
L R I
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SELF-STABILISING OVERLAY NETWORK FOR 

EFFICIENT PROCESSES NUMBERING IN 
LARGE SCALE SYSTEMS 

 
 

PERES O / HERAULT T 
 

Unité Mixte de Recherche 8623 
CNRS-Université Paris Sud – LRI 

 
02/2007 

 
Rapport de Recherche N° 1466 

CNRS – Université de Paris Sud 
Centre d’Orsay 

LABORATOIRE DE RECHERCHE EN INFORMATIQUE 
Bâtiment 490 

91405 ORSAY Cedex (France) 



Self-stabilising Overlay Network for Efficient
Processes Numbering in Large Scale Systems

Olivier Peres and Thomas Herault

Univ Paris Sud; LRI UMR8623; CNRS ; INRIA; Orsay F-91405

Abstract. We introduce a self-stabilising algorithm that builds an over-
lay network in any large scale system, such as a peer to peer system. This
allows several applications, such as efficient routing and consecutive pro-
cesses numbering. We assume that every process can communicate with
any other process provided it knows its identifier, which is usually the
case in e.g. a peer to peer system, and that nodes may arrive or leave
at any time. The algorithm uses a neighbourless model for the sake of
scalability and relies on the composition of several subalgorithms.

1 Introduction

Peer to peer networks and grids are emerging large scale systems that gather
thousands of nodes. These networks usually rely on IP to communicate: each
node has a unique address used by other nodes to communicate with it.

Usually, self-stabilising algorithms are designed for distributed systems de-
fined by their topology. Each process has a finite set of communication links to
exchange messages with its neighbours. In our model, we replace the existence
of a complete topology with the notion of neighbourhood, based on resource
discovery. No process knows the set of its links and, since this set is very large,
no process attemps to build it. This model [11] is consistent with most of the
Internet peer-to-peer systems, where a process may send messages to another
one if and only if it knows its IP address.

Using this model, we introduce a self-stabilising algorithm that builds a vir-
tual topology over such a system. Our goal is to allow efficient operation over this
topology, such as routing, and to facilitate building other topologies on top of it,
such as distributed hash tables. Our algorithm benefits from the neighbourless
model in two ways: it provides scalability and the ability to give a formal proof.

The global algorithm is made of three composed algorithms. The first one
makes packs of processes where the cardinal of each pack is a power of two.
The second algorithm links the packs to form a global structure, and the third
efficiently assigns consecutive integer identifiers to the processes, a prerequisite
for many higher-level algorithms.

Since processes can leave the system at any time, the neighbours of a process
have to be able to decide whether it is still part of the system. Otherwise, the
identifiers of crashed processes could not be removed, preventing the system
from converging. Since detecting such failures in a purely asynchronous system is



impossible [7], protocols such as TCP rely on timers, assuming that the Internet
is not really asynchronous. In this paper, we use theoretical devices called failure
detectors [2] to abstract out this partial synchrony: rather than making timing
assumptions, we suppose that the system provides a failure detection service.

The rest of the paper is organised as follows. We discuss related works in
section 2, introduce our model in section 3, and present our algorithms and
prove them correct in section 4. We conclude in section 5.

2 Related works

To design a distributed algorithm, one needs processes and a device for them
to communicate. One such device is shared memory. Many self-stabilising algo-
rithms to build topologies, e.g. spanning trees [10], were designed in this model
where each process can read from a memory area that belongs to certain other
processes, its neighbours. This memory area can contain the whole state of the
neighbour or a smaller piece of data (shared registers). While this model is useful
for a small scale system, like a microprocessor, it is not appropriate for a large
scale system, mainly because the performance impact of maintaining a shared
memory area is very high in this context.

The other classical way to communicate between processes is message pass-
ing. This consists in providing pairs of process with incoming and outgoing chan-
nels that can contain messages. A process can put a message into an outgoing
channel as part of the execution of its code, and it is delivered to the process that
is at the other end at a later stage of the execution of the algorithm. Dolev, Israeli
and Moran [6] studied the differences between the two models in the context of
self-stabilisation. This model is adapted for geographically distributed systems
made of computers linked by a network such as the Internet since the channels
work in the same way as network-based communications. However, algorithms
written in message passing environments usually require all the processes to
have access to a complete and up to date list of their neighbours. In a large scale
system, where this list can be made of hundreds of thousands of processes, this
approach is not realistic because of the amount of memory required to store the
list and of network traffic required to keep it up to date.

