
L R I

SEMI-PERSISTENT DATA STRUCTURES

CONCHON S / FILLIATRE J C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

09/2007

Rapport de Recherche N° 1474

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

Semi-Persistent Data Structures

Sylvain Conchon and Jean-Christophe Filliâtre
LRI, Univ Paris-Sud, CNRS, Orsay F-91405

INRIA Futurs, ProVal, Parc Orsay Université, F-91893
{conchon,filliatr}@lri.fr

September 21, 2007

Abstract

A data structure is said to be persistent when any update operation returns
a new structure without altering the old version. This paper introduces a new
notion of persistence, called semi-persistence, where only ancestors of the most re-
cent version can be accessed or updated. Making a data structure semi-persistent
may improve its time and space complexity. This is of particular interest in back-
tracking algorithms manipulating persistent data structures, where this property
is usually satisfied. We propose a proof system to statically check the valid use of
semi-persistent data structures. It requires a few annotations from the user and
then generates proof obligations that are automatically discharged by a dedicated
decision procedure. Additionally, we give some examples of semi-persistent data
structures (arrays, lists and hash tables).

1 Introduction

A data structure is said to be persistent when any update operation returns a new
structure without altering the old version. In purely applicative programming, data
structures are automatically persistent [15]. Yet this notion is more general and the
exact meaning of persistent is observationally immutable. Driscoll et al. even proposed
systematic techniques to make imperative data structures persistent [7]. In particular,
they distinguish partial persistence, where all versions can be accessed but only the newest
can be updated, from full persistence where any version can be accessed or updated. In
this paper, we study another notion of persistence, which we call semi-persistence.

One of the main interests of a persistent data structure shows up when it is used
within a backtracking algorithm. Indeed, when we are back from a branch, there is no
need to undo the modifications performed on the data structure: we simply use the old
version, which persisted, and start a new branch. One can immediately notice that full
persistence is not needed in this case, since we are reusing ancestors of the current version,
but never siblings (in the sense of another version obtained from a common ancestor).
We shall call semi-persistent a data structure where only ancestors of the newest version
can be updated. Note that this notion is different from partial persistence, since we need
to update ancestors, and not only to access them.

1

A semi-persistent data structure can be more efficient than its fully persistent coun-
terpart, both in time and space. Let us illustrate this fact on an example. We consider
persistent arrays as introduced in [1]. The basic idea is to use an imperative array
for the newest version of the persistent array and indirections for old versions. For in-
stance, starting with an array a0 initialized with 0, and performing the successive updates
a1 = set(a0, 1, 7), a2 = set(a1, 2, 8) and a3 = set(a2, 5, 3), we end up with the following
situation:

When accessing or updating an old version, e.g. a1, Baker’s solution is to first perform a
rerooting operation, which makes a1 point to the imperative array by reversing the linked
list of indirections:

But if we know that we are not going to access a2 and a3 anymore, we can save this list
reversal. All we need to do is to perform the assignments contained in this list:

Thus it is really easy to turn these persistent arrays into a semi-persistent data structure,
which is more efficient since we save some pointer assignments. An Objective Caml code
for such semi-persistent arrays is given in Section 2.1. On this particular example, we
see that the data structure behaves like an “undo stack” (the pairs index/value stored in
indirections are precisely the undo operations). The same idea could be applied to any
imperative data structure where update operations can be undone. Contrary to the use
of an explicit undo stack, which interferes with the backtracking algorithm, this solution
is hiding the undo stack in the data structure. Thus the algorithm may be written as if
it was operating on a fully persistent data structure, provided that we only backtrack to
ancestor versions.

Checking the correctness of a program involving a semi-persistent data structure
amounts to showing that

• first, the data structure is correctly used ;

• second, the data structure is correctly implemented.

This article only addresses the former point. Regarding the latter, we simply give im-
plementations of semi-persistent data structures. Proving the correctness of these imple-
mentations is out of the scope of this paper (see Section 5).

Our approach consists in annotating programs with user pre- and postconditions,
which mainly amounts to expressing the validity of the successive versions of a semi-
persistent data structure. By validity, we mean being an ancestor of the newest version.
Then we compute a set of proof obligations which express the correctness of programs
using a weakest precondition-like calculus [6]. These obligations lie in a decidable logical
fragment, for which we provide a sound and complete decision procedure. Thus we end up
with an almost automatic way of checking the legal use of semi-persistent data structures.

2

To make it more precise, let us consider two programs manipulating a semi-persistent
data structure. Each program is a function taking a version x0 of the data structure as
argument, generating new versions using an update operation upd and finally accessing
the resulting version using an access operation acc :

fun f x0 =
{valid(x0)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x2

fun g x0 =
{valid(x0)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x1

Each function has a precondition requiring the validity of x0 (through a valid predicate).
Then both functions successively build two new versions x1 and x2 as successors of x0.
This can be illustrated by the following version trees, where arrows represent version
successors and a dashed arrow stands for a version that has become invalid:

Finally, function f accesses x2, which is legal; and function g accesses x1, which is illegal
since x1 is not an ancestor of the newest version x2. If the xi were semi-persistent arrays,
as described above, the contents of x1 would indeed be modified by the creation of x2.
Thus x1 should not be accessed anymore.

As illustrated by this example, evaluation order matters as the creation of a new
version has side-effects on other versions. Thus semi-persistence is clearly related to
impure data structures. For this reason, our weakest precondition calculus relies on a
small effect inference which detects the mutation of the data structure.

Related work. To our knowledge, this notion of semi-persistence is new. However,
there are several domains which are somehow connected to our work, either because they
are related to some kind of stack analysis, or because they are providing decision proce-
dure for reachability issues. First, works on escape analysis [10, 4] address the problem of
stack-allocating values; we may think that semi-persistent versions that become invalid
are precisely those which could be stack-allocated, but it is not the case as illustrated by
example g above. Second, works on stack analysis to ensure memory safety [13, 17, 18]
provide methods to check the consistent use of push and pop operations. However, these
approaches are not precise enough to distinguish between two sibling versions (of a given
semi-persistent data structure) which are both upper in the stack. Regarding the decid-
ability of our proof obligations, our approach is similar to other works regarding reach-
ability in linked data structures [14, 3, 16]. However, our logic is much simpler and we
provide a specific decision procedure. Finally, we can mention Knuth’s dancing links [11]
as an example of a data structure specifically designed for backtracking algorithms; but
it is still a traditional imperative solution where an explicit undo operation is performed
in the main algorithm.

