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Abstract

Given a graph G and an edge coloring C of G, a heterochromatic cycle of G is
a cycle in which any pair of edges have distinct colors. Let dc(v), named the color
degree of a vertex v, be the maximum number of distinct colored edges incident with
v. In this paper, some color degree conditions for the existence of heterochromatic
cycles are obtained.
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1 Introduction and notation

We use [3] for terminology and notations not defined here. Let G = (V, E) be a graph.
An edge-coloring of G is a function C : E → N(N is the set of nonnegative integers). If

∗This research is supported by the NSFC(60373012 and 10471078), SRSDP(20040422004) and
PDSF(2004036402)
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G is assigned such a coloring C, then we say that G is an edge-colored graph, or simply
colored graph. Denote by (G,C) the graph G together with the coloring C and by C(e)
the color of the edge e ∈ E. The CN(v) of v is defined as the set {C(e) : e is incident
with v}. For a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)} and c(H) = |C(H)|.
Given a subset S ⊆ V (G), the subgraph of G induced by S is denoted by G[S].

A subgraph H of G is called heterochromatic, or rainbow, or colorful if any pair of
edges in H have distinct colors. Existences of heterochromatic subgraphs have been stud-
ied since long time ago. In particular, there are many results on heterochromatic hamil-
tonian cycles and heterochromatic matchings. A problem of heterochromatic hamiltonian
cycles in a colored complete graphs was mentioned in [9] by Erdös, Nešetřil and Rödl.
This problem was also studied by Hahn and Thomassen(see [11]), Rödl and Winkler(see
[10]), Albert,Frieze and Reed (see [1]), respectively. For the heterochromatic matchings,
see the references [12, 14, 15, 16]. It can be easily seen that the heterochromatic matchings
in colored bipartite graphs are in another terminology matchings in 3-partite 3-uniform
hypergraphs.

If we regard an uncolored graph G as a colored graph (G,C) in which all edges have
different colors, then G contains a cycle of length at least l if and only if (G,C) contains
a heterochromatic cycle of length at least l. The problem of deciding whether there is a
cycle of length at least l in an (uncolored) graph is NP -complete. Therefore the problem
of deciding whether there is a heterochromatic cycle of length at least l in a colored graph
is NP -complete, too.

For a vertex set S ⊆ V (G), a color neighbourhood of S is defined as a set T ⊆ N(S)
such that there are |T | distinct colored edges between S and T that are incident with
distinct vertices of T . A maximum color neighborhood N c(S) of S is a color neighborhood
of S with maximum size. Given a set S and a color neighborhood T of S, denote by
C(S, T ) a set of |T | distinct colors on the |T | edges between S and distinct vertices of
T . In particular, if S = {v}, we denote dc(v) = |N c(v)| and call it the color degree of v.
Clearly dc(v) = |CN(v)|.

For l ≥ 3, let HCl denote a heterochromatic cycle with length l. The existence of
heterochromatic cycles has been studied in [4] by Broersma, Li, Woegingerr and Zhang
and they obtained the following results.

Theorem 1[4]. Let G be a colored graph of order n such that c(G) ≥ n. Then G contains

a heterochromatic cycle of length at least 2c(G)
n−1

.

Theorem 2[4]. Let G be a colored graph of order n ≥ 4, such that |CN(u) ∪ CN(v)| ≥
n− 1 for every pair of vertices u and v of G. Then G contains at least one HC3 or one
HC4.
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2 The main results

We are interested in Dirac type conditions (i.e., minimum color degree conditions) for
existence of heterochromatic cycle, in particular the shortest heterochromatic cycles (het-
erochromatic girth) and the longest heterochromatic cycles (heterochromatic circumfer-
ence).

We begin with a study of the existence of a heterochromatic cycle. Existence of a
heterochromatic cycle can be insured by Theorem 1 when c(G) ≥ n. Under color degree
conditions, we have

Theorem 3. Let G be a colored graph with order n ≥ 3. If dc(v) ≥ n+1
2

for every
v ∈ V (G), then G has a heterochromatic cycle.

