S PJ O ¥ >

= S

HEHOREEDOQES

L R I

THE COST OF MONOTONICITY IN
DISTRIBUTED GRAPH SEARCHING

ILCINKAS D / NISSE N /SOGUET D

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud — LRI

09/2007

Rapport de Recherche N° 1475

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 490
91405 ORSAY Cedex (France)

The cost of monotonicity in distributed
graph searching

David Ilcinkas Nicolas Nisse*
Université du Québec en Outaouais LRI, University of Paris Sud
Canada France
ilcinkas@lIri.fr nisse@Iri.fr

David Soguet
LRI, University of Paris Sud
France
soguet@Iri.fr

Abstract

Blin et al. (2006) proposed a distributed protocol that enables the smallest number of
searchers to clear any unknown asynchronous graph in a decentralized manner. Unknown
means that the searchers are provided no a priori information about the graph. However, the
strategy that is actually performed lacks of an important property, namely the monotonicity.
That is, the clear part of the graph may decrease at some steps of the execution of the
protocol. Actually, the protocol of Blin et al. is executed in exponential time. Nisse and
Soguet (2007) proved that, in order to ensure the smallest number of searchers to clear
any n-node graph in a monotone way, it is necessary and sufficient to provide O(nlogn)
bits of information to the searchers by putting short labels on the nodes of the graph.
This paper deals with the smallest number of searchers that are necessary and sufficient to
monotoneously clear any unknown graph in a decentralized manner.

The distributed graph searching problem considers a team of searchers that is aiming
at clearing any connected contaminated graph. The clearing of the graph is required to be
connected, i.e., the clear part of the graph must remain permanently connected, and mono-
tone, i.e., the clear part of the graph only grows. The search number mes(G) of a graph G
is the smallest number of searchers necessary to clear G in a monotone connected way in
centralized settings. We prove that ©(;2) mes(G) searchers are necessary and sufficient
to clear any unknown n-node graph G in a monotone connected way, in decentralized set-
tings. More precisely, we prove that any distributed protocol aiming at clearing all graphs
in the above settings has competitive ratio ©(n/logn). That is, we prove that, for any
distributed protocol P, there are arbitrarily large n-node graphs G such that P requires
at least Q(1;2;) mes(G) searchers to clear G. Moreover, we propose a distributed protocol
that allows O(]Ogn) mcs(G) searchers to clear any unknown asynchronous n-node graph G
in a monotone connected way.

Keywords: Graph searching, Monotonicity, Competitive ratio.

*This author received additional supports from the project “Alpage” of the ACI Masses de Données, from the
project “Fragile” of the ACI Sécurité Informatique, and from the project “Grand Large” of INRIA.

1 Introduction

In graph searching [6, 16], a team of searchers is aiming at capturing an invisible arbitrarily fast
fugitive hidden in a graph (see [3] for a survey). Equivalently, an undirected connected graph
is thought as a system of tunnels contaminated by a toxic gas. In this setting, the searchers
are aiming at clearing the graph. The search problem has been widely studied in the design of
distributed protocols for clearing a network in a decentralized manner [5, 7, 8, 9, 15]. Initially,
all edges are contaminated. The searchers stand at the vertices of the graph and move along the
edges. An edge is cleared when it is traversed by a searcher. A clear edge e is recontaminated
as soon as there exists a path P between e and a contaminated edge such that no searchers are
occupying any vertex or any edge of P. A search strategy is a sequence of moves of the searchers
along the edges of the graph, such that, initially, all the searchers are placed at a particular
vertex of the graph, called the homebase. Moreover, this sequence of moves must satisfy that
recontamination never occurs, that is, a clear edge always remains clear. A search strategy is
aiming at clearing the whole network. Given a graph G and a homebase vo € V(G), the
search problem consists in designing a distributed protocol that allows the smallest number of
searchers to clear G starting from wvg. The search strategy must be computed online by the
searchers themselves.

Note that, by definition, a search strategy satisfies two important properties. First, a search
strategy is monotone [4, 12]. That is, the contaminated part of the graph never grows. This
ensures that the clearing of the graph can be performed in polynomial time. Secondly, a search
strategy is connected [1, 2], in the sense that, at any step of the strategy, the clear part of
the graph induces a connected subgraph. This latter property ensures safe communications
between the searchers. In the following, the search number mcs(G,vg) of a graph G with
homebase vy € V(G) denotes the smallest number of searchers required to clear the graph in a
monotone connected way, starting from vg, in centralized settings.

Several distributed protocols have been proposed to solve the search problem [1, 5, 7, 8, 9,
13, 15]. Two main approaches have been proposed in the previous works. On one hand, Blin et
al. proposed a distributed protocol that enables mes(G, vg) + 1 searchers to clear any unknown
asynchronous graph G, starting from any homebase vy € V(G), in a connected way [5]. That
is, the clearing of the graph is performed without the searchers being provided any information
about the graph. However, the search strategy that is actually performed is not monotone and
may be performed in exponential time, which is not surprising since the problem of computing
mcs(G, vg) is NP-complete [14]. On the other hand, the distributed protocols that are proposed
in [7, 8, 9, 13, 15] enable mcs(G,vg) + 1 searchers to monotoneously clear a graph G, starting
from a homebase vg, such that the searchers are given some a priori information about it. In
this paper, we consider the problem from another point of view. More precisely, we address the
problem of the minimum number of searchers permitting to solve the search problem (again, the
performed strategy must be connected and monotone) without any a priori information about
the graph.