This paper is organized as follows. First, Section 2 gives examples of semi-persistent
data structures and shows the benefits of semi-persistence with some benchmarks. Then

3

our formalization of semi-persistence is presented in two steps: Section 3 introduces a
small programming language to manipulate semi-persistent data structures, and Section 4
defines the proof system which checks the valid use of semi-persistent data structures.
Section 5 concludes with possible extensions.

2 Examples of Semi-Persistent Data Structures

We present the implementation of semi-persistent arrays, lists and hash tables and bench-
marks to show the benefits of semi-persistence. All these examples are written in Objec-
tive Caml [12].

2.1 Arrays

First we implement semi-persistent arrays, as described in the introduction of this paper.
The interface is similar to persistent arrays:

type α t

val create : int → α → α t

val get : α t → int → α

val set : α t → int → α → α t

Type α t is the polymorphic type of semi-persistent arrays containing values of type α.
create n v creates a new array of size n with all cells initialized with v. get and set are
the usual access and update functions.

A semi-persistent array is a reference containing a value of type α data, which is
either an imperative array from Ocaml’s standard library or an indirection:

type α t = α data ref

and α data =

| Newest of α array

| Diff of int × α × α t

Newest a stands for the newest version of the structure, and Diff (i, v, a) stands for a
semi-persistent array sharing the contents of a, except at index i where its value is v.

Creation of a new semi-persistent array is simply an allocation of a new reference
containing a new imperative array:

let create n v = ref (Newest (Array.create n v))

To implement get and set, we first need to implement the rerooting operation de-
scribed in the introduction, which backtracks to a given version. In this semi-persistent
implementation, it simply amounts to writing the values in Diff nodes into the imperative
array:

let rec reroot t = match !t with

| Newest →
()

| Diff (i, v, t’) →

4

reroot t’;

let Newest a as n = !t’ in

a.(i) ← v;

t := n

A call reroot t ensures that t is now the newest version (and thus a direct access to the
imperative array); hence we can safely match !t’ against the Newest constructor after
the recursive call. Note that reroot could be written in CPS to avoid a possible stack
overflow.

Then both get and set start with a call to reroot and thus safely ignore the case of
an indirection:

let get t i =

reroot t;

let Newest a = !t in a.(i)

let set t i v =

reroot t;

let Newest a as n = !t in

let old = a.(i) in

a.(i) ← v;

let res = ref n in

t := Diff (i, old, res);

res

The only difference with the fully persistent implementation is in function reroot, where
the sequence a.(i) ← v; t := n would be replaced by the more complex code:

let v’ = a.(i) in

a.(i) ← v;

t := n;

t’ := Diff (i, v’, t)

Thus we save, in the semi-persistent implementation, an array access, a constructor
allocation and an assignment.

It is worth noticing that get performs a reroot operation only to improve further
calls to get and set. This is definitely the good choice in a pure backtracking algorithm
(i.e. where we only access the current version or backtrack to some previous version).
But we could imagine a more complex algorithm where we need to access to previous
versions without backtracking. For this purpose, we could also provide a non-destructive
access operation, nd get, which simply follows the Diff stack:

let rec nd_get t i = match !t with

| Newest a →
a.(i)

| Diff (j, v, t’) →
if i = j then v else nd_get t’ i

Our formalization of semi-persistence will handle both kinds of access operations.

5

2.2 Lists

As a second example, we consider an immutable data structure which we make semi-
persistent. The simplest and most popular example is the list data structure. To make
it semi-persistent, the idea is to reuse cons cells between successive conses to the same
list. For instance, given a list l, the cons operation 1::l allocates a new memory block
to store 1 and a pointer to l. Then a successive operation 2::l could reuse the same
memory block if the list is used in a semi-persistent way. Thus we simply need to replace
1 by 2. To do this, we must maintain for each list the previous cons, if any.

To implement semi-persistent lists, we use the following type of double-linked lists:

type α t = { mutable head : α;

tail : α t;

mutable pc : α t }

Fields head and tail are the usual fields for linked lists, except that head is a mutable
field to allow further modification of its contents. The additional field pc keeps track of
a previous cons, if any.

Similarly to the constant null in C or Java programs, we would like to represent the
empty list as a statically allocated constant value of type α t. Since there is no way
to build such a polymorphic value (we can not instantiate the head field), we turn the
empty list into a function taking a dummy value as argument:

let nil v =

let rec null =

{ head = v; tail = null; pc = null }
in null

This function allocates a single cons cell null where tail and pc fields are physically
equal to null. Thus testing for the empty list is as simple as

let is_nil l = l.tail == l

Additionally, the empty list is used as the value for pc when there is no previous cons.
The cons function checks the existence of a previously allocated block (testing pc for

being the empty list) and reuses it if any:

let cons x l =

if is_nil l.pc then begin

let n = { l with head=x; tail=l } in

if not (is_nil l) then l.pc ← n;

n

end else begin

let c = l.pc in

c.head ← x;

c

end

The test not (is nil l) prevents from reusing the successor of the empty list, since it
is shared by all lists.

Implementing the tail operation is immediate:

6

let tail l = l.tail

Though tail does not modify l, it makes it invalid since a subsequent cons on the result
of tail l would modify the head of l in place. Contrary to operation get on arrays,
it is not possible to implement a non-destructive version of tail. Yet it is possible to
provide other, non-destructive, access operations, such as a membership test function:

let rec mem x l =

not (is_nil l) && (l.head = x || mem x l.tail)

It is worth noticing that these semi-persistent lists are trading off allocation for deal-
location. Indeed, the average use of these lists requires less allocation than ordinary
immutable lists (the cons cells are slightly bigger but are reusable). But, on the contrary,
such lists prevent deallocation since a pointer p to a 1-element list cons x nil makes all
subsequent conses alive as long as p is alive.

Such semi-persistent lists could even be used to improve the implementation of semi-
persistent arrays from the previous section, since Diff cells could similarly be reused.