For the shortest heterochromatic cycles (heterochromatic girth), we get results on HC3

or HC4 with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order n ≥ 3. If for every v ∈ V (G),

dc(v) ≥ (4
√

7
7
− 1)n + 3− 4

√
7

7
, then G has either an HC3 or an HC4.

Note that 4
√

7
7
− 1 ≈ 0.515 · · · and 3− 4

√
7

7
≈ 1.488 · · ·.

Theorem 5. Let G be a colored graph with order n ≥ 3. If for every v ∈ V (G),

dc(v) ≥
√

7+1
6

n, then G has an HC3.

Note that
√

7+1
6

≈ 0.608 · · ·. In fact, we think that the bound in Theorem 5 is not sharp.
We propose the following conjecture.

Conjecture. Let G be a colored graph with order n ≥ 3. If dc(v) ≥ n+1
2

for every
v ∈ V (G), then G has an HC3.

We have the following example to show that if the above conjecture is true, it would
be best possible. For any even integer n, let Bn/2,n/2 be an edge-proper-colored complete
balance bipartite graph with order n. Then for every vertex v of Bn/2,n/2 , it holds that
dc(v) = n

2
, and Bn/2,n/2 has no HC3.

It is natural to ask the following problem about the existence of the heterochromatic
cycles:

Does there exists a function f(n) such that for any colored graph G with order n, if
dc(v) ≥ f(n) for every vertex v ∈ V (G), then G contains a heterochromatic cycle?

The following two propositions show that the function f(n) must be greater than log2 n.
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Proposition 1. For any non-negative integer k, there exists an edge colored bipartite
graph B with order n = 2k such that dc(v) = k = log2 n, for every vertex v ∈ V (B), and
B has no heterochromatic cycles.

To show Proposition 1, we construct the following example by induction.

Let G1 be an edge e with colors C(e) = 1. Given a Gi for i ≥ 1, define Gi+1 as
follows. First we construct a graph G

′
i which is a copy of Gi. Then add the edges between

v ∈ V (Gi) and v
′ ∈ V (G

′
i), in which v

′
is the copy of v in G

′
i. And color the new edge

with color i + 1.

Then put B = Gi which is an edge colored bipartite graphs with order n = 2i. Thus
dc(v) = i = log2 n for every vertex v ∈ B. Clearly B has no any heterochromatic cycles.

Proposition 2. For any non-negative integer k, there exists an edge colored complete
graph K with order n = 2k such that dc(v) = k = log2 n, for every vertex v ∈ V (K), and
K has no heterochromatic cycles.

We construct graphs in a way slightly different with the above example. Let G∗
1 be an

edge e with colors C(e) = 1. Given a G∗
i for i ≥ 1, we construct G∗

i+1 as follows. Let the
graph G∗∗

i be a copy of G∗
i . For any u ∈ V (G∗

i ), u
′ ∈ V (G∗∗

i ), we add the new edge uu
′

and let C(uu
′
) = i + 1.

Then K = G∗
i is a colored complete graph with order n = 2i. It gives dc(v) = i = log2 n

for every vertex v ∈ K. Clearly, K has no heterochromatic cycles.

Here we obtain a bound for the longest heterochromatic cycles (heterochromatic cir-
cumference) and we think it may not be the best.

Theorem 6. Let G be a colored graph with order n ≥ 3. If dc(v) ≥ d ≥ 3n
4

+ 1 for every
v ∈ V (G), then G has an HCl such that l ≥ d− 3n

4
+ 2.

The proofs of the main results in Theorems 3,4,5 and 6 will be given in Section 3.

3 Proofs of the main results

Proof of Theorem 5.