1.1 Model and definitions

The searchers are modeled by synchronous autonomous mobile computing entities with distinct
IDs. A network is modeled by a synchronous undirected connected simple graph. The network
is anonymous, that is, the nodes are not labelled. The deg(u) edges incident to any node u are
labelled from 1 to deg(u), so that the searchers can distinguish the different edges incident to
a node. These labels are called port numbers. Every node of the network has a zone of local
memory, called whiteboard, in which searchers can read, erase, and write symbols. It is moreover
assumed that searchers can access these whiteboards in fair mutual exclusion.

A search protocol P is a distributed protocol that solves the search problem, i.e., for any
connected graph G and any homebase vy € V(G), a team of searchers executing P can clear G
in a connected monotone way, starting from vg. In these settings, the searchers do not know in
advance in which graph they are launched. The number of searchers used by P to clear G is
the maximum number of searchers that stand at the vertices of GG over all steps of the execution
of P. The quality of a search protocol P is measured by comparing the number of searchers it
used to clear a graph G to the search number mcs(G,vg) of G. This ratio, maximized over all
graphs and all starting nodes, is called the competitive ratio r(P) of the protocol P.

1.2 Our results

We prove that any search protocol for clearing n-node graphs has competitive ratio at least

Q(logn). Moreover, we propose a search protocol that has competitive ratio O(%). More

precisely, we prove that, for any distributed protocol P, there are arbitrarily large n-node graphs
G, with a homebase vy € V(G), such that P requires at least (152) mes(G, vo) searchers to
clear GG starting from vg. On the other hand, we propose a search protocol that uses at most
O(15g7) mes(G,vg) searchers to clear any connected graph G in a connected monotone way,
starting from any homebase vy € V(G). Moreover, our protocol performs clearing n-node
graphs using searchers with at most O(logn) bits of memory, and whiteboards of size O(n)

bits.

1.3 Related work

In connected graph searching [1, 2, 10], the clear part must remain connected during all steps
of the search strategy. This property is very useful as soon as we want to ensure the commu-
nications between the searchers to be secured. Contrary to the classical, i.e., non-connected,
graph searching [4, 12, 16], the monotonicity has a cost in terms of number of searchers. Indeed,
Alspash et al. proved that recontamination does help in the case of connected graph search-
ing [17] (see also [11]). That is, they describe a class of graphs for which the smallest number of
searchers required to clear these graphs is strictly less than the number of searchers necessary
to clear them in a monotone connected way. This result has an important impact since it is not
known whether the decision problem corresponding to the connected search number of a graph,
i.e., the smallest number of searchers required to clear a graph in a connected way, belongs to
NP. Moreover, monotone strategies are of particular interest in decentralized settings since, first,
they perform in polynomial time, and second, it is a priori difficult to design non-monotone
search strategies.

Several distributed protocols have been proposed to solve the search problem for particular
graph’s topologies. More precisely, Barriere et al. designed protocols for clearing trees [1],
Flocchini, Luccio and Song considered tori [7] and meshes [8], Flocchini, Huang and Luccio con-
sidered hypercubes [9], and Luccio dealt with Sierpinski’s graphs [13]. Assuming the searchers
know the topology of the graph G they must clear, these protocols enable mes(G,vg) + 1
searchers to clear G in a monotone connected way, starting from any homebase vy € V(G).
The extra searcher, compared to the centralized case, is necessary and due to the asynchrony
of the network [8]. In [5], Blin et al. proposed a distributed protocol that allows mes(G,vg) + 1
searchers to clear any unknown asynchronous graph G in a connected way, starting from any
homebase vg € V(G). In this case, the searchers do not need any a priori information about
the graph in which they are placed. However, the search strategy that is actually performed is
not monotone and may be performed in exponential time. In [15], Nisse and Soguet proposed
to give to the searchers some information about the graph by putting short labels on the nodes
of the graph. They proved that ©(nlogn) bits of information are necessary and sufficient to

solve the search problem for any n-node asynchronous graph G, using mcs(G, vg) + 1 searchers
and starting from a homebase vy.

2 Lower Bound

This section is devoted to prove a lower bound on the competitive ratio of any search protocol.
For this purpose, we consider a game between an arbitrary search protocol and an adversary.
Roughly, the adversary gradually builds the graph, which is actually a ternary tree, as the
search protocol clears it in a monotone connected way. The role of the adversary is to force the
protocol to use the maximum number of agents to clear the graph. The fact that the adversary
can build the graph during the execution of the search protocol is possible since the searchers
have no information concerning the graph they are clearing.

We need the following definition. A partial graph is a simple connected graph which can
have edges with only one end. Edges with one single end (resp., two ends) are called half-edges
(resp., full-edges). Let G = (V, H,F) be a partial graph, where V is the vertex-set of G, H
its set of half-edges and F' its set of full-edges. Let G~ be the graph (V, F). with the same
vertex-set than G and edge-set F. Let GT be the graph obtained by adding a degree-one end
to any half-edge of G.