2.3 Hash Tables

Combining (semi-)persistent arrays with (semi-)persistent lists, one easily gets (semi-
)persistent hash tables. Such a combination is nicely implemented as a module param-
eterized with data structures for arrays and lists respectively. Introducing the following
signatures for these parameters:

module type Array = sig

type α t

val create : int → α → α t

val get : α t → int → α

val set : α t → int → α → α t

end

module type List = sig

type α t

val nil : α → α t

val cons : α → α t → α t

val mem : α → α t → bool

end

the generic implementation of hash tables is as follows:

module MakeHT(PA : Array)(IL : List) = struct

type α t = { size : int; data : α IL.t PA.t }

let create n v =

{ size = n; data = PA.create n (IL.nil v) }

let add h x =

let i = x mod h.size in

7

{ h with data =

PA.set h.data i

(IL.cons x (PA.get h.data i)) }

let mem h x =

let i = x mod h.size in

IL.mem x (PA.get h.data i)

end

By instantiating arrays and lists implementations by semi-persistent arrays and lists from
Sections 2.1 and 2.2 respectively, we automatically get semi-persistent hash tables. Note
that mem is a non-destructive operation only if PA.get is.

2.4 Benchmarks

We present some benchmarks to show the benefits of semi-persistence. Each of the pre-
vious three data structures is tested the same way and compared to its fully persistent
counterpart. The test consists in simulating a backtracking algorithm with branching
degree 4 and depth 6, operating on a single data structure. N successive update opera-
tions are performed on the data structure between two branchings points (that is set on
arrays, cons on lists and add on hash tables). In each case, the benchmarking function
is as follows:

let bench t =

let rec descend h k t =

if k < N then

let t = ... operation on t ... in

descend h (k+1) t

else if h < 6 then begin (* branch *)

descend (h+1) 0 t;

descend (h+1) 0 t;

descend (h+1) 0 t;

descend (h+1) 0 t

end

in

descend 0 0 t

It results in a total of 46N elementary operations and 3(46−1) backtracks. The following
table gives timings for various values of N . The code was compiled with the Ocaml
native-code compiler (ocamlopt -unsafe) on a dual core Pentium 2.13GHz processor
running under Linux. The timings are given in seconds and correspond to CPU time
obtained using the UNIX times system call.

8

N 200 1000 5000 10000

persistent arrays 0.21 1.50 13.90 30.5
semi-persistent arrays 0.18 1.10 7.59 17.3

persistent lists 0.18 2.38 50.20 195.0
semi-persistent lists 0.11 0.76 8.02 31.1

persistent hash tables 0.24 2.15 19.30 43.1
semi-persistent hash tables 0.22 1.51 11.20 28.2

As we can see, the speedup ratio is always greater than 1 and almost reaches 7 (for
semi-persistent lists). Regarding memory consumption, we compared the total number
of allocated bytes, as reported by Ocaml’s garbage collector. For the tests corresponding
to the last column (N = 10000) semi-persistent data structures always used much less
memory than persistent ones: 3 times less for arrays, 575 times less for lists and 1.5 times
less for hash tables. The dramatic ratio for lists is easily explained by the fact that our
benchmark program reflects the best case regarding memory allocation (allocation in one
branch is reused in other branches, which all have the same length).

3 Programming with Semi-Persistent Data Structures

This section introduces a small programming language to manipulate semi-persistent data
structures. In order to keep it simple, we assume that we are operating on the successive
versions of a single, statically allocated, data structure. Multiple data structures and
dynamic allocation are discussed in Section 5.

3.1 Syntax

The syntax of our language is as follows:

e ::= x | c | p | f e | let x = e in e

| if e then e else e

d ::= fun f (x : ι) = {φ} e {ψ}
ι ::= semi | δ | bool

A program expression is either a variable (x), a constant (c), a pointer (p), a function
call, a local variable introduced by a let binding, or a conditional. The set of function
names f includes some primitive operations (introduced in the next section). A function
definition d introduces a function f with exactly one argument x of type ι, a precondition
φ, a body and a postcondition ψ. A type ι is either the type semi of the semi-persistent
data structure, the type δ of the values it contains, or the type bool of booleans. The
syntax of pre- and postconditions will be given later in Section 4. A program ∆ is a finite
set of mutually recursive functions.

3.2 Primitive Operations

As seen in Section 2, we use three kinds of operations on semi-persistent data structures:

9

• update operations backtracking to a given version and creating a new successor,
which becomes the newest version;

• destructive access operations backtracking to a given version, which becomes the
newest version, and then accessing it;

• non-destructive access operations accessing an ancestor of the newest version, with-
out modifying the data structure.

Since update and destructive access operations both need to backtrack, it is convenient
to design a language based on the following three primitives:

• backtrack: backtracks to a given version, making it the newest version;

• branch: builds a new successor of a given version, assuming it is the newest version;

• acc: accesses a given version, assuming it is a valid version.

Then update and destructive access operations can be rephrased in terms of the above
primitives:

upd e = branch (backtrack e)
dacc e = acc (backtrack e)

3.3 Operational Semantics

We equip our language with a small step operational semantics, which is given in Figure 1.
One step of reduction is written e1, S1 → e2, S2 where e1 and e2 are program expressions
and S1 and S2 are states. A value v is either a constant c or a pointer p. Pointers represent
versions of the semi-persistent data structure. A state S is a stack p1, . . . , pm of pointers,
pm being the top of the stack. The semantics is straightforward, except for primitive
operations. Primitive backtrack expects an argument pn designating a valid version of
the data structure, that is an element of the stack. Then all pointers on top of pn are
popped from the stack and pn is the result of the operation. Primitive branch expects
an argument pn being the top of the stack and pushes a new value p, which is also the
result of the operation. Finally, primitive acc expects an argument pn designating a valid
version, leaves the stack unchanged and returns some value for version pn, represented
by A(pn). (We leave A uninterpreted since we are not interested in the values contained
in the data structure.)

Note that reduction of backtrack pn or acc pn is blocked whenever pn is not an
element of S, which is precisely what we intend to prevent.

There is an obvious property of reduction which will be useful in Section 4.4:

Lemma 1 The first element of a state is preserved by reduction, that is if e, pS → e′, S ′

then S ′ = pS ′′.