By contradiction. Suppose G is a colored graphs with dc(v) ≥
√

7+1
6

n for every vertex
v of G, and G contains no heterochromatic triangles. Let v be an arbitrary vertex of
G. Choose a maximum color neighborhood N c(v) of v. And assume that T = N c(v) =
{v1, v2, · · · , vk}, where k = dc(v). Since G has no heterochromatic triangles, if e = vivj ∈
E(G[T ]), 1 ≤ i, j ≤ k, then C(e) = vvi or C(e) = vvj.
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Give an orientation of G[T ] by the following rule: For an edge e = vivj, if C(e) = vvi,
then the orientation of vivj is from vj to vi; Otherwise the orientation is from vi to vj.
After the orientation, the oriented graph is denoted by D. For any vertex u ∈ V (D), let
N+

D (u) denote the outneighbors of u in D and d+
D(u) = |N+

D (u)|.

Lemma 1.1. Let q ≥ 3. If there exists a directed cycle
−→
Cq in D, then Cq is a heterochro-

matic cycle of G.

Proof. Without loss of generality, we assume that the directed cycle of D is
−→
Cq : v1 →

v2 → · · · → vq → v1. Then by the above orientation rule, we conclude that C(vivi+1) =
C(vvi+1) for 1 ≤ i ≤ q − 1 and C(vqv1) = C(vv1). Since T = N c(v) is a maximum color
neighborhood of v, we have that C(vvi) 6= C(vvj) for i 6= j. Thus Cq is a heterochromatic
cycle of G. 2.

Lemma 1.2[17]. If α = 3 − √
7 = 0.3542 · · ·, then any digraph on m vertices with

minimum outdegree at least αm contains a directed triangle.

Since G has no heterochromatic triangles, by Lemma 1.1, D has no directed triangles.
Then by Lemma 1.2, we conclude that there exists a vertex vi in D such that d+

D(vi) <
αdc(v). Let G0 = G[T ∪ {v}], and denote a maximum color neighborhood of vi in graph
G0 by N c

G0
(vi). Then by the orientation rule, |N c

G0
(vi)| = |N+

D (vi)|+ |v| = |d+
D(vi)|+ 1 <

αdc(v)+1. Let N c(vi) be a maximum color neighborhood of vi in G. Then it follows that
|N c(vi)\(T ∪ {v})| ≥ dc(vi)− |N c

G0
(vi)| > dc(vi)− αdc(v)− 1. It follows that

n ≥ |N c(vi)\(T ∪ {v})|+ |T |+ |v| > dc(vi) + (1− α)dc(v) ≥ (2− α)

√
7 + 1

6
n = n.

This contradiction completes the proof of Theorem 5. 2

Proof of Theorem 3.

The technique is similar to the proof of Theorem 5. By contradiction. Otherwise let G
be a graph with dc(v) ≥ n+1

2
for every vertex v of G, and G has no heterochromatic cycles.

Let v be an arbitrary vertex of G. Similarly we choose a maximum color neighborhood
N c(v) of v. Since G contains no heterochromatic cycles, by the same orientation rule as
above, we can get an oriented graph D0. The following fact is clear.

Fact 2.1. Every simple m-vertex digraph with minimum out-degree at least 1 has a
directed cycle.

By Lemma 1.1 and the above fact, we know that there exists a vertex vj of D0 such
that d+

D0
(vj) = 0. Let N c(vj) be a maximum color neighborhood of vj in G. Then we

conclude that |N c(vj)\(T ∪ {v})| ≥ dc(vj)− 1. Thus it follows that

n ≥ |N c(vj)\(T ∪ {v})|+ |T |+ |v| ≥ dc(vj)− 1 + dc(v) + 1 ≥ 2(
n + 1

2
) = n + 1.
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This contradiction completes the proof of Theorem 3. 2

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that dc(v) ≥ (4
√

7
7
− 1)n +

3− 4
√

7
7

for every vertex v ∈ V (G), and G contains neither HC3 and nor HC4.