Let us give some definitions and results that will be used in the following. A ternary tree is a
tree whose internal vertices have degree at most three. A search strategy that is not constrained
to satisfy neither the connected property, nor the monotone property is simply a sequence of
moves of the searchers along the edges of a graph that results in clearing the whole graph. s(G)
denotes the smallest number of searchers that are necessary to clear a graph G in such a way.
The class of trees has particularly been studied regarding graph searching. In particular, the
following results have been proved.

Theorem 1 Let T be a tree with n > 2 vertices,
s(T') <1+logz(n —1) (Megiddo et al. [14])
For any vy € V(T), mes(T,vg) < 2s(T) — 1 (Barriére et al. [2])

The remaining part of this section is devoted to the proof of Theorem 2.

Theorem 2 Let P be a search protocol for clearing n-node graphs. P has competitive ratio
Q(&)
Proof. Let P be a search protocol. We prove that there exists a constant ¢ > 0, such that for
any n > 4, there exists a ternary n-node tree T' (actually, if n is odd, T has exactly one internal
vertex of degree two, and none otherwise), such that P uses at least k searchers to clear T in a
monotone connected way, starting from any homebase v € V(T'), and k > ¢ 27 mes(T', vo).
Let n > 4. We consider an unknown ternary tree 7', that P has to clear starting from
vo € V(T'). Let us describe the game executed turn by turn by P and the adversary .A.
Initially, the partial graph T}, consists of a single vertex, the homebase vg, incident to three
half-edges. All searchers are placed at vg. Then, P and A play alternatively, starting with P.
At each round, T), = (V, H, F) corresponds to the part of 7" that P currently knows. P chooses
a searcher and it moves this searcher along an edge e of T}, if it does not imply recontamination.
Such a move is always possible since P is a search protocol, and thus, it eventually clears T'.
Note that e may be a half-edge or a full-edge. If e is a full-edge, then A skips its turn. Otherwise,
two cases must be considered. Either [V(T,7)] < n —1, or [V(T,})] =n — 1. In the first case,
A adds a new end v to e such that v is incident to two new half-edges f and h. That is, the

partial graph becomes T}, = (V U {v}, Hyew, Frew), with Hpew = (H \ {e}) U{f} U {h} and

Fhew = F U{e}. In the latter case, A adds a new end v to e such that v is incident to only
one new half-edges f. Again, this is possible since P does not know the graph in advance. The
game ends when |V(T,5)[= n. At such a round, A decides that the graph T is actually T, .

Let us assume that the game reaches a round at which [V(T},7)| = n. We show that at least
k > n/4 vertices of T]D‘|r are occupied by searchers. Let us first do the following easy remarks.
At each round of the game, T, is a tree, the vertices of which have degree at most three, and
T]D‘|r is a ternary tree with at least (n + 2)/2 leaves. Moreover, T, is exactly the clear part of
T at this step of the execution of P. In other words, the half-edges of T}, corresponds to the
contaminated edges that are incident to the clear part of T'. Since the execution of P ensures
that the strategy performed is monotone, it follows that, at any round of the game, the vertices
incident to at least one half-edge are occupied by a searcher. From the previous remarks, it
follows that T; is a ternary tree with at least (n + 2)/4 vertices occupied by a searcher. Thus,
P uses at least k > n/4 searchers. By Theorem 1, mcs(T,vg) < 2(1 4 logs(n — 1)). Therefore,
k> mces(T,vg) % m

It follows easily that there is a constant ¢ > 0, such that for any n > 4:

V(T
k> ¢ ggr mes(T,vo) = Q(mes(T, vo) ¥ %)
Hence, T is a ternary tree such that P uses Q(% mcs(T, vg)) searchers to clear T in
a monotone connected way, starting from any homebase. [|

3 Upper Bound

In this section, we propose a search protocol mc_search (for monotone connected search) with
competitive ratio O(logn) for any n-node graph. Combining with the lower bound proved in
section 2, it shows that ©(ogn mcs(G,vp)) searchers are necessary and sufficient to clear any
unknown n-node graph G in a monotone connected way, starting from any homebase vy and in
decentralized settings.

Before describing the search protocol mc_search, we need some definitions. In the following,
the depth of a rooted tree T is the maximum length of the paths between the root and any leaf
of T. Let v € V(T) that is not the root. Let u be the parent of v, then the edge {u,v} is called
the parent-edge of v. A complete ternary tree is defined as follows. The complete ternary tree
Ty of depth 0 consists of a single vertex, called its root. For any k£ > 1, a complete ternary tree
Ty, of depth k is a ternary tree in which all internal vertices have degree exactly three, and there

exists a vertex, called its root, that is at distance exactly k£ from all leaves.

Theorem 3 (Barriére et al. [2])
For any k>0, mes(T)) = k+ 1.

A graph H is a minor of a graph G if H is a subgraph of a graph obtained by a succession of
edge contractions™ of G. A well known result is that, for any graph G and any minor H of
G, s(G) > s(H). Note that this result is not valid for the search number mcs, i.e., there exist
some graph G, and H minor of G such that mcs(H) > mcs(G) [2].

*The contraction of the edge e with endpoints u, v is the replacement of u and v with a single vertex whose
incident edges are the edges other than e that were incident to u or v.