10

E ::= [] | f E | let x = E in e | if E then e else e

v ::= c | p
S ::= p · · ·p

if true then e1 else e2, S → e1, S

if false then e1 else e2, S → e2, S

let x = v in e, S → e{x← v}, S
f v, S → e{x← v}, S if fun f (x : ι) = {φ} e {ψ} ∈ ∆

backtrack pn, p1 · · · pnpn+1 · · ·pm → pn, p1 · · ·pn

branch pn, p1 · · · pn → p, p1 · · ·pnp p fresh
acc pn, p1 · · · pnpn+1 · · ·pm → A(pn), p1 · · · pnpn+1 · · · pm

E[e1], S1 → E[e2], S2 if e1, S1 → e2, S2 and E 6= []

Figure 1: Operational Semantics

3.4 Type System with Effect

We introduce a type system to characterize well-formed programs. Our language is
simply typed and thus type-checking is immediate. Meanwhile, we infer the effect ǫ
of each expression, as an element of the boolean lattice ({⊥,⊤},∧,∨). This boolean
indicates whether the expression modifies the semi-persistent data structure (⊥ meaning
no modification and ⊤ a modification). Effects will be used in the next section to simplify
constraint generation. Each function is given a type τ , as follows:

τ ::= (x : ι)→ǫ {φ} ι {ψ}

The argument is given a type and a name (x) since it is bound in both precondition φ

and postcondition ψ. Type τ also indicates the latent effect ǫ of the function, which is
the effect resulting from the function application.

A typing environment Γ is a set of type assignments for variables (x : ι), constants
(c : ι) and functions (f : τ). It is assumed to contain at least type declarations for the
primitives, as follows:

backtrack : (x : semi)→⊤ {φbacktrack} semi {ψbacktrack}
branch : (x : semi)→⊤ {φbranch} semi {ψbranch}

acc : (x : semi)→⊥ {φacc} δ {ψacc}

where pre- and postcondition are given later. As expected, both backtrack and branch

modify the semi-persistent data structure and thus have effect⊤, while the non-destructive
access acc has effect ⊥.

Given a typing environment Γ, the judgment Γ ⊢ e : ι, ǫ means “e is a well-formed
expression of type ι and effect ǫ” and the judgment Γ ⊢ d : τ means “d is a well-formed
function definition of type τ”. Typing rules are given in Figure 2. They assume judgments
Γ ⊢ φ pre and Γ ⊢ ψ post ι for the well-formedness of pre- and postconditions respectively,
to be defined later in Section 4.1. Note that there is no typing rule for pointers, to prevent
their explicit use in programs.

11

Var
x : ι ∈ Γ

Γ ⊢ x : ι,⊥
Const

c : ι ∈ Γ

Γ ⊢ c : ι,⊥

App
f : (x : ι1)→

ǫ2 {φ} ι2 {ψ} ∈ Γ Γ ⊢ e : ι1, ǫ1

Γ ⊢ f e : ι2, ǫ1 ∨ ǫ2

Ite
Γ ⊢ e1 : bool, ǫ1 Γ ⊢ e2 : ι, ǫ2 Γ ⊢ e3 : ι, ǫ3

Γ ⊢ if e1 then e2 else e3 : ι, ǫ1 ∨ ǫ2 ∨ ǫ3

Let
Γ ⊢ e1 : ι1, ǫ1 Γ, x : ι1 ⊢ e2 : ι2, ǫ2

Γ ⊢ let x = e1 in e2 : ι2, ǫ1 ∨ ǫ2

Fun
x : ι1 ⊢ φ pre x : ι1 ⊢ ψ post ι2 Γ, x : ι1 ⊢ e : ι2, ǫ

Γ ⊢ fun f (x : ι1) = {φ} e {ψ} : (x : ι1)→
ǫ {φ} ι2 {ψ}

Figure 2: Typing Rules

A program ∆ = d1, . . . , dn is well-typed if each function definition di can be given
a type τi such that d1 : τ1, . . . , dn : τn ⊢ di : τi for each i. The types τi can easily be
obtained by a fixpoint computation, starting will all latent effects set to ⊥, since effect
inference is clearly a monotone function.

3.5 Examples

Let us consider the two functions f and g from the introduction. Let S be a state
composed of a single pointer p. The reduction of f p in S runs as follows:

f p, p → let x1 = upd p in let x2 = upd p in acc x2, p

→ let x1 = p1 in let x2 = upd p in acc x2, pp1

→ let x2 = upd p in acc x2, pp1

→ let x2 = p2 in acc x2, pp2

→ acc p2, pp2

→ A(p2), pp2p3

and ends on the value A(p2). On the contrary, the reduction of g p in S runs as follows:

g p, p → let x1 = upd p in let x2 = upd p in acc x1, p

→ let x1 = p1 in let x2 = upd p in acc x1, pp1

→ let x2 = upd p in acc p1, pp1

→ let x2 = p2 in acc p1, pp2

→ acc p1, pp2

and blocks on acc p1.

12

4 Proof System

This section introduces a theory for semi-persistence and a proof system for this theory.
First we define the syntax and semantics of logical annotations. Then we compute a set
of constraints for each program expression, which is proved to express the correctness of
the program with respect to semi-persistence. Finally we give a decision procedure to
solve the constraints.

4.1 Theory of Semi-Persistence

The syntax of annotations is as follows:

term t ::= x | p | prev(t)
atom a ::= t = t | path(t, t)

postcondition ψ ::= a | ψ ∧ ψ
precondition φ ::= a | φ ∧ φ | ψ ⇒ φ | ∀x. φ

Terms are built from variables, pointers and a single function symbol prev. Atoms are
built from equality and a single predicate symbol path. A postcondition ψ is restricted
to a conjunction of atoms. A precondition is a formula φ built from atoms, conjunctions,
implications and universal quantifications. A negative formula (i.e. appearing on the left
side of an implication) is restricted to a conjunction of atoms. We introduce two different
syntactic categories ψ and φ for formulae but one can notice that φ actually contains ψ.
This syntactic restriction on formulae is justified later in Section 4.5 when introducing
the decision procedure. In the remainder of the paper, a “formula” refers to the syntactic
category φ. Substitution a of term t for a variable x in a formula φ is written φ{x← t}.
We denote by S(A) the set of all subterms of a set of atoms A.

The typing of terms and formulae is straightforward, assuming that prev has signature
semi → semi. Function postconditions may refer to the function result, represented by
the variable ret . Formulae can only refer to variables of type semi (including variable
ret). We write Γ ⊢ φ to denote a well-formed formula φ in a typing environment Γ.