For an edge uv, let N c
1(u), N c

1(v) denote a maximum color neighborhood of u, v, re-
spectively, such that v ∈ N c

1(u) and u ∈ N c
1(v). Let N c(u, v) denote N c

1(u) ∪N c
1(v) such

that |N c
1(u)∪N c

1(v)| is maximum. And we choose an edge uv ∈ E(G) such that |N c(u, v)|
is maximum.

Assume that N c
1(u) = {v, u1, u2, · · · , us} and N c

1(v)\N c
1(u) = {u, v1, v2, · · · , vt}, in

which s = dc(u) − 1. Let X = {u1, · · · , us, v1, · · · , vt}. Note that |N c(u, v)| = s + t + 2.
Consider the graph G[X], and we have the following lemma.

Lemma 3.1. Suppose e ∈ E(G[X]), then the following hold:
(i) If e = uiuj(1 ≤ i, j ≤ s), then C(e) ∈ {C(uui), C(uuj)}.
(ii) If e = vivj(1 ≤ i, j ≤ t), then C(e) ∈ {C(vvi), C(vvj)}.
(iii) If e = uivj(1 ≤ i ≤ s, 1 ≤ j ≤ t) and C(uui) 6= C(vvj), then C(e) ∈ {C(uui), C(vvj), C(uv)}.

Proof. Clearly (i) and (ii) hold, otherwise we can obtain an HC3, which gets a contra-
diction.

If (iii) does not hold, then there exists an edge e = uivj (1 ≤ i ≤ s, 1 ≤ j ≤ t)
such that C(uui) 6= C(vvj) and C(e) /∈ {C(uui), C(vvj), C(uv)}. Since v, ui ∈ N c

1(u),
then C(uui) 6= C(uv). Similarly, we obtain that C(vvj) 6= C(uv). Thus we can get an
HC4 = uvvjuiu, a contradiction. 2

Construct an oriented graph as follows.

(1). In graph G[X], do the following operation: deleting the edges e = viuj if C(e) =
C(uv) or C(uui) = C(vvj), 1 ≤ i ≤ s and 1 ≤ j ≤ t. After the operation, the graph is
named G1[X].

(2). Then give an orientation of G1[X]: For an edge xy ∈ E(G1[X]), if C(xy) = C(uy)
or C(xy) = C(vy), then the orientation of xy is from x to y; Otherwise, by Lemma 3.1,
C(xy) = C(ux) or C(xy) = C(vx), then the orientation of xy is from y to x.

After the orientation, the oriented graph is denoted by D1. For any vertex w ∈
V (D1), let N+

D1
(w) denote the outneighbors of w in D1 and d+

D1
(w) = |N+

D1
(w)|. Let

G0 = G[X ∪ {u, v}].

Lemma 3.2. If there exists a directed triangle
−→
C3 in D1, then C3 is a heterochromatic

triangle in G.
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Proof. Suppose that
−→
C3 : x → y → z → x is a directed triangle in D1. If x, y, z ∈

N c
1(u), then by the orientation rule, it holds that C(xy) = C(uy), C(yz) = C(uz) and

C(zx) = C(ux). Then by the definition of N c
1(u), we conclude that C(ux), C(uy), C(uz)

are distinct pairwise. Thus, C3 = xyzx is a heterochromatic triangle of G.

Thus, without loss of generality, we assume that x, y ∈ N c
1(u) and z ∈ N c

1(v). By the
orientation rule, C(xy) = C(uy), C(yz) = C(vz), and C(zx) = C(ux). By the definition
of N c

1(u) and Lemma 3.1(iii), we have that C(ux), C(uy) and C(vz) are distinct pairwise,
then it follows that C3 = xyzx is a heterochromatic triangle of G. 2

Let α = 3−√7. By Lemma 3.2, there is no directed triangles in D1. Then by Lemma
1.2, there is a vertex w such that d+

