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ABSTRACT. Let ¢x(G) be the minimum number of elementary cycles of length at most &
necessary to cover the vertices of a given graph G. In this work, we bound ¢;(G) in function
of the order of the graph and its independence number.
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1. INTRODUCTION

Throughout this paper, we consider finite simple graphs G = (V, FE) and we denote by n
the order of the considered graph.
The distance between two vertices v and v in G, is denoted by dg(u,v), and is defined to be
the length of a shortest path joining them in G.
The size of a largest independent set of G is called the independence number of G and is
denoted by «(G) when no ambiguity.
A covering of a graph G is a family of elementary cycles of G such that each vertex of G lies
in at least one cycle of this family. For terms not defined here, we refer to [1].
In the literature, many results dealing with the covering of a graph by cycles have appeared.
Corrdi and Hajnal (in [3]) have proved a result conjectured a few years before by Erds, which
is that if G is a graph of order n > 3k with minimum degree 6 > 2k, then G contains k
vertex disjoint cycles. Later on, several authors have been, in some sense, inspired by this
theorem and have sharpened it in many ways. In [9], Lesniak has discussed a variety of
results dealing with the existence of disjoint cycles in a given graph.
In [5] and [10], Enomoto and Wang have relaxed the degree condition given by Erds. They
have independently established that a graph of order at least 3k in which d(u)+d(v) > 4k—1
for every pair of non adjacent vertices u and v, contains k vertex disjoint cycles. In [4], Egawa
and al. have showed that by taking three integers d, k, and n such that £ > 3,d > 4k — 1
and n > 3k and a graph G of order n, in which each pair of nonadjacent vertices x and y
verifies d(z) + d(y) > d, then at least min(d,n) vertices of G can be covered by k vertex
disjoint cycles.
However, in what precedes, the interest was given to the independence of the cycles rather
than the fact that they cover all the vertices of the graph. In [7], Kouider and Lonc have

showed that the vertices of a 2-connected graph in which Z dg(x) > n for every independent

TES
set S of cardinality s can be covered by at most s — 1 cycles. In another paper[8], Kouider
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shows that the vertices of any k connected graph are covered by at most [a/k]| cycles.

But in all these results, no bound for the length of the cycles taken in the covering is imposed.
Recently, in [6], Forge and Kouider have laid down that the cycles taken in the covering are
of length not exceeding k (where k is an integer preliminary fixed). They have denoted
by cx(G) the cardinality of a minimum covering in which each cycle satisfies the previous
condition. They have bounded c¢x(G) in function of the minimum degree and the order of
the graph GG. They have also introduced the concept of alternated cycles to show that:

k 2k
If p and k are two integers such that 2 < p < 3 and if G is a graph of order n > E(p -

2k
1)+ (p— 1) and minimum degree ¢ at least i 3 Then:
p

3n log & 3
(G) < = + : +(1-2)p—-2)+1.

In this work, we intend to bound c¢;(G) in function of the independence number of the
graph and its order and we show among others the following result:

Theorem 1.1. Let G be a 2-connected graph of order n with stability number o and k an

1
(k+1) > 2. Then cx(G) <

m +alogk if n>a(k—§(a+1))-

int h that n
mreger suc a ————————
J k— Ha+1)

2. COVERING THE VERTICES BY CYCLES OF LENGTH AT MOST k

Let k£ be an integer and GG a graph of order n. We want to cover GG by the smallest possible
number of cycles of length at most &.
Each time we have a cycle in GG, we check its length, if it is less than or equal to k£ then this
cycle is taken in the covering otherwise, a chord may reduce its length. Therefore, we should
assume that £ > 2« + 1 so that there always exists a chord (at least).
In what follows, we show that according to the prescribed value of £ we can guarantee the
existence in G of a cycle of length not only at most k£ but at least a fraction of k£ as well.

Proposition 2.1. Let G be a graph of order n and independence number o and let k be an
integer such that k > 2a+ 1. If G has a cycle of length more than k, then it has a cycle of

1
and k.

length between

Proof. Indeed, if C is a cycle of G of length [(C) at least £k + 1 > 2a+ 2, then there are at
least a + 1 independent vertices on C' and thus at least two of these vertices (say z and y)

1(C)

are adjacent. Furthermore, 2 < d¢(z,y) < 5 The chord (z,y) divides the cycle C into

I(c
two smaller cycles, the bigger C} is length [(C;) between % and [(C) — 1. We resume the
k+1

same construction until we get a cycle C; such that <I(C;) <k. O

If k is supposed greater than what it is in the previous theorem then the length of the

obtained cycle will be bounded on the left by a bigger fraction of k.
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Proposition 2.2. Let G be a graph of order n with independence number o and let k be an

2k
integer such that k > 4o+ 3. If G possesses a cycle of length at least 3 then it has a cycle

2k
of length between 3 and k.

2k
Proof. Let C' be a cycle of G of length [ > 3

2k
If | < k then C'is a cycle of length between 3 and k.

2k
In the case where [ > k, we are going to construct a cycle of length at least — and strictly
smaller than [. Clearly by iterating the construction we will finally get a cyle of length
between — and k.

