
L R I

USE OF VERIFICATION TECHNIQUES FOR

COMPONENTS TESTING

ZAIDI F / LALLALI M

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

01/2007

Rapport de Recherche N° 1465

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

Use of Verification Techniques for Components Testing

Fatiha Zaidi+, Mounir Lallali++
+Université Paris-Sud XI - CNRS UMR 8623

laboratoire de Recherche en Informatique, LRI, Bat 490
91405 Orsay Cedex

{Fatiha.Zaidi@lri.fr}
++Institut National des Télécommunications-CNRS SAMOVAR

9 rue Charles Fourrier
91011 Evry Cedex

{Mounir.Lallali@int-evry.fr}

Abstract

In this paper, we report about the use of the model
checker SPIN to generate test cases. We have adapted the
SPIN tool for automatically generating test cases for an em-
bedded component. The generation of the latter is based on
the counter-example generation mechanism of SPIN. For
that purpose, we have implemented inside SPIN our test
generation algorithm that allows to generate a test case
for each test objective to be covered. The strategy of our
algorithm permits to manage the state space explosion in
combination with the efficient existing algorithms of SPIN
to handle large state spaces. We define in this paper how
we characterize the behavior of the embedded component.
Given a PROMELA model of the complete specification,
i.e with the component, our method helps to generate ef-
ficiently tests from a test purpose written in Propositional
Linear Temporal Logic Formulas. Finally, we exercise our
prototype on a case study and obtain first promising results.
Keywords: Testing, Verification, Model checking, Formal
Method, PLTL, SPIN.

1 Introduction

Conformance testing, that ensures correct protocol im-
plementations, has become more and more essential for
the development of reliable communicating systems. Dur-
ing these last decade, numerous testing generation methods
have been proposed. Due to the complexity of the test of the
systems, the designers use modularity to build their systems
and opt for a “divide to conquer” strategy. Thus, to test a
system as a whole becomes difficult due to the systems huge
size. In this case, testers have to face the state space explo-

sion problem. Moreover, to test a system in isolation is not
always feasible due to the interactions among the system
besides of not being realistic. Component-based testing has
become a main research area in the testing realm. The goal
of embedded testing is to check the conformance of the im-
plementation of a component regarding its specification in
the context of the other components. Different approaches
have been published in the literature [2, 12] and they faced
the combinatorial explosion problem. Among them, we can
refer structured algorithms and non-structured one that are
based on a random exploration of the model to generate
tests, especially those that use test objectives as a guide dur-
ing the state space exploration, e.g. the Hit-or-Jump algo-
rithm [5]. This latter gave good results [1, 4] and have been
applied on real protocols such as TCP and WAP [1,6]. Nev-
ertheless, the implementation of such algorithms can be im-
proved by taking advantage of existing techniques of model
checking to reduce the state space. Model checking and
testing are two complementary techniques.
The former works on a model of the implementation and
checks properties of a system expressed by a temporal logic
by exercising a model of it. The latter requires, as the veri-
fication techniques, the construction a system model. Nev-
ertheless, the aim of testing is to exercise the real system
with the test generated from the formal model. In this way,
both techniques need the effort of the model construction,
being the verified model, i.e. deadlocks and livelocks free
model, used as input to generate tests. Recently, the re-
search in this area produced papers that try to use model
checker tool [3,7,9],i.e. especially the input model for these
tools, to deviate it from its original goal in order to generate
tests.
In this paper, we try to propose such an approach. Thus,
the contributions of this paper is two folds: (i) we propose