Building a spanning topology, in this case a tree, was done by Garg and
Agarwal [9] assuming the processes are numbered sequentially. This illustrates
the practical need for such a numbering, which is normally not provided by large
scale systems. It is provided by our algorithm using the strictly weaker and more
realistic hypothesis of only requiring a total order on the process identifiers.

Existing peer to peer overlays do need to build spanning topologies in a way
that is essentially self-stabilising. The actual structures that are built are usually
tailored for their purposes, e.g. a distributed hash table [8]. Thanks to the ability
to compose algorithms offered by self-stabilisation [5], the sequential numbering
that we provide makes it straightforward to to build such structures in a self-
stabilising way, with the added benefit of allowing to provide a formal proof of
correctness.



We first illustrated the neighbourless model [11] with a spanning tree algo-
rithm whose space complexity is O(1), resulting in the scalability we seek to
obtain. The average space complexity of the new algorithms we present here is
also O(1), thus ensuring a similar scalability. However, they are more distributed
in the sense that in the general case, a large number of processes do useful work
during the same physical time, which was not necessarily true in the previous
algorithm. They are also more flexible, e.g. while a global leader is still elected,
it is not predetermined. The numbering algorithm also shows that routing can
be performed on the structure that is built in a logarithmic number of messages,
i.e. as efficiently as over a balanced binary tree: this is an improvement over the
arbitrary tree built by our previous algorithm.

3 Model

Our model uses the classical definitions of state, configuration and execution:
the state of a process is the set of its variables and their values. The state of
a channel is the ordered list of the messages it contains. A configuration is a
set I of process identifiers, a state for each i ∈ I and a state for each channel
ca→b∀a, b ∈ I2. An execution is an alternate sequence C1, A1, . . . , Ci, Ai, . . . such
that ∀i ∈ N∗, applying transition Ai to configuration Ci yields configuration
Ci+1. A suffix of an execution C1, A1, . . . , Ci, Ai, . . . for k ∈ N is the alternate
sequence C1+k, A1+k, . . . , Ci+k, Ai+k, . . .. Using these notions, we can define self-
stabilisation.

Definition 1. An algorithm is self-stabilising to L if and only if (correctness)
every execution starting from a configuration of L verifies the specification, (clo-
sure) every configuration of all executions starting from a configuration of L is
a configuration of L and (convergence) starting from any configuration, every
execution reaches a configuration of L.

We use self-stabilisation, as defined by Dijkstra [4], to design a fault-tolerant
algorithm: after faults bring the system to an arbitrary configuration, the conver-
gence property ensures that it returns to a legitimate configuration. We denote
by (I, <) the totally ordered finite set of process identifiers in a system and
by P ⊆ I the set of correct processes, i.e. those that do not stop (crash). The
other processes are stopped in the initial configuration of any execution : this
corresponds to the failures that can happen before stabilisation occurs. We as-
sume the existence of lossless unidirectional FIFO links, each having a capacity
bounded by an unknown constant, between each pair of processes. Channel fail-
ures such as message loss or alteration are also captured in the arbitrary initial
configuration. We address the issue of writing an algorithm as if the channels
were of unbounded capacity in a system where this is not the case in the same
way as Afek and Bremler [1].

The oracle is a formalised version of the concept of resource discovery, as
used in large scale systems. It is intended to replace the neighbour list used in
classical distributed systems. A process executing a guarded rule can query it,



and the answer is an identifier in I. In order to ensure the connection of the
virtual topology, the collection of all the oracles has to satisfy a global property.
Formally, in any suffix of an execution, if a set S of processes query their resource
discovery service an infinite number of times then each process s ∈ S obtains all
the identifiers in S at least once.

The failure detector follows the definition given by Chandra and Toueg [2]: a
process can query it as part of the execution of a rule, and it returns information
on the other processes in the system. This information is generally unreliable,
the constraints depend on the class of detectors in which the device is. Such
a detector serves to overcome in a simple and elegant way the impossibility of
solving the consensus problem in a purely asynchronous system [7]. Its implemen-
tation was studied by Chen, Toueg and Aguilera [3]. Interestingly, Chandra and
Toueg’s view of their failure detectors in practice matches the self-stabilisation
paradigm: the system behaves according to its specification most of the time and
may experience infrequent transient failures. This is modeled, as in this paper,
by initialising it arbitrarily and then assuming a failure-free run.