Consider on the cycle an orientation O. We will use dp(z,y) to be the distance on the cycle
using the orientation O. Consider among all the possible sets {v1, ..., vay1} of (+1) distinct
vertices such that do(v;, v;41) = 2 for 1 <4 < « the one that contains two joined vertices v,
and v; (joined in G) at minimum distance on C.
l .
o If do(vy,v;) < 3 then we have the desired cycle.

e If not, then consider the following set S = {vs, ...Ua 11, Vas2} Where do(var1, Vare) is
also 2 on C. Let v; and v, be two joined vertices of S(as |S| = a+1). We cannot have

!
j > i otherwise, since do(vj,v,) > do(ve,v;) > 3 then do(vi,vat2) > do(vi,v;) +

21 l I 2l
do(vj,v,) > 3 but do(vi, Vat2) < 2 (because | > 4(a+1)). We get 3 > 3 which

is a contradiction. Thus the segments [vi,v;] and [vj,v,] of C' do intersect in at
least two vertices. Let Iy = do(v1,v)), lo = do(vj,v;) and ls = do(v;,v,). We have:

21 !
lh+1l+ 13 < % and [y + 2l + I3 > 3 It follows that l, > 6 and consequently the
: 21 :
cycle C' = (vy, v;) U[vi,vj] U(vj,vr) U[UT,Ul] is of length ' > 3 This completes

the proof.
O

More generally, for an integer ¢ > 2 and for k > 2¢(a+1) — 1 we have the following result:

Proposition 2.3. Let G be a graph of order n with independence number «. Let ¢ and k be
two integers such that ¢ > 2 and k > 2c(a+ 1) — 1. If G possesses a cycle of length at least

2 2
(1- 3—)k, then it has a cycle of length between (1 — §)k and k.
c
Proof. We use the definitions and techniques of the preceeding proof. Let C' be a cycle of G

2
of length [ > (1 — 3—)k
c
If | < k then C is as desired.
Otherwise, consider among all the possible sets {v, ..., v441} of (a + 1) vertices such that
do(vi,vi41) = 2 for 1 <4 < « the one that contains two joined vertices v; and v; at minimum

distance on C.
3



21
o If dp(vy,v;) < ” then we have the desired cycle.
C

o If do(v1,v;) > — then consider the following set S = {vq,...V011,Va+2}, Where

do(Vat1,Va+2) is also 2 on C. Let v; and v, be two joined vertices of S. We

21

have j < i otherwise, on one hand do(v;,v,) > do(vi,v;) > e then do(v1, Vaio) >
c
41 l

do(v1,v;) +do(vj, vr) > 30 and the other hand do(v1, vai2) < - (since I > 2¢(a+1)).
¢ ¢

4 1
We get 3 < - which is absurd. Thus the segments [vq, v;] and [v}, v,] of the cycle C do
c~c

intersect in at least two vertices. Let l; = do(v1,v;), lo = d(v;,v;) and I3 = do(vs, vr).

[ 41
We have: [1 + 1o+ 13 < p and l; + 2ls + 13 > 3 So ly > 3 and as a result the cycle

! . ! 2 .
C' = (v1,v3) U[’UZ’,’U]'] U(vj,v,.) U[vr,vl] is of length I' > (1 — %ﬂ as desired.
0

Remark 2.4. Let G be a graph of order n with independence number o and let ¢ and k
be two integers, if we suppose that ¢ > 1 and k > 2c(a+ 1) — 1 then the statements of
Proposition 1 and Proposition 8 amount to the following: ” G has a cycle of length between

2 1
max((1 — —)k, k%) and k.”

3¢

In the previous propositions, we supposed that a cycle exists to begin the construction.The
next propositions of [2] ensure the existence (maybe by adding conditions) of at least a cycle
in G of sufficient length.

Proposition 2.5. Let G' be a connected graph of independence number o, then G possesses
a cycle, an edge or a vertex which removal reduces its independence number of at least 1.

Proof. Let P be a longest path in G and let z and y be its endpoints. All the neighbors of
x and y are on P otherwise we get a contradiction. Two cases may occur:

(1) x and y are not of degree 1 in G, then we consider u the furthermost neighbor of z on
P. The cycle C made of the segment [z, u] on P and the edge (z,u) contains z and
all its neighbors. Thus if we remove it, we get a graph with smaller independence
number: a(G — C) < a(G) — 1.

(2) z or y is of degree 1 in GG. Assume that it’s z, then by suppressing the edge e of
extremity = we get: a(G —e) < a(G) — 1.

0

Proposition 2.6. If G is a connected graph of independence number o then G can be covered
by at most a disjoint cycles, edges or vertices.

Proof. By induction on «

e If & = 1 then the graph G is a clique and hence it can be covered by one cycle (a
hamiltonian one).

