
L R I

AN ALGORITHM FOR MINING MINIMAL

SEQUENTIAL NUGGETS OF KNOWLEDGE

RANCE B / LISACEK F / FROIDEVAUX C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

10/2007

Rapport de Recherche N° 1476

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

An Algorithm for Mining Minimal Sequential

Nuggets of Knowledge

Bastien Rance1, Frédérique Lisacek2,
Christine Froidevaux1

1LRI; Univ. Paris-Sud, CNRS UMR 8623;
F-91405 Orsay, France
{rance, chris}@lri.fr

2Proteome Informatics Group, Swiss Institute of Bioinformatics,
Geneva, Switzerland

frederique.lisacek@isb-sib.ch

September 19, 2007

Abstract

We present the notion of sequential association rule and introduce Se-
quential Nuggets of Knowledge as sequential association rules with pos-
sible low support and good quality, which may be highly relevant to sci-
entific knowledge discovery. Then we propose the algorithm SNK that
mines some interesting subset of sequential nuggets of knowledge. We
have proved SNK to be both sound and complete with respect to that
subset. A first implementation in Java is freely available on the web1.

Nous présentons la notion de règle d’association séquentielle de con-
naissance et introduisons les pépites séquentielles de connaissance. Il
s’agit d’une règle d’association avec un faible support et une très bonne
qualité, qui peut être très pertinente pour la découverte de connaissances
scientifiques. Nous proposons l’algorithme SNK qui recherche des sous
ensembles intéressants de pépites séquentielles de connaissance, et prou-
vons qu’il est correct et complet pour ces sous-ensemble. Une première
implémentation en Java est disponible sur notre site web1.

1 Introduction

Mining the collection of records in a large database to find out association
rules is a classical problem introduced by [1] that has received a great
deal of attention. Association rules are expressions of the form A → B,
where A and B are disjoint itemsets. Frequent sequential patterns mining

1http://www.lri.fr/∼rance/SNK/

1

was introduced in [2] in the case where the data stored in the database
are relative to behavioural facts that occur over time as a refinement of
frequent pattern mining that accommodates ordered items. It is an active
research field in data mining that is applied in various domains including,
among others, analysis of customer shopping sequences, web usage mining,
medical processes, DNA sequences.

In this technical report, we introduce the notion of sequential associa-
tion rule which is based on the notion of interestingness measure. Unlike
common approaches, we are only interested in producing rules whose con-
sequent belongs to some predefined set of items (target items), disjoint
from the set of the items present in the antecedent. We want to de-
tect tight associations between antecedents of rules and their consequent
rather than rules with high support. Thus as in [14], we also search for
significant rare data that co-occur in relatively high association with the
specific data. Namely discovering close dependencies between facts that
almost always co-occur is informative, even if these facts are not frequent
in the database. In contrast, associations with large support cannot be
surprising since they are relative to a large part of the objects ([3], [8]).
Unexpected associations are interesting because they may reveal an as-
pect of the data that needs further study [7].

We determine the relevance of a rule merely by its value for some in-
terestingness measure. We will consider several interestingness measures
because not all measures are equally good at capturing the dependen-
cies between the facts and no measure is better than others in all cases
[12]. Then we introduce Sequential Nuggets of Knowledge as sequential
association rules that may have a low support in the database but are
highly relevant for some interestingness measure. Finally, not all Sequen-
tial Nuggets of Knowledge, but only the maximal ones are searched for.
The rational is to reduce the number and the length of rules, assum-
ing that such rules correspond in some way to a typical signature of the
objects, that is, represent concise characteristics of the studied objects.
Moreover they are easier to analyse for human experts.

Maximal Sequential Nuggets of Knowledge could be used for example
to improve the organisation of a web site. Given the log (list of tuples <IP
address, date, visited web page>) of visitors to our university web site,
IP addresses could be used to identify different profiles of users: e.g. stu-
dents of our university, researchers from other universities, visitors from
the remainder of the world. If we could discover typical signatures for each
profile, we would improve our web site organisation by adding hyperlinks
between different pages and would simplify the navigation for the users.