Our model is slightly different from that of Chandra and Toueg since we
cannot afford to have a device that returns a list of potentially all the process
identifiers in the system due to its large size. Therefore, our detectors provide
instead a function suspect : I → boolean. In this work, all the failure detectors
are, according to Chandra and Toueg’s nomenclature, in class �P, i.e. eventually
perfect. In our model, where all runs are failure-free since all failures are captured
in the initial configuration by the self-stabilisation model, it means that after a
finite number of queries, their suspect function returns true if and only if the
given identifier is in P and this property remains true from then on.

The algorithms are given as sets of guarded rules. Each guard is a boolean
expression that can involve the availability of an incoming message, and each
rule consumes the message (if any), then can modify the process’ local state and
send messages. From a realistic point of view, a distributed scheduler should
be assumed, but because of the communication model, no two processes can
interfere with each other, so the proof is written under a centralised scheduler.
We assume that the scheduler is fair, i.e. any transition whose guard is evaluated
to true infinitely many times is eventually drawn.

To account for process identifiers that correspond to stopped (crashed) pro-
cesses or to no process at all, we adopt the convention that any message sent to
a stopped process is lost and that the only entity in the system that may send
a message is a correct process. The contents of the channels are arbitrary in the
initial configuration, though, since a self-stabilising algorithm must be able to
recover from any channel failure.

4 Algorithms

4.1 Pack Algorithm

This algorithm, presented in figure 1, needs a parameter t such that t > log n,
where n is the number of processes in the system. It builds a maximal pack of



Variables
neighbour[0..t] : process identifiers

Definitions
– Active

active(0) ≡ true
∀i ∈ 1..t, active(i) ≡
active(i−1) ∧ neighbour[i−1] 6= ⊥

– Level
level ≡ max{i | active(i)}

– Leader
leader ≡ (level = 0) ∨

neighbour[level − 1] < myself

Guarded rules

– Sanity checking
true→ ∀i ∈ 0..t,
if suspect(neighbour[i]) ∨ ¬ active(i)
∨ neighbour[i] = myself

then neighbour[i] ← ⊥

– Link maintenance
∀i ∈ 1..t,
active[i] ∧ neighbour[i] 6= ⊥ →

send Hello(i) to neighbour[i]
– Prospecting

leader → let v = RD Get() in
if ¬suspect(v) ∧v > myself then

send Exists(level) to v
– Reaction to Exists

reception of Exists(j) from v →
if active(j) ∧¬suspect(v)
∧ neighbour[j]= ⊥

then neighbour[j] ← v
– Reaction to Hello

reception of Hello(j) from v →
if neighbour[j] = ⊥∨v > neighbour[j]

then neighbour[j] ← v
else if neighbour[j] 6= v ∨ ¬active(j)

then send Goodbye(j) to v
– Reaction to Goodbye

reception of Goodbye(j) from v →
if neighbour[j] = v

then neighbour[j] ← ⊥

Fig. 1. Pack algorithm.

processes whose cardinal is a power of 2 and elects a leader inside it. Informally,
each process p searches for a partner q at level 0. When it finds it, thus forming
a pack of size 2, one of the processes becomes leader and starts looking for a
partner at level 1. This partner has to be itsef the leader of a pack of size 2.
Eventually, every process in the system becomes a member of exactly one pack.
Each pack describes a binary tree, which makes this simple structure suitable
for routing.

The resulting structure is shown on figure 2. The processes from P1 to P7 are
represented as rectangles, each containing four neighbour variables. The pairs
are denoted by solid lines, the leader of each pair is emphasised by a thicker line.
So, for example, P1 and P3 are paired at level 1 and P3 is the leader.

The RD Get function is used by each process to query its oracle, it returns
an identifier in I.

Proof of self-stabilisation

We prove that our algorithm verifies the three required properties to be self-
stabilising: first correctness, then closure, and lastly, convergence.



P2 0 1 2 3

P3 0 1 2 3

P1 0 1 2 3

P0 0 1 2 3

P63 2 1 0

P73 2 1 0

P53 2 1 0

P43 2 1 0

Fig. 2. Structure of a pack.

