N¢(v;)\(T U {v})| > d°(v;) — 1. Thus it follows that

n+1
2

n > |INC()\(TU{o})| +|T]+ |v| > d°(v;) — 1+ d(v) +1 > 2( )=n+1.



This contradiction completes the proof of Theorem 3. O

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that d°(v) > (4—‘7ﬁ —1)n+
3— 4—*7ﬁ for every vertex v € V(G), and G contains neither HC3 and nor HC).

For an edge uv, let Nf(u), Nf(v) denote a maximum color neighborhood of u, v, re-
spectively, such that v € Nf(u) and u € N{(v). Let N¢(u,v) denote Nf(u) U Nf(v) such
that | N{(u)UN{(v)| is maximum. And we choose an edge uv € E(G) such that |[N¢(u,v)|
Is maximum.

Assume that N¢(u) = {v,uy,ug, -, us} and N{(v)\Nf(u) = {u,v1,v9,---, v}, in
which s = d°(u) — 1. Let X = {uy,---,us,v1,---,v;}. Note that |[N°(u,v)| = s+t + 2.
Consider the graph G[X], and we have the following lemma.

Lemma 3.1. Suppose e € E(G[X]), then the following hold:

(i) If e = wyu;(1 < 1,75 < s), then C(e) € {C(uu;), C(uu;)}.

(ii) If e = v;(1 < i,5 <t), then C(e) € {C(vv;),C(vv;)}.

(1i1) If e = wv;(1 <i < s,1 <j <t)andC(uw;) # C(vv;), then C(e) € {C(uu;), C(vv;), C(uv)}.

Proof. Clearly (i) and (ii) hold, otherwise we can obtain an HC3, which gets a contra-
diction.

If (iii) does not hold, then there exists an edge e = uwv; (1 <@ < 5,1 < j < t)
such that C(uw;) # C(vv;) and C(e) ¢ {C(uu;),C(vv;),C(uv)}. Since v,u; € Ni(u),
then C(uu;) # C(uv). Similarly, we obtain that C(vv;) # C(uv). Thus we can get an
HC4 = wvvju,u, a contradiction. O

Construct an oriented graph as follows.

(1). In graph G[X], do the following operation: deleting the edges e = v;u; if C'(e) =
C(uv) or C(uu;) = C(vv;), 1 <i < sand 1 < j <t After the operation, the graph is
named G[X].

(2). Then give an orientation of G1[X]: For an edge xy € E(G1[X]), if C(zy) = C(uy)
or C(zy) = C(vy), then the orientation of xy is from x to y; Otherwise, by Lemma 3.1,
C(zy) = C(ux) or C(xy) = C(vz), then the orientation of zy is from y to x.

After the orientation, the oriented graph is denoted by D;. For any vertex w €
V(Dy), let N (w) denote the outneighbors of w in Dy and df, (w) = [Nj, (w)|. Let
Go = G[X U {u,v}].

Lemma 3.2. If there exists a directed triangle C—>’3 in Dy, then C5 is a heterochromatic
triangle in G.



Proof. Suppose that @ cx — y — z — x is a directed triangle in Dy. If x,y,2 €
Ni(u), then by the orientation rule, it holds that C'(zy) = C(uy),C(yz) = C(uz) and
C(zz) = C(ux). Then by the definition of N{(u), we conclude that C(ux), C(uy), C(uz)

are distinct pairwise. Thus, C3 = xyzx is a heterochromatic triangle of G.

Thus, without loss of generality, we assume that z,y € N{(u) and z € N{(v). By the
orientation rule, C'(zy) = C(uy), C(yz) = C(vz), and C(zx) = C(uz). By the definition
of N{(u) and Lemma 3.1(4i7), we have that C'(ux), C(uy) and C(vz) are distinct pairwise,
then it follows that C5 = zyzx is a heterochromatic triangle of G. a

Let @ = 3—+/7. By Lemma 3.2, there is no directed triangles in D;. Then by Lemma
1.2, there is a vertex w such that dj; (w) < a|V(Dy)| = a(s+t) = a(d°(u)+t—1). Without
loss of generality, assume that w € N{(u). Denote a maximum color neighborhood of w
in Gy by Ng (w). Note that, in the deleting operation, at most two colors of the edges
incident with w are deleted. Thus it holds that |[N§ (w)| < [Np (w)] + |v|(or|ul) + 2 =
dp, (w) + 3. Let N°(w) be a maximum color neighborhood of w in G. Tt follows that

[N\ (X U{u, v})| = d*(w) = [NG, (w)| > d°(w) — a(d*(u) +1 - 1) = 3.
If d°(w) — a(d®(u) +t — 1) — 3 > t, then we consider the edge uw. It follows that

(N“(u,w)| = [{ug, ug, - ust U{o}] + [N(w)\(X U {u, v})] + [w]
>s+t+4+2
= |N“(u, v)],

a contradiction with the choice of uv.

c c d¢(w ad(u a—3
Thus d*(w) — a(d*(u) + — 1) — 3 < ¢, then ¢ > &) — ol 4 o=3 T4 follows that

no 2 X[ ful + o[ + [N (w)\(X U {u, v})]
>d(u) +t—14+2+d(w) —a(d(u)+t—1)—3
d*(w)  ad(u) L2 3

Z(1—oz)dc(u)+dc(w)—|—(l—a)(1+a T 1+a)+oz—2
1—a 2 30— 5
d°¢ d¢ )
T 14+« (u)+1—|—a (w)+1+a

Since d°(v) > (‘%ﬁ —1)n+3— 4—*7ﬁ for every vertex v € V(G) and a = 3 — /7, the
above inequality is

3—a, 47 47, 3a-5
Vg 3
" Ty Tl Ty 2
This contradiction completes the proof of Theorem 4. O
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Proof of Theorem 6.