3.1 Idea of protocol mc_search

Let us roughly describe the search protocol mc _search. Let G be a connected n-node graph
and vg € V(G). The main issue of mc_search is to maintain two dynamic rooted trees 7" and
S. At each step, T is a subtree of the clear part of G, and S is a minor of T" with same root.
Intuitively, S represents the current positions of the searchers in G, and T enables the searchers
to move in the clear part of the graph by performing a DFS of T'. Initially, S =T = {vg} and
all searchers are at vy.

Roughly speaking, at each step, Protocol mc_search tries to clear an edge of GG that is chosen
such that S becomes as close as possible to a complete ternary tree. If the chosen edge e reaches
a new vertex, i.e., a vertex that is not occupied by a searcher yet, e is added to S and labelled
Minor. Otherwise, e is labelled Removed, meaning that e has been cleared but it does not
belong to S nor T'.

At some step of the execution of Protocol mc_search, it might happen that some vertices of
S are not “useful” to let S be the densest possible ternary tree. Such vertices are those vertices
of S with degree two or less in S, and whose all incident edges (in G) have been cleared. Let
v be such a vertex and e its parent-edge. Protocol mc_search is aiming at “contracting” e.
There are two cases according whether v is a leaf of S or not. In the first case, e is labelled
Removed. In the latter case, e will be used by the searchers to circulate between the different
components of S in . For this purpose, e is labelled T'ree. As a consequence, edges labelled
Minor and Tree induce a tree T that enables the searchers to circulate in the clear part of G,
by performing a DFS. Especially, T enables the searchers to reach all vertices of S.

We will show in the next sections that Protocol mc_search eventually clears G in a monotone
connected way, starting from vy, and using N > 0 searchers. Moreover, mc_search organizes
the moves of the searchers in such a way that the following three properties are satisfied at any
step. These three properties enable to show that N = O(2— x mcs(G,vp)).

logn

1. T and S have maximum degree three,
2. the vertex-set of S is the set of vertices of G occupied by a searcher at this step, and

3. S has depth k£ > 1 only if there exists a previous step when S was the complete ternary
tree Tp_1.

Let us consider k to be the maximum depth of S during the clearing of G. By properties
1,2 and 3,

N < V(1) = G < log |V/(T)|.

Moreover, by property 3, T;_1 is minor of G, thus s(Tx_1) < s(G) < mes(G,vy) and
|V (Ty-1)| <2|V(G)|. By Theorems 1 and 3, log |V (T%)| = O(k) = O(mcs(Tx—1)) < O(s(T-1)) <
O(s(G)) < O(mes(G,vp)). Finally, since the function = is strictly increasing, and [V (T})| =
3V (Tk-1)| +1 <3|V(G)| +1=3n+ 1, we obtain:

N = O(22- x mcs(G,vp)).

logn

3.2 Protocol mc_search

In this section, we describe the main features of protocol mc_search that is described in Figure 1.
For the purpose of simplifying the presentation, we assume in this figure that searchers are
able to communicate by exchanging messages of size O(logn) bits. This assumption can be
implemented by an additional searcher. This extra searcher will be used to schedule the moves
of the other searchers and to transmit few information between the searchers. For this purpose,

the extra searcher performs a DFS of the tree T that enables it to reach any other searcher.
First, we describe the data structure used by mc_search.

Every searcher has a state variable fevel € {0,---,n}. Roughly, this variable indicates the
distance between the vertex currently occupied by the searcher and the root, in the tree S.
Initially, any searcher has fevel = 0.

The whiteboard of every vertex v € V(@) contains one vector status,. For any edge e €
E(Q) incident to v, status,le] takes a value in L = {Contaminated, Removed, Tree, Minor}.
Initially, for any vertex v and any edge e, status,|e] = Contaminated. To simplify the presen-
tation, we assume that each edge e = {u,v} € E(G) has only one label {(e) = status,le] =
status,[e] € L. This also may be implemented by the extra searcher. Moreover the whiteboard
of every vertex v contains a boolean root, which is either true if v is the current root of S or
false.

The protocol is divided in O(|E(G)|) phases. At each phase, at least an edge is relabelled.
Note that any edge labelled Contaminated (resp., Minor, resp., Tree) can be labelled Minor
or Removed (resp., Tree or Removed, resp., Removed). The edges labelled Removed are not
relabelled, which proves that Protocol mc_search terminates.

Let us define some notations. At any step, T is the subgraph of G induced by the edges
labelled Minor or Tree. In the next section, we prove that T is indeed a tree. S is the minor of
T obtained by contracting all edges labelled T'ree. Initially, T" is rooted at vg. Finally, for any
vertex v € V(G), my, ty, 1y, ¢, denote the number of edges incident to v that are respectively
labelled Minor, Tree, Removed, Contaminated.

Let us describe a phase of the execution of Protocol mc_search. A phase starts by the
election of the searcher that will perform the move or the labelling of an edge. The elected
searcher is an arbitrary searcher with minimum flevel and that occupies a vertex v € V(G)
satisfying one of the following four conditions, that we detail below. Case a: ¢, + m, < 2 and
¢y, > 1, Case b: my, =1,t, =0 and ¢, =0, Case c: m, +t, =2, my >0, ¢, =0 and v is not
the root, Case d: m, +t, = 2, ¢, = 0 and v is the root. We prove below that, while the graph
is not clear, at least one vertex occupied by a searcher satisfies one of these conditions.