D1
(w) < α|V (D1)| = α(s+t) = α(dc(u)+t−1). Without

loss of generality, assume that w ∈ N c
1(u). Denote a maximum color neighborhood of w

in G0 by N c
G0

(w). Note that, in the deleting operation, at most two colors of the edges
incident with w are deleted. Thus it holds that |N c

G0
(w)| ≤ |N+

D1
(w)| + |v|(or|u|) + 2 =

d+
D1

(w) + 3. Let N c(w) be a maximum color neighborhood of w in G. It follows that

|N c(w)\(X ∪ {u, v})| ≥ dc(w)− |N c
G0

(w)| > dc(w)− α(dc(u) + t− 1)− 3.

If dc(w)− α(dc(u) + t− 1)− 3 > t, then we consider the edge uw. It follows that

|N c(u,w)| ≥ |{u1, u2, · · · , us} ∪ {v}|+ |N c(w)\(X ∪ {u, v})|+ |w|
> s + t + 2

= |N c(u, v)|,
a contradiction with the choice of uv.

Thus dc(w)− α(dc(u) + t− 1)− 3 ≤ t, then t ≥ dc(w)
1+α

− αdc(u)
1+α

+ α−3
1+α

. It follows that

n ≥ |X|+ |u|+ |v|+ |N c(w)\(X ∪ {u, v})|
> dc(u) + t− 1 + 2 + dc(w)− α(dc(u) + t− 1)− 3

≥ (1− α)dc(u) + dc(w) + (1− α)(
dc(w)

1 + α
− αdc(u)

1 + α
+

α− 3

1 + α
) + α− 2

≥ 1− α

1 + α
dc(u) +

2

1 + α
dc(w) +

3α− 5

1 + α
.

Since dc(v) ≥ (4
√

7
7
− 1)n + 3 − 4

√
7

7
for every vertex v ∈ V (G) and α = 3 − √7, the

above inequality is

n >
3− α

1 + α
[(

4
√

7

7
− 1)n + 3− 4

√
7

7
] +

3α− 5

1 + α
≥ n.

This contradiction completes the proof of Theorem 4. 2
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Proof of Theorem 6.

By contradiction, since dc(v) ≥ 3n
4

+1 > n+1
2

, by Theorem 4, G has a heterochromatic
cycle. Then we choose a longest heterochromatic cycle HCl with length l. If the conclusion
fails, it holds that l < d− 3n

4
+ 2. Note that now d > 3n

4
+ 1.

Assume that xy ∈ E(HCl). Let N c(x), N c(y) be a maximum color neighborhood of
x, y, respectively. Then choose a set Sx such that:

(R1). Sx ∈ N c(x)\V (HCl).
(R2). For each v ∈ Sx, C(xv) /∈ C(HCl).
(R3). Subject to R1, R2, |Sx| is maximum.

Similarly, choose a set Sy satisfying the following:

(R
′
1). Sy ∈ N c(y)\V (HCl).

(R
′
2). For each v ∈ Sy, C(yv) /∈ C(HCl).

(R
′
3). Subject to R

′
1, R

′
2, |Sy| is maximum.

Let P = Sx ∩ Sy and p = |P |. And we have the following lemmas.

Lemma 4.1. p ≥ 2d− n + 6− 3l > 0.

Proof. Clearly, we conclude that |Sx| ≥ dc(x) − l − (l − 3) ≥ d + 3 − 2l. Similarly,
|Sy| ≥ d + 3− 2l. Then p ≥ |Sx|+ |Sy| − (n− l) ≥ 2d− n + 6− 3l > 0. 2

Lemma 4.2. If u ∈ P , then C(ux) = C(uy).

Proof. Otherwise, if C(ux) 6= C(uy), since C(ux), C(uy) /∈ C(HCl), we can get a
heterochromatic cycle: HCl ∪ {xu, uy}\{xy} with length l + 1, a contradiction. 2

Lemma 4.3. If uv ∈ E(G[P ]), then C(uv) ∈ {C(ux), C(vy), C(HCl)\C(xy)}.