Definition 2. Let p and q be two distinct processes. A system σ is stable at
level l if and only if it verifies the following properties for all m ≤ l:

– active(p) ∧ active(q) ∧p 6= q∧(neighbour[m](p) = q ⇒ neighbour[m](q) = p).
– there are at most 2m+1 − 1 active processes (pi) s.t. neighbour[m](pi) = ⊥.
– if neighbour[m](p) = ⊥ then Exists(m) 6∈ cq→p.
– Hello(m) ∈ cp→q ⇒ neighbour[m](p) = q.
– Goodbye(m) 6∈ cp→q.

Definition 3. A system is in the set Lp of legitimate configurations if and only
if it is stable at level dlog ne.

Lemma 1 (correctness). Let σ be a system made of n processes in a legitimate
configuration. The system comprising n processes, where n can be written as∑

i∈I 2i, is made of |I| packs, one for each i ∈ I, of size 2i.

Definition 4. A process p is paired at level m iff p is stable at level m− 1 and
there is a process q, stable at level m − 1, s.t. neighbour[m](p) = q. A process
that is not paired at level m is unpaired at level m.

Lemma 2. A system stable at level l remains so throughout any execution.

Proof. The possible transitions are:

– Sanity checking: no process is suspect because the failure detectors are con-
verged, no process is its own neighbour in the initial configuration by defi-
nition of stable(l), and the possible correction affecting an inactive process
does not make the configuration illegitimate since the conditions only con-
cern active processes.



– Link maintenance and Prospecting: the only message that can be sent are
Hello to a neighbour, which obeys the rule on Hello messages, and Exists
to an already paired process, which verifies the rule on Exists messages.

– Reaction to Exists: by definition of stable, an Exists(m) message can only
be received by a process p s.t. neighbour[m](p) 6= ⊥, thus p does nothing.

– Reaction to Hello: by definition of stable, a Hello(m) message can only be
sent by p to q s.t. neighbour[m](p) = q, thus q reacts by doing nothing.

– Reaction to Goodbye: by definition of stable, there is no such message in the
channels linking stable processes together.

Remark 1. None of the above transitions can change neighbour[m](p) for a pro-
cess p stable at level m ≤ l.

Corollary 1. The set of legitimate configurations is closed under the execution
of the algorithm.

Lemma 3. Any system σ stable at level l − 1 and unstable at level l ≥ 0 or
unstable at level l = 0 eventually becomes stable at level l.

Proof. First notice that the execution of the sanity checking rule eliminates the
cases of suspect neighbours and self-connections (m, p s.t. neighbour[m](p) =
p). Since we suppose that the failure detectors are stabilised at this point, we
disregard crashed processes. Similarly, at no point in the algorithm is it possible
for a process to connect to itself. Also, all the messages present in the initial
configuration are consumed and all the processes have executed their sanity
checking rule. Finally, the fact that σ is stable at level l− 1 means that none of
the values of active, level or leader can change in σ. This is because they only
depend on active itself and neighbour[m](p) for p stable at level m, and this
cannot change (Remark 1).

Let z be the highest non-paired process at level l. Notice that no process can
send Goodbye to z. Thus, if z writes the identifier of a correct process p in its
neighbour field, then p and z become paired.

Suppose there is an execution of σ where no pair is formed at level l. Let p
be a process distinct from z, not paired at level l (p has to exist, or σ would
be stable at level l). As part of its spontaneous prospection rule, p sends out an
infinite number of Exists messages and thus, by definition of the oracle, sends
Exists to z. Since z has ⊥ in its neighbour field, it takes p as a neighbour:
contradiction.

Hence, eventually the number of process pairs at level l is maximal, which
leaves at most 2m+1 − 1 unpaired processes.

Theorem 1. The pack algorithm is self-stabilising to Lp .

Proof. (convergence) By Lemma 3, system σ eventually becomes stable at all
levels. At this point, it has reached a legitimate configuration.



4.2 List algorithm

This algorithm maintains a doubly linked list topology that connects together
packs of processes created by the pack algorithm. The first process in the list
is the leader of the highest-level pack, then all the other leaders appear in de-
creasing level order down to that of the lowest-level pack. This algorithm is to
be composed with the pack algorithm. Therefore, it can read its variables and
evaluate its functions, but not modify any of them.