In this technical report, we present the algorithm SNK which calculates
the most general Sequential Nuggets of Knowledge. Sequential Nuggets of
Knowledge express context-sensitive sequential constraints that are mostly
verified in a sub-class of objects as opposed to another sub-class.

The remainder of the paper is organised as follows. In section 2 we
introduce the fundamental concepts underlying the notion of Sequential

2

Nuggets of Knowledge. We present and study the algorithm SNK (section
3) that computes these nuggets. We report related work and conclude by
discussing our results and giving some perspectives (section 4).

2 Basic concepts

2.1 Definitions

We aim at discovering dependencies between the descriptions of objects
in terms of sequences of items in relation with some specific target item.
We denote by IDT the set of identifiers of the objects and by T the set of
the target items. Let I be the set of all items (boolean attributes). The
sets I and T are supposed to be disjoint. An itemset is any subset of I.

The following notion of sequence is borrowed from [2]. A sequence
s on I is an ordered list of itemsets, denoted by 〈E1, E2, ..., El〉, where
Ei ⊆ I, 1 ≤ i ≤ l. Note that an itemset can have multiple occurrences in
a sequence.

The size of a sequence s is the number of itemsets in s and is written
|s|. A sequence s = 〈E1, E2, ..., En〉 is called a subsequence of another
sequence s′ = 〈F1, F2, ..., Fm〉, denoted s v s′, if and only if there exist
integers j1, ..., jn, such that 1 ≤ j1 < j2 < ... < jn ≤ m and E1 ⊆ Fj1 ,
E2 ⊆ Fj2 , ... , En ⊆ Fjn , where ⊆ denotes the classical inclusion between
sets. We will say that s′ contains s. If s and s′ are distinct sequences
such that s v s′, we will write s @ s′.

Let s = 〈E1, E2, ..., En〉 and s′ = 〈F1, F2, ..., Fm〉 be two sequences on
I. We will denote by s · s′ the sequence resulting from the concatenation
of the two sequences: s · s′ = 〈E1, E2, ..., En, F1, F2, ..., Fm〉.

We define a categorised sequence database as a set CSD of tuples
〈sid, s, tg〉, sid ∈ IDT , tg ∈ T , where sid is the object identifier, s the
sequence of itemsets from I describing it and tg the target item associated
to it. A tuple 〈sid, s, tg〉 is said to contain a sequence s′ if and only if s′

is a subsequence of s.

Running example:

CSD =

id seq target

{α1 = 〈id1, 〈a, b, f, c, e, f, g〉 , tg1〉,
α2 = 〈id2, 〈a, e, b, h, c, f, g〉 , tg1〉,
α3 = 〈id3, 〈c, e, a, b, e, g, f〉 , tg2〉,
α4 = 〈id4, 〈c, e, a, b, e, g, f, a, e, b, f, d〉 , tg2〉}

In CSD the sequence 〈b, e, f〉 is a subsequence of 〈a, b, f, c, e, f, g〉 and
α1 contains the sequence 〈b, e, f〉. In this example all the itemsets are
singletons denoted by their unique element, which is not required in the
general definition.

We introduce the notion of sequential association rule as a combi-
nation of classical association rules and sequential patterns. Formally,
a sequential association rule r on CSD is an implication of the form
ANT → CONS, where ANT is a sequence of itemsets from I and CONS

3

an element of T . We call ANT (resp. CONS) the antecedent (resp. con-
sequent) of r and write ant(r) (resp. cons(r)).

The support of a sequential association rule r in a database CSD is
defined as the number of tuples of CSD that contain both its antecedent
and its consequent. Formally we have: supportCSD(ANT → CONS) =
|{〈sid, s, tg〉 ∈ CSD s.t. (ANT v s) ∧ (CONS = tg)}|.
Note that the items in ANT need not be consecutive in s, in order to be
supported by the tuple.

Example: supportCSD(〈a, b, f〉 → tg1) = 2
The confidence of a sequential association rule r in the database CSD

indicates amongst all the tuples of CSD containing its antecedent the
fraction in which its consequent appears. confCSD(ANT → CONS) =

|{〈sid, s, tg〉 ∈ CSD s.t. (ANT v s) ∧ (CONS = tg)}|
|{〈sid, s, tg〉 ∈ CSD s.t. ANT v s}|

Example: confCSD(〈a, b, f〉 → tg1) = 0.5; confCSD(〈a, b, f, g〉 →
tg1) = 1.