1

an efficient method to generate component-based test cases
and (ii) we adapt to an efficient model checker SPIN [10]
an efficient generation testing algorithm. This tool can be
used for validation and verification by automatically check-
ing a property and by generating a counter-example in case
of the violation of this property. It can also efficiently han-
dle large state spaces as it employs various methods to re-
duce the complexity of search. The input language of the
tool is the PROMELA language. Hence, our testing gener-
ation method will use this input model to generate our test
cases, as we will consider this model as our specification
of the expected behavior of the system. We propose to im-
plement our embedded testing algorithm inside SPIN model
checker.
The rest of the paper is organized as follows. In the Sec-
tion 2, we present our testing generation algorithm and the
SPIN model checking algorithms. In Section 3, we describe
our proposed approach and we explain how we adapt SPIN
to implement our algorithm. Moreover, We describe also
how we formulate the test objectives with PLTL formulas.
In Section 4 the case study and how we formulate our test
objectives for this example are presented and we discuss
about the obtained results. Finally, in Section 5 we give our
conclusion and guidelines for future work.

2 Components Tests Generation
and SPIN model checker algorithms

In this section, we propose an embedded test generation
method , the Hit-or-Jump algorithm [5] which will be used
inside the model checker SPIN [10]. We will propose in
the next section a new algorithm to adapt the acceptance
cycle detection algorithm of SPIN (see subsection 2.2) [8]
by using the hit-or-jump method. Our new method, based
on this two algorithms, uses test objectives to describe finite
behavior and accept state detection algorithm. The integra-
tion of our algorithm in the SPIN tool permits to obtain a
guided random walk to generate test sequences of an em-
bedded component.

2.1 Outline of the Hit-or-Jump algorithm

The algorithm presented here allows to cover all the in-
teractions of the component in its context. The essence of
our approach is as follows. At any moment, we conduct a
local search from the current state in a neighborhood of the
accessibility graph. If an untested part of the component
is found (a Hit), we keep it for the final test sequence, and
then continue the search process from there. Otherwise, we
move randomly to the frontier of the neighborhood searched
(Jump), and resume the process from there. This procedure
avoids the building of a whole system accessibility graph.
Accordingly, the space required is determined by the user,

e.g. a depth limit or a maximum number of states, and it
is independent of the system under consideration. On the
other hand, a random walk may get “trapped” at certain part
of the component under test [11]. Our algorithm is designed
to “jump” out of the “trap” and pursue the exploration fur-
ther. We build at each step a partial accessibility graph to
avoid the state-number explosion problem mentioned be-
fore. The algorithm finally produces a test sequence as a
transition tour of the component in its context.
Initial condition. The environment machine C is in an ini-
tial state s

(0)
C

, the component machine under test A is in
an initial state s

(0)
A

, and the system variables have initial
values ~x(0).
Termination. The algorithm terminates when all the tran-
sitions of A have been marked off.
Execution.

1. HIT From the current node (s
(k)
C

, s
(k)
A

, ~x(k)) conduct
a search in C × A until (a) or (b) occurs:

(a) Reach an edge which is associated with un-
marked transitions of the component machine A:
a Hit. Then:

i. Include the path from the current node to the
edge (inclusive) in the test sequence under
construction;

ii. Mark off the newly exercised transitions
of A;

iii. Arrive at a node (s
(k+1)
C

, s
(k+1)
A

, ~x(k+1));
iv. Erase the searched graph;
v. Repeat from 1.

(b) Reach a search depth or space limit without hit-
ting any unmarked transition of A. Then move
to 2.

2. JUMP

(a) We have constructed a search tree, rooted at
(s

(k)
C

, s
(k)
A

, ~x(k)).

(b) Examine all the leaf nodes of the tree and select
one uniformly at random.

(c) Include the path from the root to the selected leaf
node in the test sequence.

(d) We arrive at the selected leaf node
(s

(k+1)
C

, s
(k+1)
A

, ~x(k+1)): a Jump.

(e) Repeat from 1.

This algorithm avoids looping on the same state, as far
as we choose uniformly and randomly in the spanning tree.
Notice that Hit-or-Jump assumes that the specification is
correct in the sense that it does not imply run-time dead-
locks, neither non accessible states, etc.