¢ We may assume that every graph of independence number o — 1 can be covered by at
most o — 1 disjoint cycles, edges or vertices and let G’ be a graph with independence

number «. According to the previous theorem, there exists a cycle, an edge or a
4



vertex which removal gives a graph G’ such that o(G') < a(G) — 1 = a — 1. Then,
G' can be covered by at most a — 1 disjoint cycles, edges or vertices and it follows
that G can be covered by at most « disjoint cycles, edges or vertices.

g

By combining all what have preceded, and by supposing moreover that GG is 2-connected
with a vertex set large enough and independence number at least 2, then we can cover G by

(1—-2)k

at most a number of order of cycles of length at most k, as states the following

result:

Theorem 2.7. Let G be a 2-connected graph of order n with independence number o > 1.
2

Let ¢ and k be two integers such that ¢ > 2 and k > 2c(a+1) — 1. If n > «a(1 — 3—)k, then
c

_ 3
(1-2)k

log(1 — é)
Proof. Denote by N the set of uncovered vertices (at the beginning |N| = n).

2

Step 1 While |N| > (1 — 3—)k, then by Theorem 5, we have a cycle of length at least
c

V]

n log

(1—-2)k

cx(G) < +1

1+«

2
>(1- 3—)k If this cycle’s length is greater than £ then, by Theorem 3, we know how
« c

2
to reduce it, obtaining in any case a cycle which covers at least (1 — 3—)k vertices of N. At
c

n—oa(l—2)k

(1—-5)k

the end of this step, at most cycles would be used.

2
N Nl <(1-—)k
ow IN] < (1~ 2 )ka
Step 2 While |N| > 3, then by Theorem 5 we can find at least a cycle in N. The number
of cycles used (which lengths are reduced by applying Theorem 3) is given by the (smallest)
number 7 of iterations done until | V| becomes < 3. After the first iteration, there remains

[V

at most |[N| — — = |N|(1 — —) uncovered vertices. After i iterations, there lasts at most
et a

1., 1.,
|N|(1——)" uncovered vertices. We stop when |N|(1 — —)* becomes < 3«, and as far as that
« «

2 1, log 7=z
goes it suffices that (1 — 3—)ka(1 — —)* < 3a. It follows that 7 > [l =
c a

og(l — é)l

When this step is over, we have |N| < 3a.

Step 3 While |N| is > «a, we can cover its vertices 2 by 2 (by Theorem 5) and since the
considered graph G is 2-connected, then every edge lies in a cycle. If the length of this cycle
is greater than &k then we know how to reduce it (Theorem 3). Thus we obtain at most «
further cycles in the covering.

And finally, when |N| < « we can cover the vertices one by one and for the same afore-

mentioned reasons, we get at most « additional cycles in the covering. In short, we have a
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log = (17—)k

+
. (1—1%)/% log(1 - 2) L
Furthermore, log(1 — a) <-- (study the sign of the function f(a) = log(1 — &) + &) then

(1— )k
3

+a+1

covering of G by a most:

(G) < + alog( ) +a+1. O

(1— 5k

Remark 2.8. (1) In order that the function log(1 — é) would be defined, the case o =1
has been put aside. If this case occurs, then the 2-connected graph G would be a clique
and hence it could be covered by at most [%1 cycles.

(2) More generally, by taking just a non zero integer c, the same bound holds by replacing
(1= )k by y = max((1 = )k, 2

3 5 ). Notice that the more c is great, the more 7y
c
approaches k.

The previous bound remains for ¢;(G) even if n is not as large as supposed in the previous
theorem. However, it can be improved as states the following result:

Theorem 2.9. Let G' be a 2-connected graph of order n with independence number > 1.

1
Let ¢ and k be two integers such that ¢ > 1, k > 2¢(a+1)—1 and v = max((1— 3—) : ;— ).
c

If n>aythen cx(GQ) < L +a(1+log%) +1,
Y

if 3a<n<aythen cx(G)<a(2+]log %) +1,
and if n < 3a then cx(G) < 2a.

Proof. The proof of the first case is already done.
The proofs of the two other cases are quite similar starting from step 2 and step 3 respectively
in the previous proof. O

3co
(3c — 2)
(where ¢ > 2) for the graph which consists of « copies of K with a common vertex and
which can be covered by « cycles.

The first term of the given bound for ¢, (G) is fairly significant, since it is of order

For the complete graph K, (n very large), we’ve got a covering by [%1 cycles, which is not

(1-2)k
3

)+2 given by the previous theorem for k£ > 2¢(a+1)—1

n

so far from +log(
(1- 3C)k

and c very large.

We deduce naturally the following corollaries from the preceding theorem.

Corollary 2.10. Let G be a 2-connected graph of order n with independence number o > 1.
Let k be an integer such that k > 2 + 1.

- < -
If n>ao 5 ) then ¢ (G) 1 + a(1 + log

)+ 1,



k+1 k+1
if 3a<n< a(%) then c¢x(G) < (2 +log %) +1,

and if n < 3a then cx(G) < 2a.

Corollary 2.11. Let G be a 2-connected graph of order n with stability number o and k an

1
integer such that M > 2. Then
2+ 1)
n . 4
Ck(G) < m =+ O!lng' Zf n > a(k — g(a’—f‘ 1)),
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