The algorithm works as follows. Each process has a next and a previous
variables that hold the identifier of the leader of the immediately lower and
higher packs, respectively. The next level and previous level variables contain
the levels of these packs. As for the pack algorithms, there are guarded rules for
sanity checking, link maintenance and prospecting. Three messages are used :
ListExists to discover new processes, ListHello to insert a process in the chain
and ListGoodBye to delete a process from it. The associated guarded rules
insert the sender in the chain when appropriate for ListExists and ListHello
and delete it in all cases for ListGoodBye.

The proof goes as follows. We first define the attractor that we use for the
proof of convergence and the set of legitimate configurations.

Definition 5. Let m be the number of packs formed by the pack algorithm. A
configuration is stable at level l ≤ m if and only if the following properties hold
for the l lowest pack leaders:

– if p is the leader of the lowest-level pack then next(p) = ⊥ and next level(p) =
−1, else previous(p) = q where q is the leader of the pack whose level is im-
mediately lower than level(p) and next level(p) = level(q).

– previous level(p) = level(previous(p)), next level(p) = level(next(p)).
– no channel contains a ListGoodBye message.
– Hello(l) ∈ cp→q ⇒ previous(p) = q∨ next(p) = q.

Definition 6. A configuration that is stable at level m and in which the leader
p of the largest pack is such that previous(p) = ⊥ and previous level(p) = t is
legitimate. The set of such configurations is called Ll .

The proofs of correction and closure are straightforward. The proof of con-
vergence is done as follows: we now consider a system where the failure detectors
are stabilised, initial messages are consumed and the pack algorithm is stabilised.

Definition 7. Let p be a pack leader. The value of previous(p) or next(p) is
spurious if the associated level does not match that of the corresponding process,
i.e. next level(p) 6= level(next(p)) or previous level(p) 6= level(previous(p)).

Lemma 4. All spurious values are eventually eliminated.

Proof. Since the two cases are symmetric, suppose next level(p) 6= level(next(p)).
Eventually p executes its sanity checking rule, thus p sends ListHello to q. If q
is not a pack leader, then it replies with ListGoodBye, upon reception of which
p writes ⊥ in its next field. If q is a pack leader then level(q) > level(p) by
definition of p, so q also replies with ListGoodBye.



Since it is not possible to introduce a spurious value in the system because the
level fields are updated at the same time as the previous and next fields, from
now on, we suppose that no spurious value exists in the system. An immediate
consequence of this is that the system eventually becomes stable at level 0.

Theorem 2. A system stable at level l eventually becomes stable at level l + 1.

Proof. Let p be the leader of the smallest unstable pack and q be the leader of
the largest stable pack. First, notice that if next(p) = q, then p cannot change
the value of its next field. This would require one of the following:

– a process r such that level(p) > level(r) > level(q) sends ListHello to q,
but by definition of p and q, there is no such r.

– q sends ListGoodBye to p. Since q is a pack leader, this can only happen if
q receives ListHello from q, but in this case, since level(p) > level(p) and
there is no level between those two, p does not send a ListGoodBye message.

Then, we prove that eventually, next(p) = q. Consider an execution where
this is never the case. By its prospection rule, q sends ListExists to all the
processes returned by its oracle an infinite number of times. Thus, by definition
of the oracle, q sends ListExists to p. Since level(p) > l > next level(p), p
writes the identifier of q in its next field: contradiction.

Corollary 2. The list algorithm is self-stabilising to Ll .

4.3 Zero-memory sequential process numbering

This algorithm runs on top of the other two algorithms. Its goal is to assign
unique consecutive integer identifiers, starting from 0, to all the processes in the
system. Using no memory, this algorithm stabilises instantly. It takes advantage
of the tree structure described by a pack, as shown in figure 2, to achieve an
O(log n) message complexity. Any process can send message m to process number
i by sending RouteUp(m, i) to itself.

First, the message is routed up to the global leader, i.e. the leader of the
toplevel pack. For this, each process forwards the message to its leader. For
example, in the pack described in figure 2, P0 would send RouteUp(m, i) to P1,
then P1 to P3, then P3 to P7, which is the pack leader. A pack leader forwards
the message to its previous neighbour in the list. If there is none, the global
leader is reached. It sends RouteDown(m, i) to itself.