Proof. If uv ∈ E(G[P ]), then by Lemma 4.2, C(ux) = C(uy) and C(vx) = C(vy).
Clearly, we have that C(ux) 6= C(vy). So if C(uv) /∈ {C(ux), C(vy), C(HCl)\C(xy)}.
Then we can get a heterochromatic cycle: HCl ∪ {xu, uv, vy}\{xy} with length l + 2, a
contradiction. 2

Construct an oriented graph as follows.

(a). In graph G[P ], do the following operation: deleting the edges uv if C(uv) ∈
C(HCl)\C(xy). After the operation, the graph is named G1[P ].

(b). Then give an orientation of G1[P ]: For an edge uv ∈ E(G1[P ]), if C(uv) = C(xu),
then the orientation of uv is from v to u; Otherwise, by Lemma 4.3, C(uv) = C(xv), then
the orientation of uv is from u to v.
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After the orientation, the oriented graph is denoted by D2. Let v0 be a vertex in D2

with minimum outdegree, d+
D2

(v0). Clearly, d+
D2

(v0) ≤ p−1
2

. Let N c(v0) denote a maximum
color neighborhood of v0 in G. And assume that N c(v0) = V1 ∪ V2 ∪ V3 ∪ V4, in which

V1 = {v : v ∈ P and C(v0v) /∈ C(HCl)},
V2 = {v : v ∈ V (HCl) and C(v0v) /∈ C(HCl)},
V3 = {v : v ∈ P ∪ V (HCl) and C(v0v) ∈ C(HCl)},
V4 = {v : v /∈ P ∪ V (HCl)},

and Vi ∩ Vj = φ, for 1 ≤ i 6= j ≤ 4. We can conclude that |V1| ≤ d+
D2

(v0) + 1 ≤ p−1
2

+ 1
and |V3| ≤ l.

Lemma 4.4. |V1|+ |V2| ≤ p−1
2

+ l−1
2

.

Proof. First, we conclude that |V2| ≤ l−1
2

. Otherwise if |V2| > l−1
2

, by C(xv0) =
C(yv0) /∈ C(HCl), then there exists two consecutive vertices vi, vi+1 of HCl, such that
C(v0vi), C(v0vi+1) /∈ C(HCl) and C(v0vi) 6= C(v0vi+1). Thus we can get a heterochro-
matic cycle: HCl ∪ {viv0, v0vi+1}\{vivi+1} with length l + 1, a contradiction. So if
|V1| ≤ p−1

2
, then |V1|+ |V2| ≤ p−1

2
+ l−1

2
.

Moreover if |V1| = p−1
2

+ 1, then C(xv0) ∈ C(v0, V1). By the definition of a maximum
color neighborhood N c(v0) of v0 and V1 ∩ V2 = φ, we conclude that C(xv0) /∈ C(v0, V2).
Then if |V2| > l−3

2
, use the same method as above, we can get a heterochromatic cycle

with length l +1, a contradiction. So it holds that |V2| ≤ l−3
2

, thus |V1|+ |V2| ≤ p−1
2

+ l−1
2

.
2

Now we complete the proof of Theorem 6 as follows. Since
∑4

i=1 |Vi| = dc(v0) ≥ d and
Vi ∩ Vj = φ, for 1 ≤ i 6= j ≤ 4, then |V4| ≥ d − ∑3

i=1 |Vi| ≥ d − l − p−1
2
− l−1

2
. Clearly

V4 ⊆ V (G)\(P ∪ V (HCl)). So we have d − l − p−1
2
− l−1

2
≤ n − p − l. It follows that

p ≤ 2(n − d) + l − 2. We also have that p ≥ 2d − n + 6 − 3l by Lemma 4.1. Thus
l ≥ d− 3n

4
+ 2. This contradiction completes the proof.
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