2.2 Optimized Nested Depth First Search for Ac-
ceptance Cycles (NDFS)

SPIN’s verification procedure is based on an optimized
depth first graph traversal method. The principle of the
nested depth-first search algorithm is as follows. For an
existing accepting cycle in the reachability graph at least
one accepting state must be both reachable from the initial
system state and from itself. The first depth first search es-
tablishes which accepting states are reachable from the ini-
tial system state. The second (nested) search starts at each
accepting state previously detected, and checks whether
or not that state is reachable from itself. If so, a com-
plete execution sequence that includes the acceptance cy-
cle is also constructed: It is the concatenation of all the
steps that are both on the first and on the second depth
first search stack. We note that the second search always
explores the same states that are found in the first search
and stops when reaching a state of the first search stack.

proc dfs(s) /* The first DFS*/
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do

if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
remove s from Stack

end
proc ndfs(s) /* The second DFS*/

add {s,1} to Statespace
for each (selected) successor t of s do

if {t,1} not in Statespace then ndfs(t)
else if t is in Stack then report cycle fi

od
end

3 Description of our method

This method uses the structure of SPIN based on tem-
poral properties checking. We introduce the concept of the
test objectives (i.e. the transitions of the component to be
covered) for the needs of the components test generation.
In this method, the test objectives describe a finite execu-
tion. The intersection between the language accepted by
the system automaton (i.e all its executions) and the lan-
guage accepted by the test objectives automaton is a finite
execution (i.e finite transitions sequence). The never claims
are used to detect behaviors that are considered undesirable
or illegal (in our case the negation of the test objectives).
The statements in a never claim are used to follow the ex-
ecutions of the system. The following is achieved by com-
puting a synchronous product of the sequence specified in

the temporal claim, with the interleaving sequences speci-
fied in the system. This synchronous product allows to build
a new automaton, in which every state is defined as a pair
(s,n) with s being a state from the global system, and n a
being state from the temporal claim. Every transition in
the new automaton is defined by a pair of transitions (a,p),
with the first element (i.e a) being a statement of the sys-
tem, and the second (i.e p) being a proposition of the claim.
In other words, every transition in this final synchronous
product is defined as a joint transition of the system and the
claim. Such a transition can only occur if the proposition p
is valid in the originating state s of the transition. Instead of
seeking an acceptance cycle as in the NDFS algorithm, we
search just a path going from the initial state of the product
automaton to a hit state (s,n) (i.e. a state that corresponds to
an uncovered component transition) with n being an accept
state of the automaton temporal claim. This path must con-
tain all the terminating states of the transitions (hit states)
that appear in the test objectives (described by the claim).
We note that an accept state is a claim violation state. For
our purpose as mentioned previously, we use only the first
DFS of the NDFS algorithm by adapting the Hit-or-Jump
algorithm for jumping from a current state (initialized at
the beginning to the initial state and then to the reached hit
states) if search depth is reached. The use of the SPIN struc-
ture of the temporal properties’ checking for embedded test
generation is presented in Figure 1. We express our test ob-
jectives as an undesirable property. This latter is converted
to the Büchi automaton [14]. Furthermore, SPIN will pro-
duce a path as a counter-example if it exists that exhibits the
violation of our property. Thus, this path is a sequence of
events that corresponds to the satisfaction of our test objec-
tives (i.e.¬property).

3.1 Detection algorithm for accept state

This algorithm performs only the first DFS as we con-
sider only finite execution. As said previously, the second
DFS (the NDFS) is launched to search an acceptance cy-
cle for infinite execution. We seek to reach an accept state
from the initial state of the product automaton of the system
and of the property. This state has as one component the
terminating state of the property automaton. In this search,
all the terminating states (i.e the accept states) of the transi-
tions that appear in the test objective described by this prop-
erty must to be reached. During this DFS, only the presence
of the states in the accessibility graph is memorized by the
addition of the state s in the Statespace. We keep track (in
a transitions table indexed by their terminating states) of all
the reached transitions, which are candidates to appear in
the generated test sequence.