A sequential association rule r1 is said to contain another rule r2,
written (r2 ¹ r1), if and only if cons(r1) = cons(r2) and ant(r2) v
ant(r1). We also say that r2 is more general than r1. If r1 6= r2 and
r2 ¹ r1 we will write r2 ≺ r1.

We now focus on the main notion of this paper, namely Sequential
Nuggets of Knowledge. We introduce them as sequential association rules
with possible low support but with hight quality. Minimal support is
required in order not to discover strong associations that involve only a
few objects, which may come from noise.

A sequential nugget of knowledge is defined as a sequential association
rule r in CSD such that its support is no less than some threshold and
its quality is no less than to some other threshold.

In the applications we have foreseen, objects are merely described by
sequences of items, so that sequences of itemsets are unnecessarily com-
plicated. Therefore, in the remainder of the paper, we will consider only
sequences where itemsets have a single item. The definition of subse-
quence can be rewritten in a simpler form where inclusion is replaced by
equality.

2.2 Interestingness measures

Identifying sequences of variables that are strongly correlated and building
relevant rules with those variables is a challenging task. Interestingness
measures help to estimate the importance of a rule: they can be used
for pruning low utility rules, or ranking and selecting interesting rules.
Selecting a good measure allows to reduce time and space costs during
the mining process ([12], [7]). As pointed earlier, all the interestingness
measures do not capture the same kind of association. For example, using
a support-confidence approach, a rule ANT → CONS may may be con-
sidered as important, even if CONS is often found without ANT . The

4

distribution of examples of ANT between CONS and CONS is not taken
into account. In our work we mainly studied, besides confidence, another
measure which is well adapted to our data, Zhang’s measure as it takes
into consideration the counter-examples [16].

[8] and [7] suggest a number of key properties to be examined for
selecting the right measure that best suits the data. Note that while
support satisfies anti-monotonicity (if r ¹ r′ then supportCSD(r′) ≤
supportCSD(r)), not all interestingness measures satisfy monotonicity (if
a rule is considered to be relevant any of its specialisations is relevant
too).

2.3 Postfix-projection

The method proposed for mining sequential nuggets of knowledge fol-
lows the approach of [11] for sequential patterns. We recursively project
the initial categorised sequential database into a set of smaller categorised
sequential databases, thus generating projected databases by growing pre-
fixes.

Let CSD be a categorised sequential database, α = 〈sid1, 〈e1...en〉, c1〉
a tuple of CSD and s′ = 〈e′1...e′m〉 a sequence with m ≤ n. s′ is called a
prefix of α if and only if ∀i, 1 ≤ i ≤ m , e′i = ei.
Example (continued): The sequence 〈a, b, f〉 is a prefix of α1.

Let α = 〈sid, s, tg〉 be a tuple of CSD. We denote id, seq and target
the methods which return respectively the identifier, the sequence and the
target of α: id(α) = sid, seq(α) = s and target(α) = tg.

The notion of s′-projection corresponds to the longest subsequence
having s′ as a prefix. Let α be a tuple and s′ be a sequence such that s′ v
seq(α). A tuple α′ = 〈id(α′), seq(α′), target(α′)〉 is the s′-projection of α
if and only if (1) id(α′) = id(α), (2) seq(α′) v seq(α), (3) target(α′) =
target(α), (4) s′ is a prefix of α′ and (5) 6 ∃α′′ a tuple s.t. seq(α′) @ seq(α′′)
and seq(α′′) v seq(α) and s′ is a prefix of α′′.
Note that with such a definition only the subsequence of seq(α) prefixed
with the first occurrence of s′ should be considered for α′.