We will prove that, at any phase, any searcher actually occupies a vertex of S. Therefore,
this election can easily be implemented by the extra searcher performing a DFS of T'. Moreover,
that can be done with O(logn) bit of memory, since the extra searcher only needs to remember
the minimum fevef of a searcher satisfying one of the above conditions that it meets during
this DFS.

Once the extra searcher has performed this DFS and has gone back to the root, let k be the
minimum fevel satisfying one of the conditions, it has met. Then, the extra searcher performs
a new DFS to reach a searcher A with level = k at a vertex v € V(@) satisfying one of the
conditions. We consider the four cases.

Case a. t, + m, < 2 and ¢, > 1. That is, v has degree at most two in T" and it is incident to
a contaminated edge e. This case is aiming at adding an edge to T and S for letting S to
be as close as possible to a complete ternary tree.

In this case, the extra searcher has led another searcher B from the root to v during its
second DFS. The searcher B, followed by the extra searcher, clears e and reaches its other
end u € V(G). Either there is an other searcher at u, i.e., u belongs to S, or not, i.e.,
u ¢ V(T). In the first case, the extra searcher labels e with Removed, i.e. e is clear but
it does not belong to T. Then, B and the extra searcher goes back to the root. In the
second case, the extra searcher labels e with Minor, i.e. e is added to S and T. Then, B
remains at u to guard it, and B takes fevel = k + 1.

Case b. m, =1, t, =0 and ¢, = 0. That is, v has degree one in T and S, and it is incident to
no contaminated edge. This case is aiming at removing a leaf from S and T, because no
other edge incident to this vertex might be added to T'. This corresponds to relabelling
Removed the edge e incident to v in S that was labelled Minor. Moreover, let P be the
maximal-inclusion path in 7', such that v is an end of P, all edges of P are labelled Tree
and all internal vertices in P have degree two in T, then all these edges are relabelled
Removed, which corresponds to removing all the vertices of P from T.

In this case, searcher A traverses the edge e labelled Minor, labelling it Removed. Let u
be the other end of e. Once e has been removed from T, if u has degree one in T" and its
incident edge f in T has label T'ree, f is removed in a similar way. This process is done
recursively while it is possible. Note that v cannot be incident to a contaminated edge,
otherwise, the protocol ensures that another searcher with fevel < k would have stand at
u. To conclude this case, the extra searcher and searcher A go back to the root and takes
level = 0. Again, it is possible thanks to a DFS of T.

Case c. my +t, =2, my >0, ¢, =0 and v is not the root. That is, v has degree two in T
and at least one in S and it is incident to no contaminated edge. This case is aiming at
contracting an edge e in S. That corresponds to relabelling Tree an edge incident to v
in S that was labelled Minor. We prove that the parent-edge of such vertex is actually
labelled Minor.

In this case, searcher A traverses the edge e labelled Minor, labelling it Tree. Then,
searcher A goes back to the root and takes fevef = 0. Since, this case correspond to the
contraction of e in S, we need to update, i.e., to decrease by one, the level of any searcher
standing at a descendant of v. For this purpose, the extra searcher can perform a DFS of
T, the subtree of T rooted in v. Finally, the extra searcher goes back to the root.

Case d. my, +t, = 2, ¢, = 0 and v is the root. That is, v has degree two in T" and it is incident
to no contaminated edge. This case is aiming at contracting an edge in S. There are two
cases according whether v is incident to an edge labelled Minor, or not. If v is incident
to an edge labelled Minor, let e be this edge. Otherwise, let w be the vertex that is one
of the two vertices closest to v in T and such that m, > 0, let e be the edge labelled
Minor incident to w, and let u be the other end of e. Note that we will prove that such
a vertex w has degree two in T and is incident to exactly one edge labelled Minor. This
case is aiming at contracting the edge e in S. That corresponds to relabelling the edge e
with T'ree. This case also modifies the position of the root.

In this case, all searchers standing at v (the root) are aiming at traversing the edge e and
at labelling it Tree. If e is incident to v, it can easily be done. Otherwise, the searchers
choose one of the two edges incident to v and traverse all edges labelled Tree that they
meet until reaching a vertex incident to an edge labelled Minor, i.e., the vertex w. Then,
they traverse e = {w,u} and relabelled it Tree. In both cases, the searchers reach the
vertex u that becomes the new root, i.e., the booleans root, and root, are updated.
Again, we need to update, i.e., to decrease by one, the level of any searcher standing at a
descendant of v in the subtree containing u. This can be done by the extra searcher as in
the previous case. Finally, the extra searcher goes back to the new root.

Initially all searchers stand at vy with fevel = 0. T = (vg,) with vg as root.
During the execution of mc_search, T is the tree that consists of edges labelled Tree or Minor.

Description of the execution of any phase of Protocol mc_search.

While there exists an edge labelled Contaminated do
1. Election of a searcher A occupying a vertex v, with minimum fevel, say L, such that one of
the four following cases is satisfied.