By contradiction, since d°(v) > ‘%” +1> ”7“, by Theorem 4, G has a heterochromatic
cycle. Then we choose a longest heterochromatic cycle HC; with length [. If the conclusion
fails, it holds that [ < d — %" + 2. Note that now d > % + 1.

Assume that xy € E(HC)). Let N°(x), N°(y) be a maximum color neighborhood of
x,y, respectively. Then choose a set S, such that:

(Ry). Sy € N(2)\V(HC)).
(Rs). For each v € S, C(zv) ¢ C(HC)).
(R3). Subject to Ry, Ry, |5;| is maximum.

Similarly, choose a set .S, satisfying the following:

(R). S, € N()\V(HC).

(R,). For each v € S, C(yv) ¢ C(HC)).

(R3). Subject to Ry, Ry, |S,| is maximum.

Let P =5, NS, and p = |P|. And we have the following lemmas.
Lemma 4.1. p>2d —n+6 — 30 > 0.

Proof. Clearly, we conclude that |S,| > d°(z) — [l — (I —3) > d + 3 — 2[. Similarly,
|Sy| > d+3—2l. Then p > |S,| + (S, —(n—1)>2d—n+6—30>0. 0

Lemma 4.2. Ifu € P, then C(ux) = C(uy).

Proof. Otherwise, if C(uz) # C(uy), since C(ux),C(uy) ¢ C(HC)}), we can get a
heterochromatic cycle: HCy U {zu, uy}\{xy} with length [ + 1, a contradiction. O

Lemma 4.3. If uv € E(G[P]), then C(uww) € {C(ux),C(vy), C(HC)\C(zy)}.

Proof. If uv € E(G[P]), then by Lemma 4.2, C(uz) = C(uy) and C(vz) = C(vy).
Clearly, we have that C(uzx) # C(vy). So if C(uv) ¢ {C(ux),C(vy),C(HC)\C(zy)}.
Then we can get a heterochromatic cycle: HC; U {zu,uv,vy}\{zy} with length [ + 2, a
contradiction. O

Construct an oriented graph as follows.

(a). In graph G[P], do the following operation: deleting the edges wv if C(uv) €
C(HC)\C(zy). After the operation, the graph is named G;[P].

(b). Then give an orientation of G1[P]: For an edge uv € E(G4[P)), if C(uwv) = C(zu),
then the orientation of uv is from v to u; Otherwise, by Lemma 4.3, C(uv) = C(zv), then
the orientation of uv is from u to v.



After the orientation, the oriented graph is denoted by D,. Let vy be a vertex in Dy
with minimum outdegree, df, (vo). Clearly, dj;, (vg) < 2% Let N°(vp) denote a maximum
color neighborhood of vy in G. And assume that N¢(vg) = V3 U Vo U V3 UV, in which

Vi=A{v:vePand Cluw) ¢ C(HC))},
Vo=A{v:veV(HC) and C(vyw) ¢ C(HC))},
Vs={v:ve PUV(HC)) and C(vyv) € C(HC))},
Vi={v:vg¢g PUV(HC))},

and V; NV, = ¢, for 1 < i # j < 4. We can conclude that [Vi]| < df, (vo) +1 < B2 +1
and V3] < 1.

Lemma 4.4. |Vi| + V| < % + 51

Proof. First, we conclude that V5| < 1. Otherwise if [Va| > 51, by C(avg) =
C(yvo) ¢ C(HC), then there exists two consecutive vertices v;,v;4+1 of HC), such that
C(vov;), C(vovir1) ¢ C(HC)) and C(vgv;) # C(vovis1). Thus we can get a heterochro-
matic cycle: HC; U {vvg, voviy1 F\{viviz1} with length [ 4+ 1, a contradiction. So if

Vil < p%l, then [Vi| + [Va] < p;l + 1_71

Moreover if [Vi| = 251 4+ 1, then C(zvg) € C(vg, V1). By the definition of a maximum
color neighborhood N¢(vg) of vy and V4 NV, = ¢, we conclude that C(zvg) ¢ C(vo, V2).
Then if |V5] > Z_T?’, use the same method as above, we can get a heterochromatic cycle
with length [+ 1, a contradiction. So it holds that V5| < 52, thus [Vi|+ |Vo| < 22 4+ 5L
O

Now we complete the proof of Theorem 6 as follows. Since S>7_, |Vi| = d°(vo) > d and
VinV; = ¢, for 1 <i# j <4, then |V, >d— 3 |Vi| zd—l—p%l—l%l. Clearly
Vi CV(G)\(PUV(HC)). So we have d — 1 — 22 — B2 < p—p — [ Tt follows that
p < 2(n—d)+1—2. We also have that p > 2d — n + 6 — 3] by Lemma 4.1. Thus
[>d— ?jT” + 2. This contradiction completes the proof.

O
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