The next step is to find the pack in which the receiver is. At the list level,
the processes are numbered as follows : the toplevel pack, made of 2i processes,
comprises the processes from 0 to 2i − 1 ; the next pack of 2j processes is
made of processes 2i to 2i + 2j − 1, etc. Thus, a leader of level l that receives
RouteDown(m, i) checks if i < 2l: if so then the receiver is in this pack, else it
sends RouteDown(m, i− 2l) to the next pack. If there is none, this means that
i ≥ n, where n is the number of processes in the system, and the message is
simply lost.



In every pack, from the point of view of each process p of level l, the num-
bering is defined as follows : process 0 is p, then processes 1 to 2l−1 are in the
subpack rooted at neighbour[l − 1]p, etc. In figure 2, the numbering goes as
follows : P7 = 0, P3 = 1, P1 = 2, P0 = 3, P2 = 4, P5 = 5, P4 = 6, P6 = 7.

The algorithm thus forwards the message down recursively through the pack
until the receiver is found. For example, if P7 receives RouteDown(m, 2), it
knows that the receiver is in the pack rooted at P3, so it sends RouteDown(m, 1)
to P3, which in turn sends RouteDown(m, 0) to P1. Then P1 delivers the message
since it is the intended receiver.

4.4 Space complexity analysis

For simplicity, we present the pack algorithm using a vectorial notation for the
neighbour variables, resulting in an O(log n) space complexity, where n is the
number of processes in the system. In an implementation that dynamically al-
locates only the necessary memory, while the global leader still needs blog nc
neighbour variables, the total number of process identifiers needed in the system
is bounded by 2n. Indeed, n processes have a neighbour at level 0, n

2 have a neigh-
bour at level 1, . . . , 2 at level blog nc. Thus, the average number of neighbours
per process is

a =
Pk=blog nc

k=0
n

2k

n

a =
∑k=blog nc

k=0
1
2k

a = 1 +
∑k=blog nc

k=1
1
2k

The upper bound of the second term is the limit of the power series:

lim
k→∞

x=k∑
x=1

1
2x

= 1

Therefore, a < 2 and the average space complexity of the pack algorithm is O(1).
Its composition with the list algorithm, whose space complexity is O(1), and the
zero-memory numbering algorithm thus has an O(1) average space complexity.

5 Conclusion

We introduce a set of scalable algorithm that build a virtual topology over a large
scale system in which the only assumption is that any process can communicate
with any other process provided it knows its identifier. This topology allows to
efficiently assign consecutive integer identifiers to the processes, a prerequisite
for many higher-level tasks. The average space complexity is O(1), which ensures
a good scalability, and the number of messages needed to route information from
a node to another is O(log n).



The use of self-stabilisation allows to recover from arbitrary errors affecting
variables and channels, but also to compose algorithms. To take advantage of the
sequential numbering, any self-stabilising algorithm simply has to be composed
with the algorithms that we present in this paper.

We intend to follow up on this work by further studying the implementation
and proof of scalable algorithms in large scale systems as well as their perfor-
mances, both from a theoretical and from a practical point of view.

References

1. Y. Afek and A. Bremler. Self-stabilizing unidirectional network algorithms by
power supply. Chicago Journal of Theoretical Computer Science, 4(3):1–48, 1998.

2. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43, March 1996.

3. W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure
detectors. IEEE Transactions on Computers, 51, May 2002.

4. E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17(11):643–644, 1974.

5. S. Dolev. Self-Stabilization. MIT Press, 2000.
6. S. Dolev, A. Israeli, and S. Moran. Resource bounds for self stabilizing message

driven protocols. In PODC91 Proceedings of the Tenth Annual ACM Symposium
on Principles of Distributed Computing, pages 281–293, 1991.

7. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

8. M. Freedman and D. Mazieres. Sloppy hashing and self-organizing clusters. In Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS03),
Berkeley, CA, 2003.

9. V. K. Garg and A. Agarwal. Self-stabilizing spanning tree algorithm with a new
design methodology. Technical Report TR-PDS-2004-001, 2004.

10. F. C. Gärtner. A survey of self-stabilizing spanning-tree construction algorithms.
Technical Report IC/2003/38, EPFL, Technical Reports in Computer and Com-
munication Sciences, 2003.

11. T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. A model for
large scale self-stabilization. In 21st IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2007.