Example (continued):
〈id1, 〈a, b, f, c, e, f, g〉, tg1〉 is an abf-projection of α1, while 〈id1, 〈a, b, f, g〉, tg1〉
is not because (5) is not satisfied. Similarly, 〈id4, 〈a, b, f, a, e, b, f, d〉, tg2〉
is an abf-projection of α4, while 〈id4, 〈a, b, f, d〉, tg2〉 is not because of (5).
The s′-projection of α, if it exists (i.e. if s′ can be a prefix of a tuple
whose sequence is contained in α) is unique. It is the s′-projection of α.

Let α be a tuple of CSD and let s = 〈e1, ..., en〉 be a sequence on I. Let
α′ = 〈id1, 〈e1, ..., en, en+1, ..., en+p〉, tg1〉 be the s-projection of α, where s
is a prefix of α′. Then γ = 〈id1, 〈en+1, ..., en+p〉, tg1〉 is the s-postfix of α′.
If p > 0, then the s-postfix has a sequence of size > 0: it is said to be not
empty and is denoted by α/s. Note that γ satisfies: seq(α′) = s · seq(γ).

The s-projected database, denoted by s− postfix(CSD), is defined as
follows:
s−postfix(CSD) = {(α/s), α ∈ CSD}
Running example :

5

abf−postfix(CSD) =

id seq target

{〈id1, 〈c, e, f, g〉 , tg1〉,
〈id2, 〈g〉 , tg1〉,
〈id4, 〈a, e, b, f, d〉 , tg2〉}

The recursive principle of our algorithm is based on the following prop-
erty:
Property 1:
Let CSD be a categorised database. Let s1 and s2 be any sequences on
I, and let r be any sequential association rule. Then:
(i) s2−postfix(s1−postfix(CSD)) = s1 · s2−postfix(CSD)
(ii) supports1·s2−postfix(CSD)(r) = supportCSD((s1 ·s2 ·ant(r)) → cons(r))
(iii) supportCSD(r) ≥ supports1−postfix(CSD)(r).

Proof (1):

(i) s2−postfix(s1−postfix(CSD)) = s1 · s2−postfix(CSD)
I)
Let γ2 ∈ s2 − postfix(s1 − postfix(CSD)). Let us show that γ2 ∈ s1 · s2 −
postfix(CSD).
If γ2 ∈ s2 − postfix(s1 − postfix(CSD)) then by definition :
s2 is a sequence
there exists a tuple α2 ∈ s1 − postfix(CSD)
and there exists a tuple α′2 such that α′2 is the s2 − projection of α2

But,
α′2 = s2 − projection(α2) means
1) s2 is a prefix of α′2, more precisely, seq(α′2) = s2 · seq(γ2) (♦)
2) id(α2) = id(α′2) = id(γ2) (∇)
3) target(α2) = target(α′2) = target(γ2) (♥)
4) seq(α′2) v seq(α2) (¤)
and there exists no tuple α′′2 such that seq(α′2) @ seq(α′′2) v seq(α2) and
s2 is a prefix of α′′.

Now α2 ∈ s1 − postfix(CSD) means that
s1 is a sequence
there exists a tuple α1 ∈ CSD
and there exists α′1 a tuple such that α′1 is the s1 − projection of α1

But,
α′1 = s1 − projection(α1) means :
1) s1 is a prefix of α′1, more precisely, seq(α′1) = s1 · seq(α2) (♦♦)
2)id(α1) = id(α′1) = id(α2) (∇∇)
3) target(α1) = target(α′1) = target(α2) (♥♥)
4) seq(α′1) v seq(α1) (¤¤)
and there exists no tuple α′′1 such that seq(α′1) @ seq(α′′1) v seq(α1) and
s1 is a prefix of α′′1 .

Let us consider α1 ∈ CSD, and let us show that γ2 = α1/s1 · s2.
Consider δ′ = 〈id(γ2), 〈s1 · s2 · seq(γ2)〉, target(γ2)〉.
Let us show that δ′ is the s1 · s2−projection of α1