If a certain depth (i.e. a depth limit set by the user) is
reached from a current state (initialized to the initial state)

Figure 1. SPIN structure for embedded test
generation

without detecting an accept or a hit state, a jump of depth d
is carried out by building a partial search tree and by choos-
ing uniformly and randomly a leaf node of this tree. This
tree has as root the current node and also has a depth d. Con-
sequently, we restore the queues content of the current state
and we update the states space and the transitions table. All
the states reached before the jump and which are succes-
sors of the current node, will be replaced by all the states
that form the path from this current node to the selected leaf
node. In the same way, all the transitions occurred after this
jump will be replaced by those occurred between this cur-
rent node and the selected leaf node. This leaf node will be
the new current node. We continue the search of an accept
state or a hit state. The algorithm finishes if an accept state
is reached or if the complete exploration of the states space
is performed.

In the first case, this generation is carried out by going
back to the intial state from the reached acceptance state.
In the second case, only a partial test sequence is generated
and contains only a part of the transitions to be covered.

current_node := initial_state
dfs(current_node);
proc dfs(s)

if not(depth reached) then
add(s) to Statespace
if accepting(s) then

report test sequence fi
if s is Hit state then current_node:=s fi
for each(selected) successor t of s do

if t not in Statespace then
add transition(s,t) to the reachedTransitions;
dfs(t); fi

od
else if s = current_node then

Build from s a partial exploration tree
Choose uniformly and randomly a leaf node of this tree
Initialize the partial Statespace
Update the Statespace and the Transitionstable
current_node := leafnode
dfs(leafnode);

fi
end dfs

The report function: To extract the test sequence begin-
ning from the initial state to the accepting state and by
using the reached transitions table reachedTransitions.

The Build function: To build a partial exploration tree
having depth d from the current node and by using the
partial Statespace.

The Update function: To update the Statespace, the tran-
sitions table and the states sequence of the dfs.

3.2 The Test objectives

The Propositional Linear Temporal Logic (PLTL) [13]
describes sets of paths in the computation tree. This logic
allows to describe propositions linked by connectors and
temporal operators. We use it to describe the test objec-
tives that model the component transitions to be tested. We
search to build in the accessibility graph (i.e part of the
Büchi automaton resulting from the synchronous product)
a path that checks the test objectives. This search is handled
by the detection algorithm of an accept state. The formula-
tion of the test objectives in PLTL obliges us to express it
by a set of states that are the originating states of the tran-
sitions that we want to test. The SPIN tool accepts correct-
ness properties expressed in PLTL, translates them into a
never claim (in PROMELA language) and generates Büchi
automaton. The never claim must express a negative prop-
erty. For our embedded test generation method, we can not
use the SPIN PLTL Property Manager to express test objec-
tives. This editor translates automatically PLTL formulas

into never claim but it is not adequate with our test objec-
tives formulation that has to describe states sequence. How-
ever, every state is associated to a property. A disjunction
of these associated properties does not express this states
suite. It is a necessary condition but not a sufficient one.
Nevertheless, their conjunction has not any sense because
it can be never satisfied. We express directly the test ob-
jectives by a never claim that describes the states sequence.
This sequence is in fact, a sequence of occurred transitions
between those states.

3.3 Test objectives formulation describing a finite
undesirable behavior

The never claim describes the test objectives as a bad and
finite behavior of the system. As said previously, the model
checker SPIN permits to detect a system finite execution
that checks these test objectives. This detection is in fact a
search for an accept state. We generate the embedded test
sequence of the component under test from this execution
(states sequence from the root state until the accept state).
This test sequence is a transitions sequence that occurs from
the execution states (i.e from the originating states of these
transitions). The never claim is noted ¬ (� test_objective)
in PLTL. In PROMELA, it is in the following form:

never {
do
:: skip
:: test_objective −→ break
od
accept : skip /* accept state */

}
We leave the loop when the test objective was checked and
then we reach the accept state. A test objective formulation
(in PROMELA syntax) of the Receiver component of the
Alternating Bit Protocol is presented in the section 4.1.