(Case a) t,+m, <2,¢,>1
(Case b) m, =1,t,=0,¢,=0
(Case ¢) m, +t, =2, my >0, ¢, =0 and v is not the root

(Case d) my, +t, =2, ¢, =0 and v is the root

2. (Case a)
A searcher B standing at the root is called and goes to v.
Let e be an edge incident to v and labelled Contaminated;
B clears e; Let u be the other end of e;
if u is occupied by another searcher then
Label e Removed,
Searcher B goes to the root;
else Label e Minor; Searcher B takes fevel = L + 1; endif

(Case b)

Let e be the edge incident to v labelled Minor.

Label e Removed and let u its other end;

if v is the root then u becomes the new root;
all searchers standing at v go to u; endif

While m, =0,t, =1, ¢, =0do
Let f be the edge incident to u labelled T'ree.
Label f Removed; Let u’ the other end of f and A goes to u’;
if u is the root then u’ becomes the new root

and all searchers standing at u go to u’; endif

u— u';

EndWhile

Searcher A goes to the root;

(Case c)
Let e be the parent-edge of v and u its other end;
Label e with Tree;
Let T}, be the subtree of T obtained by removing e and containing v;
Any searcher occupying a vertex of T, decreases its fevel by one;
Searcher A goes to the root;

(Case d)
Let e be an edge that is closest to v in T such that e is labelled Minor;
Let u be the vertex such that e is its parent-edge;
Label e with T'ree;
Let T” be the subtree of T obtained by removing e and that does not contain v;
Any searcher occupying a vertex of T decreases its fevel by one;
u becomes the new root;

All searchers that were standing at v go to u;
endWhile

Figure 1: Protocol mc_search
9

3.3 Correctness of Protocol mc_search

This section is devoted to prove the following theorem.

Theorem 4 Let G be a connected n-node graph and vo € V(G). Protocol mc_search enables

O(15g7 mes(G,vo)) searchers to clear G in a monotone connected way, starting from vo.

Proof. The difficult part of the proof consists in showing that not too many searchers are
used. Thus, let us first prove that Protocol mc_search clears G in a monotone connected way.
Initially, all edges are labelled Contaminated and the label of an edge e becomes Minor or
Removed as soon as e is traversed by a searcher. Moreover, after this traversal, each of its
ends is occupied by a searcher (Case a). The strategy is obviously monotone since a searcher is
removed from a vertex v if either v is occupied by an other searcher (Case a), or no contaminated
edge is incident to v, i.e. ¢, = 0, (Cases b, ¢ and d). Therefore, the strategy is monotone and
connected since it is monotone and starts from a single vertex vg. Finally, Protocol mc_search
eventually clears G. Indeed, at each step, an edge is labelled, and any edge is relabelled at most
three times: Minor, Tree, and Remowved in this order. Thus, no loop can occur. Moreover, we
prove below that T is a tree. Therefore, at any step, at least the searchers occupying its leaves
satisfy the conditions of the cases a, b, ¢, or d. Thus, while there remains a contaminated edge,
a searcher will eventually be called to clear this edge.

The remaining part of the section is devoted to prove that Protocol mc_search uses at most
O(+%-mcs(G,vg)) searchers. For this purpose, it is sufficient to prove the three properties

logn
described in section 3.1. More precisely, we prove the following lemma.

Lemma 1 Let us consider a phase of the execution of Protocolmc _search. LetT be the subgraph
of G induced by the edges labelled Minor orT'ree. Let S be the minor of T' when all edges labelled
Tree have been contracted.

1. T and S are rooted trees with mazrimum degree at most three,
2. the vertez-set of S is the set of vertices of G occupied by a searcher at this phase, and

3. S has depth k > 1 only if there exists a previous step when S was the complete ternary
tree Ty _1.

The proof is by induction on the number of phases of the execution of Protocol mc_search.
Initially, the result is obviously valid. Let p > 0 be a phase of the execution of mc_search and
let us assume that the result is valid for any previous phase. Let T” be the subgraph of G
induced by the edges labelled Minor or Tree after phase p— 1, and S’ the minor corresponding
to the contraction of edges labelled T'ree.

First we prove that S and T are acyclic. Note that, by definition, for any vertex v € V(G),
my—+t, is the degree of v in 7. According to the induction hypothesis, 7" is a tree with maximum
degree at most three. Let v be a vertex incident to at least one edge labelled Contaminated
and that is not occupied by a searcher. By monotonicity of the strategy, all edges incident to v
are labelled Contaminated. Thus, such a vertex does not belong to T’. Let us show that after
phase p, T is a tree with maximum degree three. We consider the four cases (a),(b),(c) and (d).

Case a. Either an edge e = {v,u} is added to 7", i.e., T = (V(T") U {u}, E(T") U {e}), or T"
remains unchanged, i.e., T'= T". Since, v € V(T") and u ¢ V(T"), T is a tree in both
cases. Moreover, m,, +t, < 2, thus v has degree at most two in 77. Thus 7' has maximum
degree at most three.

10

Case b. m, +t, =1, thus v is a leaf of T'. Let v’ € V(T”) be the neighbor of v and e = {v/, v}
that is labelled Minor. First e is relabelled Removed, thus v is removed from T’. Then,
if v is of degree one in 7"\ {v} and its incident edge f in 7"\ {v} is labelled Tree, f is
relabelled Removed, i.e. v’ is removed from 7"\ {v}. This process is repeated recursively.
Thus, T is a tree obtained from T’ by recursively removing leaves of T’. Hence, the
maximum degree of T is at most three.