We now give the semantics of program annotations. The main idea is to express that a
given version is valid if and only if it is an ancestor of the newest version. To illustrate this
idea, the following figure shows the successive version trees for the sequence of declarations
x1 = upd x0, x2 = upd x1, x3 = upd x1 and x4 = upd x0:

The newest version is pictured as a black node, other valid versions as white nodes and
invalid ones as gray nodes.

The meaning of prev and path is to define the notion of ancestor: prev(x) is the
immediate ancestor of x and path(x, y) holds whenever x is an ancestor of y. The
corresponding theory can be axiomatized as follows:

13

Definition 1 The theory T is defined as the combination of the theory of equality and
the following axioms:

(A1) ∀x. path(x, x)
(A2) ∀xy. path(x, prev(y))⇒ path(x, y)
(A3) ∀xyz. path(x, y) ∧ path(y, z)⇒ path(x, z)

We write |= φ if φ is valid in any model of T .

The three axioms (A1)–(A3) exactly define path as the reflexive transitive closure of
prev−1, since we consider validity in all models of T and therefore in those where path is
the smallest relation satisfying axioms (A1)–(A3). Note that prev is a total function and
that there is no notion of “root” in our logic. Thus a version always has an immediate
ancestor, which may or may not be valid.

To account for the modification of the newest version as program execution progresses,
we introduce a “mutable” variable cur to represent the newest version. This variable does
not appear in programs: its scope is limited to annotations. The only way to modify its
contents is to call the primitive operations backtrack and branch. We are now able to
give the full type expressions for the three primitive operations:

backtrack :
(x : semi)→⊤ {path(x, cur)} semi {ret = x ∧ cur = x}

branch :
(x : semi)→⊤

{cur = x} semi {ret = cur ∧ prev(cur) = x}
acc :

(x : semi)→⊥ {path(x, cur)} δ {true}

As expected, effect ⊤ for the first two reflects the modification of cur . The validity
of function argument x is expressed as path(x, cur) in operations backtrack and acc.
Note that acc has no postcondition (written true and which could stand for the tautology
cur = cur) since we are not interested in the values contained in the data structure.

We are now able to define the judgements used in Section 3.4 for pre- and postcondi-
tions. We write Γ ⊢ φ pre as syntactic sugar for Γ, cur : semi ⊢ φ. Similarly, Γ ⊢ ψ post ι

is syntactic sugar for Γ, cur : semi, ret : ι ⊢ ψ when return type ι is semi and for
Γ, cur : semi ⊢ ψ otherwise. Note that since Γ only contains the function argument
x in typing rule Fun, the function precondition may only refer to x and cur , and its
postcondition to x, cur and ret .

In Section 4.5, we will need the following subterms property:

Lemma 2 If H is a set of atoms, t1 a subterm of H and H |= path(t1, t2) then t2 is a
subterm of H.

4.2 Constraints

We now define the set of constraints associated to a given program. This is mostly a
weakest precondition calculus, which is greatly simplified here since we have only one
mutable variable (namely cur). For a program expression e and a formula φ we write

14

framef (φ) = φf{x← ret} ∧ ∀ret ′. ψf{ret ← ret ′, x← ret} ⇒ φ{ret ← ret ′}
if f : (x : ι)→⊥ {φf} ι

′ {ψf}

framef (φ) = φf{x← ret} ∧ ∀ret ′cur ′. ψf{ret ← ret ′, x← ret , cur ← cur ′} ⇒
φ{ret ← ret ′, cur ← cur ′}

if f : (x : ι)→⊤ {φf} ι
′ {ψf}

C(v, φ) = φ{ret ← v}
C(if e1 then e2 else e3, φ) = C(e1, C(e2, φ) ∧ C(e3, φ))

C(let x = e1 in e2, φ) = C(e1, C(e2, φ){x← ret})
C(f e1, φ) = C(e1, framef (φ))

C(fun f (x : ι) = {φ} e {ψ}) = ∀x. ∀cur . φ⇒ C(e, ψ)

Figure 3: Constraint synthesis

this weakest precondition C(e, φ). This is formula expressing the conditions under which
φ will hold after the evaluation of e. Note that cur may appear in φ, denoting the result
of e, but does not appear in C(e, φ) anymore. For a function definition d we write C(d) the
formula expressing its correctness, that is the fact that the function precondition implies
the weakest precondition obtained from the function postcondition, for any function
argument and any initial value of cur . The definition for C(e, φ) is given in Figure 3.
This is a standard weakest precondition calculus, except for the conditional rule. Indeed,
one would expect a rule such as

C(if e1 then e2 else e3, φ) =
C(e1, (ret = true⇒ C(e2, φ)) ∧ (ret = false⇒ C(e3, φ)))

but since φ cannot test the result of condition e1 (φ may only refer to variables of type
semi), the conjunction above simplifies to C(e2, φ) ∧ C(e3, φ).

The constraint synthesis for a function call, C(f e1, φ), is the only nontrivial case. It
requires precondition φf to be valid and postcondition ψf to imply the expected property
φ. Universal quantification is used to introduce f ’s results and side-effects. We use the
effect in f ’s type to distinguish two cases: either effect is ⊥ which means that cur is not
modified and thus we only quantify over f ’s result (hence we get for free the invariance
of cur); or effect is ⊤ and we quantify over an additional variable cur ′ which stands for
the new value of cur . To simplify this definition, we introduce a formula transformer
framef (φ) which builds the appropriate postcondition for argument e1.

The formula established by an expression may be weakened, as stated by the following
lemma:

Lemma 3 If |= ∀ret . ∀cur . φ1 ⇒ φ2 and |= C(e, φ1) then |= C(e, φ2).

4.3 Examples

This section details the constraints obtained on several program examples.

15

4.3.1 Simple Examples

Let us consider again the two functions f and g from the introduction, valid(x0) being
now expressed as path(x0, cur):

fun f (x0 : semi) =
{path(x0, cur)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x2

fun g (x0 : semi) =
{path(x0, cur)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x1

We compute the associated constraints for an empty postcondition true. The constraint
C(f) is

∀x0. ∀cur. path(x0, cur)⇒
path(x0, cur) ∧
∀x1. ∀cur 1. (prev(x1) = x0 ∧ cur 1 = x1)⇒
path(x0, cur 1) ∧
∀x2. ∀cur 2. (prev(x2) = x0 ∧ cur 2 = x2)⇒
path(x2, cur 2) ∧
∀ret . true⇒ true

It can be split into three proof obligations, which are the following universally quantified
sequents:

path(x0, cur) ⊢ path(x0, cur)

path(x0, cur), prev(x1) = x0, cur 1 = x1 ⊢ path(x0, cur1)

path(x0, cur), prev(x1) = x0,

cur 1 = x1, prev(x2) = x0, cur 2 = x2 ⊢ path(x2, cur2)

The three of them hold in theory T and thus f is correct. Similarly, the constraint C(g)
can be computed and split into three proof obligations. The first two are exactly the
same as for f but the third one is slightly different:

path(x0, cur), prev(x1) = x0,

cur 1 = x1, prev(x2) = x0, cur2 = x2 ⊢ path(x1, cur 2)

In that case it does not hold in theory T .