(1) id(α1) = id(α2)(∇∇) and id(α2) = id(γ2)(∇). Therefore id(δ′) =

6

id(α1)
(2) s2 · seq(γ2) v seq(α2)(♦) and (¤)
and s1 · seq(α2) v seq(α1)(♦♦) and (¤¤)
Therefore, s1 · s2 · seq(γ2) v seq(α1), i.e., seq(δ′) v seq(α1)
(3) target(α1) = target(α2)(♥♥) and target(α2) = target(γ2)(♥). There-
fore target(δ′) = target(α1)
(4) s1 · s2 is clearly a prefix of δ′.
(5) We reason ad absurdum. Assume that there exists a tuple δ′′ such
that
seq(δ′′) = s1 · s2 · seq(ε) v seq(α1)
Assume that seq(γ2) 6v ε.
Necessarily there must be in α1 another occurrence of s2 on the left of that
of δ′. But as α′2 is the s2−projection(α2), that left occurrence of s2 must
begin in α1 before the beginning of α2 (property (5) of the s2−projection).
Consequently there must be in α1 another occurrence of s1 on the left of
that of δ′. A contradiction with the fact that α2 is the s1 − projection of
α1. We can conclude that there can be no such δ′′.

Thus δ′ = s1 ·s2−projection(γ2) and γ2 = α1/s1 ·s2. As α1 ∈ CSD, γ2 ∈
s1 · s2 · postfix(CSD). (¤)

II)
Let γ4 ∈ s1 · s2 − postfix(CSD). Let us show that γ4 ∈ s2 − postfix(s1 −
postfix(CSD)).

If γ4 ∈ s1 · s2 − postfix(CSD) by definition there exists α4 ∈ CSD
such that γ4 = α4/s1 · s2.

Let β = α4/s1 then clearly β ∈ s1 − postfix(CSD).
Let δ = β/s2 then clearly δ ∈ s2 − postfix(s1 − postfix(CSD)).
Let us show that δ = α4/s1 · s2.
We have id(δ) = id(α4) and target(δ) = target(α4).

Let δ′ = 〈id(α4), 〈s1 · s2 · seq(δ)〉, target(α4)〉
seq(δ′) = s1 · s2 · seq(δ)
Obviously δ is the s1 · s2−postfix of δ′

Let us show that δ′ is the s1 · s2−projection of α4 :
(1) id(δ′) = id(α4)
(2) Is seq(δ′) v seq(α4) ?
β = α4/s1 implies that s1 · seq(β) v seq(α4)
δ = β/s2 implies that s2 · seq(δ) v seq(β)
Therefore s1 · s2 · seq(δ) v seq(α4) and thus
seq(δ′) v seq(α4)
(3) target(δ′) = target(α4)
(4) s1 · s2 is clearly a prefix of δ′

(5) Let us show that there exists no tuple δ′′ s.t. seq(δ′′) has s1 · s2 as a
prefix and seq(δ′) @ seq(δ′′) v seq(α4).
Now since β = α4/s1, β is the longuest subsequence of α4 after s1 and
since δ = β/s2, δ is the longuest subsequence of β after s2. Therefore δ
is the longuest subsequence of α4 after s1 · s2. Consequently there can be

7

no δ′′ such that seq(δ′) 6@ seq(δ′) v seq(α4).
We can conclude that δ = α4/s1 · s2 = γ4 and therefore that γ4 ∈
s2 − postfix(s1 − postfix(CSD)).

Proof (2)

Let us show that supports1·s2−postfix(CSD)(r) = supportCSD((s1 · s2 ·
ant(r)) → cons(r)).

(A) First we prove that if γ = 〈id, s, tg〉 ∈ s1 · s2 − postfix(CSD)
is such that ant(r) v s ∧ cons(r) = tg then there exists α ∈ CSD s.t.
s1 · s2 · ant(r) v seq(α) and cons(r) = tg.
If γ ∈ s1 · s2 − postfix(CSD) then there exists α ∈ CSD s.t. target(γ) =
target(α) and s1 · s2 · seq(γ) v seq(α).
Therefore target(α) = cons(r) = tg.
As ant(r) v seq(γ), s1 ·s2 ·ant(r) v s1 ·s2 ·seq(γ) et s1 ·s2 ·ant(r) v seq(α).
As a result, α ∈ CSD and α supports the rule s1 · s2 · ant(r).