4 Prototype Implementation

We realized an implementation of our test generation
method. To construct our prototype, we introduced mod-
ifications to the states space exploration DFS procedure
(i.e new_state()) and to the claim check procedure (i.e
check_claim()). We have also used data structures (for ex-
ample transitions matrix) to model the transitions system
and states space.

4.1 Case Study: The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a simple data link
layer network protocol that retransmits lost or corrupted
messages. Messages are sent from Transmitter A to Re-
ceiver B. Assume that the channel from A to B is initialized

and that there are no messages in transit. Each message
contains a data part, a checksum, and a one-bit sequence
number, i.e a value that is 0 or 1. When A sends a mes-
sage, it sends it continuously, with the same sequence num-
ber, until it receives an acknowledgment (ACK) from B that
contains the same sequence number. When that happens, A
complements (flips) the sequence number and starts trans-
mitting the next message. When B receives a message from
A, it checks the checksum. If the message is not corrupted
B sends back an ACK with the same sequence number. If
it is the first message with that sequence number then it is
sent for processing. Subsequent messages with the same
sequence bit are simply acknowledged. If the message is
corrupted B sends back a negative-acknowledge character
(NAK). This is optional, as A will continue transmitting un-
til it receives the correct ACK. A treats corrupted ACK mes-
sages and NAK messages in the same way. The simplest be-
havior is to ignore them all and continue transmitting. We
give an example of the formulation of the test objectives for
the Receiver Component of the ABP.

4.2 Test objectives formulation for the receiver
component

To test the Receiver component, we label the transi-
tions that the test sequence must contain, in other words
we instrument our PROMELA model. We use these la-
bels for the formulation of the test objectives. In the exam-
ple 1, rec_state1 allows to label the control statel (i.e the
originating state of the transition RACK!(B)). When this
state is reached during the states space exploration, we are
sure to have received a message and the correct control bit
(RDT?M,eval(B) action) and to have sent the good ACK.

proctype Receiver ()
int M; bool B = 0;

do
:: RDT?M,eval(B) −→ Get!M;

rec_state1 : RACK!B;
B = !B;

:: RDT?M,eval(!B) −→ rec_state2 : RACK!(!B);
:: RDTe?(Error) −→ rec_state3 : RACK!(!B);
od

}
Example 1: Receiver PROMELA specification

In the example 2, we exhibit our never claim to test the
transitions of the Receiver. We test that the Receiver exe-
cutes the actions RACK!(B) (sending of a correct ACK af-
ter the reception of a correct control bit) and RACK!(!B)
(sending of an incorrect ACK after the reception of an in-
correct control bit). For that purpose, we define three propo-
sitions Claim1, Claim2 and Claim3. For sake of simplicity,
we will discuss only on the two first claims. The first (re-
spectively the second) expresses that the Receiver has re-