4.3.2 Backtracking Example

As a more complex example, let us consider a backtracking algorithm. The pattern of a
program performing backtracking on a persistent data structure is a recursive function
bt looking like

fun bt (x : semi) = . . . bt(upd x) . . . bt(upd x) . . .

Function bt takes a data structure x as argument and makes recursive calls on several
successors of x. This is precisely a case where the data structure may be semi-persistent,

16

as motivated in the introduction. To capture this pattern in our framework, we simply
need to consider two successive calls bt(upd x), which can be written as follows:

fun bt (x : semi) =
let = bt(upd x) in bt(upd x)

Function bt obviously requires a precondition stating that x is a valid version of the
semi-persistent data structure. This is not enough information to discharge the proof
obligations: the second recursive call bt(upd x) requires x to be valid, which possibly
could no longer be the case after the first recursive call. Therefore a postcondition for bt
is needed to ensure the validity of x:

fun bt (x : semi) =
{ path(x, cur) }
let = bt(upd x) in bt(upd x)
{ path(x, cur) }

The constraint C(bt) is

∀x. ∀cur. path(x, cur)⇒
path(x, cur) ∧
∀x1. ∀cur 1. (prev(x1) = x ∧ cur 1 = x1)⇒
path(x1, cur1) ∧
∀x2. ∀cur 2. path(x1, cur 2)⇒
path(x, cur 2) ∧
∀x3. ∀cur 3. (prev(x3) = x ∧ cur 3 = x3)⇒
path(x3, cur 3) ∧
∀x4. ∀cur 4. path(x3, cur 4)⇒ path(x, cur 4)

which is valid in theory T .

4.4 Soundness

In the remainder of this section, we consider a program ∆ = d1, . . . , dn whose constraints
are valid, that is |= C(d1) ∧ · · · ∧ C(dn). We are going to show that the evaluation of this
program will not block.

For this purpose we first introduce the notion of validity with respect to a state of the
operational semantics:

Definition 2 A formula φ is valid in a state S = p1, . . . , pn, written S |= φ, if it is valid
in any model M for T such that

{

prev(pi+1) = pi for all 1 ≤ i < n

cur = pn

Then we show that this validity is preserved by the operational semantics. To do this, it
is convenient to see the evaluation contexts as formula transformers, as follows:

E E[φ]
[] φ

let x = E1 in e2 E1[C(e2, φ){x← ret}]
if E1 then e2 else e3 E1[C(e2, φ) ∧ C(e3, φ)]

f E1 E1[framef(φ)]

17

There is a property of commutation between contexts for programs and contexts for
formulae:

Lemma 4 S |= C(E[e], φ) if and only if S |= C(e, E[φ]).

Proof. Immediate by induction on E. �

We now want to prove preservation of validity, that is if S |= C(e, φ) and e, S → e′, S ′

then S ′ |= C(e′, φ). Obviously, this does not hold for any state S, program e and formula
φ. Indeed, if S ≡ p1p2, e ≡ upd p1 and φ ≡ prev(p2) = p1, then C(e, φ) is

path(p1, cur) ∧
∀ret ′cur ′. (prev(ret ′) = p1 ∧ cur ′ = ret ′)⇒ prev(p2) = p1

which holds in S. But S ′ ≡ p1p for a fresh p, e′ ≡ p, and C(e′, φ) is prev(p2) = p1

which does not hold in S ′ (since p2 does not appear in S ′ anymore). Fortunately, we
are not interested in the preservation of C(e, φ) for any formula φ, but only for formulae
which arise from function postconditions. As pointed out in Section 4.1, a function
postcondition may only refer to x, cur and ret only. Therefore we are only considering
formulae C(e, φ) where x is the only free variable (cur and ret do not appear in formulae
C(e, φ) anymore). This excludes the formula prev(p2) = p1 in the example above.

In the remainder of this section, we only consider program expressions and formulae
which only refer to a single pointer p (representing the function argument). For technical
reasons, it is also convenient to restrict ourselves to states whose p is the first element.
This is not a restriction, as stated by the following lemma:

Lemma 5 Let e be an expression and φ a formula which both refer to a single pointer p.
Then, for any state S1pS2, S1pS2 |= C(e, φ) if and only if pS2 |= C(e, φ).

We are now able to prove preservation of validity:

Lemma 6 Let S be a state, φ be a formula and e a program expression. If S |= C(e, φ)
and e, S → e′, S ′ then S ′ |= C(e′, φ).

Proof. The proof is done by induction on e:

• If e = if true then e1 else e2 then e′ = e1 and S ′ = S. We have C(e, φ) =
C(true, C(e1, φ)∧C(e2, φ)) = C(e1, φ)∧C(e2, φ) since C(e1, φ)∧C(e2, φ) cannot refer
to a boolean result. Thus S ′ |= C(e′, φ). Similarly for if false.

• If e = let x = v in e1 then e′ = e1{x ← v} and S ′ = S. We have C(e, φ) =
C(v, C(e1, φ){x ← ret}) = C(e1, φ){x ← v} = C(e1{x ← v}, φ), hence the result
holds.

• If e = f v and f is not a primitive then e′ = ef{x ← v} and S ′ = S. We have
C(e, φ) = C(v, framef(φ)) = framef (φ){ret ← v}. If f : (x : ι) →⊥ {φf} ι

′ {ψf}
then this simplifies to φf{x ← v} ∧ ∀ret ′. ψf{x ← v, . . . } ⇒ φ{x ← v, . . .}. Since
f is correct, we have |= C(f) = ∀x. φf ⇒ C(ef , ψf). Thus S |= φf{x ← v} ⇒
C(ef{x← v}, ψf{x← v}) and the result follows by Lemma 3. Similarly for f : (x :
ι)→⊤ {φf} ι

′ {ψf}.