(B) Now let α = 〈id, s, tg〉 ∈ CSD s.t. s1 · s2 · ant(r) v s and
cons(r) = tg.
Let γ = s1 · s2 − postfix(α), let us show that γ supports r, i.e. ant(r) v
seq(γ)
(1) target(γ) = target(α) = tg = cons(r)
(3) γ = s1·s2−postfix(α) means that there exists α′ ∈ s1·s2−projection(α)
such that:
seq(α′) = s1 · s2 − seq(γ)
seq(α′) v seq(α)
and 6 ∃α′′ a tuple s.t. seq(α′) @ seq(α′′) and seq(α′′) v seq(α) and s1 · s2

is a prefix of α′′.
We have seq(α′) v seq(α) = s, i.e., s1 · s2 · seq(γ) v s.
But s1 · s2 · ant(r) v s by hypothesis.
As seq(γ) is the longest subsequence of seq(α) having s1 · s2 as a prefix,
s1 ·s2 ·ant(r) v seq(α) implies that ant(r) v seq(γ). Therefore γ supports
r.

In conclusion, for each γ ∈ s1 · s2 − postfix(CSD) s.t. γ supports r,
there exists α ∈ CSD that supports s1 · s2 · ant(r) → cons(r) and con-
versely.
Therefore the property (ii) is established.

Proof (3)
(iii) supportCSD(r) ≥ supports1−postfix(CSD)(r).
Let us show that for all γ ∈ s1−postfix(CSD) that supports r, there ex-
ists α ∈ CSD that supports r.

γ = 〈id, s, tg〉 ∈ s1−postfix(CSD) is such that ant(r) v s ∧ cons(r) =
tg. Then there exists α ∈ CSD such that target(γ) = target(α) and
s1 · seq(γ) v seq(α). As a result, α ∈ CSD and α supports the rule
(s1.ant(r) → cons(r)).

8

In conclusion, for each γ ∈ s1 − postfix(CSD) s.t. γ supports r, there
exists α ∈ CSD that supports s1 · ant(r) → cons(r).
Therefore the property (iii) is established.

3 SNK Algorithm

3.1 Specification and pseudo-code

Now we present SNK, an algorithm which mines the most general sequen-
tial nuggets of knowledge from a categorised sequential database, given
some thresholds specified by the user.

SNK method
Parameters:
In: CSD a categorised sequential database; min supp a support thresh-
old; IM an interestingness measure; min meas an IM value threshold;
Out: RESULTS the set of the most general Sequential Nuggets of Knowl-
edge;
Method used: SNKrec;
Begin
RESULTS = ∅; ST = the set of all target items of T present in CSD;
Foreach y in ST do

//sequential nuggets of knowledge targeted on y are searched for
Sy = the set of all tuples of CSD having y as a target;
SNKrec(Sy,y,min supp,IM ,min meas,〈〉,RESULTS) endfor end SNK;

SNKrec method
// generates rules r of the form (p ·x) → y, where x is any item occurring
in S and p the prefix used; updates RESULTS with r in order to get
only the most general sequential nuggets of knowledge; calls recursively
itself on the x-projected database of S if r has good support but bad in-
terestingness measure value
Parameters:
In: S a set of tuples having y as a target; min supp, IM , min meas;
p the sequence used as a prefix;
In/Out: RESULTS a set of Sequential Nuggets of Knowledge s.t. 6
∃r1, r2 ∈ RESULTS with r1 ≺ r2;
Methods used:
add rule; //add rule(r,RES) adds rule r to RES unless if r is less general
than or equal to some rule in RES and removes from RES any rule that
is less general than r.
support; // supportS(r) evaluates the support of r in S. measure; //
measureIM,CSD(r) evaluates the value of r for IM in CSD
Begin SI = the set of all items of I occurring in elements of S;
Foreach x in SI do

if supportS(x → y) ≥ min supp then
if measureIM,CSD((p · x) → y) ≥ min meas then

RESULTS = add rule((p · x) → y,RESULTS)
else if x-postfix(S) 6= ∅ then

9

SNKrec(x-postfix(S),y,min supp,IM ,min meas,p·x,RESULTS)
endifendifendifendfor end SNKrec;

add rule method
//add rule(r,RES) adds rule r to RES if r is not more general or equal
to any rule in RES and removes from RES any rule that is more general
than r
Parameters:
In: r a rule;
In/Out: RES a set of rules s.t. 6 ∃ρ1, ρ2 ∈ RES with ρ1 ≺ ρ2;
Begin max found = false; i = 1; let RES be {r1, ..., rn};
while(i ≤ n and max found = false) do

if(r ≺ ri) then RES = RES \ {ri}
else if(ri ¹ r) then max found = true endifendif ;
i = i + 1

endwhile;
if max found = false then RES = RES ∪ {r} endif end add rule;