Cases ¢ and d. At most one edge of T” is relabelled T'ree, thus T/ = T. In the proof of the
Claim (see above) we prove that exactly one edge of T is relabelled Tree.

It follows that T is a tree with maximum degree at most three. Since S is a minor of T', S is a
tree.

Before proving that the maximum degree of S is three, we prove the second property. We
prove by induction on p that the vertices occupied by a searcher are exactly: the root, and those
vertices the parent-edge of which is labelled Minor.

Initially, the result is obviously valid. Let p > 0 be a phase of the execution of mc_search
and let us assume that the result is valid for any previous phase. We consider the four cases a,
b, ¢ and d. Let V;, be the set of vertices such that their parent-edge are labelled Minor after
the phase p — 1.

Case a. An edge e = {v,u} labelled Contaminated is the only edge to be relabelled. It is
relabelled either Removed or Minor. In the first case, S = S’ and the searchers occupy
exactly the same vertices than after the phase p—1, thus the property holds. In the second
case, u is a leaf of T, and e is the parent edge of u. Thus S = (V(S") U{u}, E(S") U {e}).
Moreover the vertices occupied by a searcher are exactly V' (S") U {u}. Thus the property
holds.

Case b. Let e = {v,u} be the edge adjacent to v labelled Minor. e is the only edge rela-
belled from Minor to Removed. All the other relabelled edges are labelled from Tree
to Removed. Thus Vs = V{, \ {v}. Indeed note that if the root changes, the parent-
edge of each vertex in Vj, \ {v} does not change. If the root does not change, then
S = (V(S)\ {u},E(S") \ {e}). Moreover the vertices occupied by a searcher are exactly
V(S) and the property holds. If the root changes to w, S = (Vyy U{w}, E(S") \ {e}), the
vertices occupied by a searcher are exactly V' (S) and the property holds.

Case c. The parent-edge e of the vertex v is the only edge relabelled, and according to induction
hypothesis it is relabelled from Minor to Tree. Thus S = (V(S') \ {v}, E(S") \ {e}).
Moreover the vertices occupied by a searcher are exactly V(S), thus the property holds.

Case d. Let e be an edge that is closest to v in T’ such that e is labelled Minor. We will prove
in the next proof that such an edge always exists. If this edge does not exist nothing
happens and the property holds.

Let u be the vertex such that e is its parent-edge. The edge e is the only edge relabelled,
it is relabelled from Minor to Tree. Thus Vi = Vj, \ {u}. Indeed the root changes such
that the parent-edge of each vertex in Vj; does not change and u is the new root. The
root changes to u, thus S = (Vay U{u}, E(S") \ {e}). Moreover the vertices occupied by a
searcher are exactly Vs U {u} and the property holds.

Thus, at phase p, the vertex-set of S is the set of vertices of G occupied by a searcher at
this phase.
In order to prove that S has maximum degree at most three, we need the following claim:

11

Claim 1 Let v € V(T) incident to an edge e labelled Tree, and such that e is not its parent-
edge. Let T, be the subtree of T obtained by removing e from T and that does not contain v.
There exists an edge f = {u,w} labelled Minor, such that f is the parent edge of w, u has
degree two in T, and the subtree P of T, obtained by removing f from T, and that contains u
consists of a path of edges labelled Tree.

Obviously, T, contains at least one edge labelled Minor because all leaves of T are labelled
Minor. Indeed, when a leaf is added to T, its incident edge is labelled Minor (Case a) and,
when a leaf and its incident edge e labelled Minor are removed, the whole path of edges labelled
Tree at which e is attached are removed (Case b).

We now prove that, for any vertex u € V(T') that is not the root, such that all its incident
edges in T are labelled Tree, u has degree two in T. Since we have proved that a leaf can
only be incident to an edge labelled Minor, u has degree at least two in 1. For purpose of
contradiction, let us assume that u has degree three in T. Let us consider the phase of the
execution of mc_search such that the last edge incident to u and labelled Contaminated has
been relabelled. From this phase, the degree of u in T" might only have decreased. It follows
that this vertex cannot have satisfied conditions corresponding to Cases b,c, or d. Thus, u has
never been the root otherwise it would still be the case. Moreover, the parent-edge of u has
never been relabelled contradicting the fact that it is labelled Tree. Hence, such a vertex u has
degree exactly two in T

Let f be the edge labelled Minor that is the closest to v in T,. Let u be the end of f
that is closest to v. Obviously, u is not the root and its parent-edge is labelled Tree. It only
remains to prove that u has degree exactly two in 7. Similarly to the previous paragraph, we
assume, for purpose of contradiction, that u has degree three in T. Again, this leads to the
fact that its parent-edge could not have been relabelled, a contradiction. Thus, u has degree
two and it is incident to an edge labelled Minor and another edge labelled Tree. Moreover,
all internal vertices of the path between u and v have degree two in 7" and they are incident to
edges labelled T'ree. This concludes the proof of the Claim. o

Now, let us prove that S has maximum degree at most three. According to the induction
hypothesis, S’ has maximum degree at most three. To prove that the maximum degree of S is
at most three, the four cases a, b, ¢ and d must be considered.