18

• If e = acc pn then S = S ′ = p1 · · · pnpn+1 · · · pm and e′ = A(pn). We have S |=
C(acc pn, φ), that is S |= · · · ∧ ∀ret ′. true ⇒ φ{ret ← ret ′}. By instantiating ret ′

by A(pn) we have S |= φ{ret ← A(pn)} that is S |= C(A(pn), φ). Since S ′ = S the
result holds.

• If e = branch pn then S = p1 · · · pn, S ′ = Sp and e′ = p with p a fresh pointer.
S |= C(branch pn, φ), that is S |= · · · ∧ ∀ret ′cur ′. (ret ′ = cur ′ ∧ prev(cur ′) = pn)⇒
φ{ret ← ret ′, cur ← cur ′}. By instantiating both ret ′ and cur ′ by p, we have
S |= (p = p ∧ prev(p) = pn) ⇒ φ{ret ← p, cur ← p}. Since this formula does not
contain cur anymore, it is also valid in S ′ = Sp. Since prev(p) = pn in S ′ then the
left hand-side is valid and we have S ′ |= φ{ret ← p, cur ← p}. Since cur is p in S ′

we also have S ′ |= φ{ret ← p} which is C(p, φ).

• If e = backtrack pn then S = p1 · · · pnpn+1 · · ·pm, e′ = pn and S ′ = p1 · · · pn. We
have S |= C(backtrack pn, φ), that is S |= · · ·∧∀ret ′cur ′. (ret ′ = pn∧ cur ′ = pn)⇒
φ{ret ← ret ′, cur ← cur ′}. By instantiating both ret ′ and cur ′ by pn, we have
S |= φ{ret ← pn, cur ← pn}. Since this formula only refers to the first element of
S, which is also by Lemma 1 the first element of S ′, we have S ′ |= φ{ret ← pn, cur ←
pn} and thus S ′ |= φ{ret ← pn} (since cur is pn in S ′), that is S ′ |= C(p, φ).

• If e = E[e1] and E[e1], S → E[e′1], S
′ with e1, S → s′1, S

′, then S |= C(e1, E[φ]) by
Lemma 4. By induction hypothesis on e1 we have S ′ |= C(e′1, E[φ]). Then again by
Lemma 4 we have S ′ |= C(E[e′1], φ).

�

Finally, we prove the following progress property:

Theorem 1 Let S be a state, φ be a formula and e a program expression. If S |= C(e, φ)
and e, S →∗ e′, S ′ 6→, then e′ is a value.

Proof. The proof is done by induction on the length of the evaluation →∗ and by case
analysis on the last reduction:

• If e is irreducible then it is either a value v and the result holds, or it is an expression
E[f v] with f a primitive. By hypothesis, we have S |= C(E[f v], φ) and thus
S |= C(f v, E[φ]) by Lemma 4. Since C(f v, E[φ]) = φf{x ← v} ∧ . . . , where φf

is f ’s precondition and x its formal argument. In each case, the validity of this
precondition contradicts the irreducibility of e.

• If e, S → e1, S1 →
∗ e′, S ′ 6→ then by Lemma 6 S1 |= C(e1, φ) and the result holds

by induction hypothesis on e1.

�

4.5 Decision Procedure

We now show that constraints are decidable and we give a decision procedure.
First, we notice that any formula φ is equivalent to a conjunction of formulae of the

form
∀x1. . . .∀xn. a1 ∧ · · · ∧ am ⇒ a

19

where the ai’s are atoms. This results from the syntactic restrictions on pre- and postcon-
ditions, together with the weakest preconditions rules which are only using postconditions
in negative positions. Therefore we simply need to decide whether a given atom is the
consequence of other atoms.

We first recall the notion of congruence closure of a set H of hypotheses {a1, . . . , am}.

Definition 3 The congruence closure H⋆ of H is the smallest set of atoms such that

• if a ∈ H then a ∈ H⋆;

• if t ∈ S(H⋆) then t = t ∈ H⋆;

• if t1 = t2 ∈ H
⋆ then t2 = t1 ∈ H

⋆;

• if t1 = t2 ∈ H
⋆ and t2 = t3 ∈ H

⋆ then t1 = t3 ∈ H
⋆;

• if t1 = t2 ∈ H
⋆ and prev(t1), prev(t2) ∈ S(H⋆) then prev(t1) = prev(t2) ∈ H

⋆;

• if t1 = t2 ∈ H
⋆, t3 = t4 ∈ H

⋆ and path(t1, t3) ∈ H
⋆ then path(t2, t4) ∈ H

⋆.

Obviously S(H⋆) = S(H) since no new term is created. Thus H⋆ is finite and can be
computed as a fixpoint.

Algorithm 1 For any atom a such that S({a}) ⊆ S(H), the following algorithm, decide(H, a),
decides whether H |= a.

1. First we compute the congruence closure H⋆.

2. If a is of the form t1 = t2, we return true if t1 = t2 ∈ H
⋆ and false otherwise.

3. If a is of the form path(t1, t2), we build a directed graph G whose nodes are the
subterms of H⋆, as follows:

(a) for each pair of nodes t and prev(t) we add an edge from prev(t) to t;

(b) for each path(t1, t2) ∈ H
⋆ we add an edge from t1 to t2;

(c) for each t1 = t2 ∈ H
⋆ we add two edges between t1 and t2.

4. Finally we check whether there is a path from t1 to t2 in G.

Obviously this algorithm terminates since H⋆ is finite and thus so is G. We now show
soundness and completeness for this algorithm.

Theorem 2 decide(H, a) returns true if and only if H |= a.

Proof. (Soundness) Let M be a model of H and let us show that M is a model of a.
Obviously,M is also a model of H⋆. If a is path(t1, t2) then the proof is by induction on
the length of the path. If the path has length 0, then t1 ≡ t2 and the result holds since
M is a model of axiom (A1). Otherwise, we proceed by case analysis on the last step of
the path since M is a model of the transitivity axiom (A3). If the last step is an edge
from prev(t) to t then the result holds sinceM is a model of both (A1) and (A2). If the
last step is an edge corresponding to path(t3, t4) ∈ H

⋆ then the results holds since M is

20

a model of H⋆. If the last step is an edge corresponding to t3 = t4 ∈ H
⋆, then M is a

model of path(t3, t4) by axiom (A1) and axioms of equality.
(Completeness) Let us assume that H |= a. If a is t1 = t2 then t1 = t2 ∈ H⋆

by definition of the congruence closure, and thus the algorithm returns true. If a is
path(t1, t2) we proceed by induction on the proof of H |= a and by case analysis on the
last rule:

• (A1): There is an empty path from t1 to t2.