ceived a correct control bit (respectively the incorrect con-
trol bit) and has gone to the originating state (i.e control
state) of the action or transition RACK!(B) (respectively
RACK!(!B)) labelled in the specification by rec_state1 (re-
spectively rec_state2). We define (in PROMELA) Claim1
by "#define Claim1 Receiver[rec_id]rec_state". This ex-
pression Claim1 is a boolean variable which takes the value
true if the Receiver component identified by its process
identity number rec_id is in the state labelled by rec_state1.
Our test objectives (the never claim) express that the ex-
ploration must reach at least once (in an unspecified order)
the states labelled by rec_state1 (respectively rec_state2)
that are the originating states of the transitions (RACK!(B)
(respectively RACK!(!B)) which will form the final test se-
quence. In our embedded test generation method applied
to the Receiver component, we must produce a path that
reaches an accept state going through all the hit states (i.e.
which are the reached states of the Receiver transitions to
be tested).
The path (or the execution) to be produced have to meet our
test objectives. To achieved this, we labelled the hit states
by accept labels (e.g accept_Hit_1 in Example 2) to distin-
guish them during the exploration of the automaton product
(i.e system and property). They will be reached only once.
Each property defined above (i.e. #define) is associated to a
hit state of the Receiver automaton.
By checking these properties, at each time of the search,
we can check if the associated hit state is reached. In the
example 2, we used a Hit boolean array indexed by the hit
states number and each element of this array is assigned to
true whether the associated hit states is reached for the first
time, by default the values are false. For instance, the con-
dition Claim1 && !Hit[0] holds only if Claim1 is valid (i.e
the Receiver process instance is in a hit state labelled by
rec_state1) and this state is reached for the first time. We
initialize to false all the elements of the Hit array. Each
time that an accept hit state is reached, we will marked this
traversal. The accept state of the never claim automaton is
reached, if all the hit states are reached during the search
(i.e all the array elements are evaluates to true).

never {
skip;
Hit[0]=0; Hit[1]=0; Hit[2]=0;
T0_init : if

:: Claim1 && !Hit[0] −→
accept_Hit_1 : atomic {Hit[0]= 1;
if

:: (Hit[0] && Hit[1] && Hit[2])
:: else −→ goto T0_init

fi
}
:: Claim2 && !Hit[0] −→
accept_Hit_2 : atomic {Hit[1]= 1;

if
:: (Hit[0] && Hit[1] && Hit[2])
:: else −→ goto T0_init

fi
}
...

} /* end of the never claim */

%endminipage
Example 2: Receiver test objectives

4.3 Discussion of results

This section presents a comparative table (see Figure 2)
between the results obtained by the original SPIN and by
our own prototype for the same case study in the same con-
text. The case study is a well-known protocol, i.e the ABP,
and allows us to exercise our test method. More precisely,
we chose as test objectives the coverage of all the transitions
of the Receiver component. This latter is not directly acces-
sible as we have to go through the Transmitter which can
initiate the communication and through the medium. We
compared the stocked states number (in data structures), the
visited states number, the analyzed or occurred transitions
number, and the violation depth of the temporal claim (i.e
the test objectives negation).

Figure 2. Discussions of results

We note that for the two tools (SPIN and our own pro-
totype), we obtained the same test sequence with the same
depth. Nevertheless, in most of cases, the use of our proto-
type decreases all the evaluated parameters mentioned pre-
viously. We can explain this by the fact that SPIN DFS
carries out a back-tracking if the maximum search depth is
reached without reaching an accept state. Indeed, a maxi-
mal depth limit is predefined and the value is high. On the
contrary, our prototype works on partial graph and traverses
smallest path due to the small depth limit set to obtain a
jump. In this case we only back-track to the last hit state
(current node) reached by the depth limit and executes a
jump. Moreover, the jump allows us to get out the "‘trap"’
and to search our test objectives in other part of the graph.
We can avoid very long test sequences with uninteresting
paths according to a good depth search choice.

5 Conclusion

This paper discussed a new approach to generate test
cases for an embedded component. This method conducts
a search in the partial product of the whole system and the
automaton of the formula that represents the test objectives
i.e. the transitions of the component to cover. For that pur-
pose, we use the counter-example generation of the model-
checker SPIN as our test cases. This tool explores all the
possible states within the model and checks whether the
property holds. Otherwise, it outputs a trace that illustrates
the violation of the property, the counter-example. In our
case, we negated our test objectives and fed the tool. Hence,
the violation of the property in SPIN in that case will repre-
sent the meet in the specification of our test objectives.