Case a. Since m, + t, < 2, v has degree at most two in 7’. If v has degree at most two in
S’, adding a vertex incident to v in S’ results in a tree of maximum degree at most three.
Thus, to prove the result, it is sufficient that v has degree at most two in S’. If v has
degree one in T”, it has degree one in S” and the result follows. Let us assume that v has
degree two in T".

First, let us assume that v is not the root. Since v is occupied by a searcher, the proof
of property 2 ensures that its parent-edge e is labelled Minor. Let f be the other edge
incident to v in T". If f is labelled Minor, then v has degree two in S’. Otherwise, by the
Claim, there is a vertex u € V(T") of degree two, incident to an edge labelled Minor and
such that the subtree of T’ between u and v consists of a path of edges labelled Tree. It
follows that v has degree two in S’.

Finally, let us assume that v is the root. If v is incident to at least one edge labelled Minor,
the proof is similar to the one presented at the previous paragraph. If v is incident to two
edges labelled Tree, applying the Claim to both these incident edges implies that v has
degree two in S’

Case b. This case corresponds to the removal of a leaf from S’, thus S has maximum degree
at most three.

12

Cases ¢ and d. v has degree two in T’. First we consider that at least one of its incident edges
is labelled Minor. If the second incident edge is also labelled Minor, v has degree two
in S’. Thus, these cases correspond to the contraction of an edge incident to v in S’ that
does not increase its maximum degree. If the second incident edge f is labelled Tree,
since v is occupied by a searcher, either v is the root, or its incident edge labelled Minor
is its parent-edge. By applying the Claim to f, v has degree two in S’. Therefore, the
contraction does not increase its maximum degree.

Let us assume that the two edges incident to v in T" are labelled Tree. Note that, this case
only occurs if v is the root, otherwise no searcher would have occupied v. By applying
the Claim to these two edges, v has degree two in S’. Let e be an edge that is closest to
v in T such that e is labelled Minor. Let u be the vertex such that e is its parent-edge.
By applying the Claim, g is one of the two edges incident to v in S’. Therefore, the
contraction of g does not increase its maximum degree.

To conclude the proof of the lemma, let us prove the third property. First, for any searcher
occupying a vertex v of .S, its level is the distance between v and the root. Let £k > 1 and let
us consider the first phase p at which the depth of S becomes k. The phase p consists of the
clearing of a contaminated edge e = {u,v} with v € V(S) occupied by a searcher with level
k—1,and v € V(G) \ V(T). Since the move performed at phase p is executed by the searcher
with smallest level, it means that no searcher with level less than &£ — 1 can move. That is, all
internal vertices of S have degree three and S has depth &k — 1, i.e. S = Tj_1. This concludes
the proof of the lemma and of the theorem. []

4 Perspectives

It would be interesting to establish a tradeoff between the number of searchers that are required
to clear any graph G in this way and the amount of information that must be provided to the
searchers. An other difficult problem is to improve the competitive ratio of a search protocol
by allowing the search strategy to be not monotone while it is performed in polynomial time.

References

[1] L. Barriére, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile
agents. In 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
200-209, 2002.

[2] L. Barriére, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal Graph
Searching. In 29th Workshop on Graph Theoretic Concepts in Computer Science (WG),
Springer-Verlag, LNCS 2880, pages 34-45, 2003.

[3] D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey)
DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5, pages 3349,
1991.

[4] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms 12,
pages 239-245, 1991.

[5] L. Blin, P. Fraigniaud, N. Nisse and S. Vial. Distributing Chasing of Network Intruders. In
13th Colloquium on Structural Information and Communication Complexity (STROCCO),
Springer-Verlag, LNCS 4056, pages 70-84, 2006.

13

[6]

[7]

R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5), pages
72-78, 1967

P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori. Proc. of
8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM),
2006.

P. Flocchini, F.L. Luccio, and L. Song. Size Optimal Strategies for Capturing an Intruder
in Mesh Networks. Proceedings of the 2005 International Conference on Communications
in Computing (CIC), pages 200-206, 2005

P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for capturing
an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS),
2005.

P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching. In 7th
Latin American Theoretical Informatics Symp. (LATIN 2006), LNCS 3887, pages 470-490,
2006.

P. Fraigniaud and N. Nisse. Monotony properties of connected visible graph searching. In
32th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
LNCS 4271, pages229-240, 2006.

A. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM 40(2),
pages 224-245, 1993.

F. L. Luccio Intruder capture in Sierpinski graphs. Proceedings of the 4th International
Conference on Fun with algorithms (FUN), Springer-Verlag, LNCS 4475, pages 249-261,
2007.

N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The complexity of
searching a graph. Journal of the ACM 35(1), pages 18-44, 1988.

N. Nisse and D. Soguet. Graph searching with advice. In 14th Colloquium on Structural
Information and Communication Complexity (SIROCCO), Springer-Verlag, LNCS 4474,
pages 51-67, 2007.

T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture Notes
in Mathematics, Springer-Verlag, pages 426-441, 1976.

B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In 15th
Annual International Symp. on Algorithms and Computation (ISAAC), pages 908-920,
2004.

14

	RR1475entête.pdf
	RR1475rapp.pdf