• (A2): We have H |= path(t1, prev(t2)). By Lemma 2, we have prev(t2) ∈ S(H)
and thus we can apply the induction hypothesis. So there is a path from t1 to
prev(t2) and thus a path from t1 to t2.

• (A3): We have H |= path(t1, t) and H |= path(t, t2). By Lemma 2, we have
t ∈ S(H) and thus we can apply the induction hypothesis.

• Congruence: We have H |= u1 = t1, H |= u2 = t2 and H |= path(u1, u2). Thus we
have H |= path(u1, t1) and H |= path(u2, t2) (as above) and H |= path(u1, u2) by
induction hypothesis; the result follows.

�

Note: the restriction S({a}) ⊆ S(H) can be easily met by adding to H the equalities
t = t for any subterm t of a; it was only introduced to simplify the proof above.

4.6 Implementation

We have implemented the whole framework of semi-persistence. The implementation
relies on an existing proof obligations generator, Why [8]. This tool takes annotated first-
order imperative programs as input and uses a traditional weakest precondition calculus
to generate proof obligations. The language we use in this paper is actually a subset
of Why’s input language. We simply use the imperative aspect to make cur a mutable
variable. Then the resulting proof obligations are exactly the same as those obtained by
the constraint synthesis defined in Section 4.2.

The Why tool outputs proof obligations in the native syntax of various existing
provers. In particular, these formulas can be sent to Ergo [5], an automatic prover
for first-order logic which combines congruence closure with various built-in decision pro-
cedures. We first simply axiomatized theory T using (A1)–(A3), which proved to be
powerful enough to verify all examples from this paper and several other benchmark pro-
grams. Yet it is possibly incomplete (automatic theorem provers use heuristics to handle
quantifiers in first-order logic). To achieve completeness, and to assess the results of
Section 4.5, we also implemented theory T as a new built-in decision procedure in Ergo.
Again we verified all the benchmark programs.

5 Conclusion

We have introduced the notion of semi-persistent data structures, where update op-
erations are restricted to ancestors of the most recent version. Semi-persistent data

21

structures may be more efficient than their fully persistent counterparts, and are of par-
ticular interest in implementing backtracking algorithms. We have proposed an almost
automatic way of checking the legal use of semi-persistent data structures. It is based
on light user annotations in programs, from which proof obligations are extracted and
automatically discharged by a decision procedure.

There is a lot of remaining work to be done. First, the language introduced in Sec-
tion 3, in which we check for legal use of semi-persistence, could be greatly enriched.
Beside the missing features such as polymorphism or recursive datatypes, it would be of
particular interest to consider the following extensions:

• simultaneous use of several semi-persistent data structures : One would probably
need to express disjointness of version subtrees, and thus to enrich the logical frag-
ment used in annotations with disjunctions and negations. We may lose decidability
of the logic, though.

• dynamic creation of semi-persistent data structures: This would imply to express in
the logic the freshness of the allocated pointers and to maintain the newest versions
for each data structures.

Note that these two features are already present in the data structures examples from
Section 2.

Another interesting direction would be to provide systematic techniques to make data
structures semi-persistent as previously done for persistence [7]. Clearly what we did for
lists could be extended to tree-based data structures.

It would be even more interesting to formally verify semi-persistent data structure
implementations, that is to show that the contents of any ancestor of the version be-
ing updated is preserved. Since such implementations are necessarily using imperative
features (otherwise they would be fully persistent), proving their correctness requires
verification techniques for imperative programs. This could be done for instance using
verification tools such as SPEC# [2] or Caduceus [9]. However, we would prefer verifying
Ocaml code, as given in Section 2 for instance, but unfortunately there is currently no
tool to handle such code.

References

[1] Henry G. Baker. Shallow binding makes functional arrays fast. SIGPLAN Not.,
26(8):145–147, 1991.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS 2004, number 3362 in LNCS. Springer, 2004.

[3] Michael Benedikt, Thomas W. Reps, and Shmuel Sagiv. A decidable logic for de-
scribing linked data structures. In European Symposium on Programming, pages
2–19, 1999.

[4] Bruno Blanchet. Escape analysis: Correctness proof, implementation and experimen-
tal results. In Symposium on Principles of Programming Languages, pages 25–37,
1998.

22

[5] Sylvain Conchon and Evelyne Contejean. Ergo: A Decision Procedure for Program
Verification. http://ergo.lri.fr/.

[6] Edsger W. Dijkstra. A discipline of programming. Series in Automatic Computation.
Prentice Hall Int., 1976.

[7] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making Data Structures
Persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

[8] J.-C. Filliâtre. The Why verification tool. http://why.lri.fr/.

[9] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification (Tool presentation). In Proceedings of CAV’2007, 2007. To
appear.

[10] John Hannan. A type-based analysis for stack allocation in functional languages.
In SAS ’95: Proceedings of the Second International Symposium on Static Analysis,
pages 172–188, London, UK, 1995. Springer-Verlag.

[11] D. E. Knuth. Dancing links. In Bill Roscoe Jim Davies and Jim Woodcock, editors,
Millennial Perspectives in Computer Science, pages 187–214. Palgrave, 2000.

[12] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml System, 2005. http://caml.inria.fr/.

[13] J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In Types in Compilation, pages 28–52, 1998.

[14] Greg Nelson. Verifying reachability invariants of linked structures. In POPL ’83:
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 38–47, New York, NY, USA, 1983. ACM Press.

[15] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[16] Silvio Ranise and Calogero Zarba. A theory of singly-linked lists and its extensible
decision procedure. In SEFM ’06: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, pages 206–215, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[17] Frances Spalding and David Walker. Certifying compilation for a language with
stack allocation. In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on
Logic in Computer Science (LICS’ 05), pages 407–416, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Symposium on Principles of Program-
ming Languages, pages 188–201, 1994.

23

	RR1474entête.pdf
	RR1474rapp.pdf