We have implemented inside SPIN an efficient testing
algorithm that allows to avoid in most cases the state spaces
explosion. Moreover, SPIN permits to manage this problem
by its optimization techniques. The combination of both
gives good results in terms of number of states to visit and
to store. We have exercised our prototype on the alternating
bit protocol. We obtained first promising results for the test
cases generation of embedded components, which allows us
to consider huge systems by avoiding states space explosion
and to access components that have no direct access from
the environment.

An immediate line of future is to exercise our prototype
with different criteria of coverage. We present in the paper
a coverage criterion that is the transitions coverage in order
to produce a transitions tour of the component in its context.
This criterion can be rapidly changed , may one want only to
test some critical functionalities of a module. We can also
mention improvements on our prototype in order to have
an integrate tester available with SPIN. We can modify the
SPIN editor to adjust it for that purpose i.e. edition of the
test objectives, posting of test cases, and so on. Moreover,
we want to improve our prototype in order to deal with real
protocols.

References

[1] C. Besse, A. Cavalli, M. Kim, and F. Zaïdi. Automated Gen-
eration of Interoperability Testing. IFIP TC6/WG6.1 Four-
teenth International Conference on Testing and Communi-
cation Systems, pages 169–184, march 2002.

[2] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.
A guided incremental test case generation procedure for
conformance testing for CEFSM specified protocols. In
IWTCS’98, Tomsk, Russia, Aug. 1998.

[3] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using modelchecking. In Proceedings 1996
SPIN Workshop, Aug. 1996.

[4] A. Cavalli, B. Defude, C. Rinderknecht, and F. Zaïdi. A
Service-Component Testing Method adn Suitable CORBA

Architecture. In I. C. Society, editor, Proceedings of the
Sixth IEEE Symposium on Computers and Communications,
pages 655–660, Tunisia, july 2001.

[5] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaïdi. Hit-or-
Jump: An Algorithm for Embedded Testing with Applica-
tions to IN Services. In Proceedings of FORTE/PSTV’99,
Beijing, China, Oct. 1999.

[6] A. Cavalli, A. Mederreg, F. Zaïdi, P. Combes, W. Monin,
R. Castanet, M. MacKaya, and P. Laurençot. A Multi-
Services and Multi-Protocol Validation Platform - Experi-
mentations Results. In R. Hierons and R. Groz, editors, The
16th IFIP International Conference on Testing of Communi-
cation Systems, pages 17–32, Oxford, march 2004. Lectures
Notes in Computer Science.

[7] R. de Vries and J. Tretmans. On-the-fly conformance testing
using. In 4th International SPIN Workshop, Paris, 1998.

[8] D. P. G. J. Holzmann and M. Yannakakis. On Nested Depth
First Search. Proc. Of the 2nd SPIN Workshop. The Spin
Verification System., pages pp. 23–32, 1996.

[9] A. Gargantini and C. L. Heitmeyer. Using model checking
to generate tests from requirements specifications. In ESEC
/ SIGSOFT FSE, pages 146–162, 1999.

[10] G. J. Holzmann. The SPIN Model Checker - Primer and Ref-
erence Manual. Addison-Wesley, Reading Massachusetts,
2004. 608 pgs.

[11] D. Lee, K. Sabnani, D. Kristol, and S. Paul. Confor-
mance Testing of Protocols Specified as Communicating Fi-
nite State Machines - A Guided Random Walk Based Ap-
proach. In IEEE Transactions on Communications, volume
44, No.5, May 1996.

[12] L. P. Lima and A. Cavalli. Exécution de tests de services
sur une plate-forme distribuée. In Proceedings NOTERE’97,
Pau, France, Nov. 1997.

[13] A. Pnueli. The temporal logic of programs. Proc. 18th IEEE
Symposium on Foundations of Computer Science, pages pp.
46–57., 1977.

[14] M. Vardi and P. Wolper. Reasoning about Infinite Computa-
tions. Information and Computation, 115:pp. 1–37., 1994.

	RR1465entete.pdf
	RR1465rapp.pdf