3.1.1 Complexity, completeness, soundness

Time complexity
The time complexity of SNK is related to the number of target items y
of T present in CSD, and for each y in ST , to the number of recursive
calls of SNKrec. Therefore we measure the complexity by estimating the
number of tests (if x-postfix(S) 6= ∅) performed by SNKrec for some given
y. The worst case for SNKrec occurs when all the rules generated have
good support but bad measure, leading to a maximal number of recursive
calls.
Let us consider the tree of the recursive calls of SNKrec and let rsy be
the depth of this tree: it is the length of the longest sequence of a tuple
of S. Let rsy,i be the length of the longest sequence of a tuple of the
projected database S at the i-th level. Clearly rsy,i ≤ rsy − i. Let li be
the maximal cardinal of the set SI considered at the i-th level. Then an
upper bound for the number of tests at the i-th level is

Qi−1
j=0 lj . Let σy,i

be the maximal number of tuples that can be found at the i-th level in
any projected database S. Then building x− postfix(S) at the i-th level
requires O(σy,i × rsy,i) operations. Finally an upper bound for the total
number of operations performed by SNK to build projected databases is:

O(
X

y∈ST

rsyX
i=1

(

i−1Y
j=0

lj)Max((σy,i × rsy,i), (|CSD| × C
int(sry,0/2)
rsy,0)))

To each of these tests corresponds a calculation of supportS((p·x) → y)
which is no less than σy,i × rsy,i. The calculation of measureIM,CSD((p ·
x) → y) is straightforward: it results from a combination of a series of
probabilities that are calculated once before SNK execution. At each re-
cursive call of the algorithm, a categorised sequential database may prod-
uct at most all the combinaison of subsequence of the longest sequence
times the number of sequence rules. At each recursive call the cost is at

10

most either the cost of a postfix-projection or the cost of the add rule
method. With our depth-first search approach not all the projected
databases need to be stored in memory unlike in a breadth-first search
approach. Moreover the calculation of the different projected databases
might be performed independently.
This analysis shows that the theoretical time complexity is very high in the
worst case. However, in practice, for the applications foreseen, the SNK
algorithm remains efficient because the size of the projected databases
decreases very quickly.

Soundness and completeness

Theorem 1 (Soundness)
Let CSD be a categorised sequential database of records. Let RESULTS
be the set of all sequential nuggets of knowledge returned by SNK(CSD, min supp, IM, min meas)
for some interestingness measure IM . Then:
(1) The support value in CSD of each r ∈ RESULTS is no less than
min supp and the corresponding interestingness measure value in CSD is
no less than min meas.
(2) For any r ∈ RESULTS there exists no rule r′ on CSD s.t. suppCSD(r′) ≥
min supp, measIM,CSD(r′) ≥ min meas and r′ ≺ r.

Proof:
In the SNKrec method add rule is called for rule r = (p · x) → y if
supports(x → y) ≥ min supp (a) and
measureIM,CSD(p · x → y) ≥ min meas (b)

(1) Let r be a rule in RESULTS. It was added to RESULTS (and
not deleted) by the add rule method called by SNKrec for somes values
of the parameters S and p. Let k be the number of the recursive calls
needed.
If k = 1 then r is of the form x → y and there is only one run of the SNKrec
(the method being itself called from the main method SNK). Therefore p
is the empty prefix and S = Sy, the set of tuples of CSD having y as a
target.
If k > 1, then r is of the form (x1, x2, ..., xk−1, xk) → y, since each call
adds an item attribute in the antecedent of the rule.

The successive recursive calls of SNKrec have been performed with
the following successive values of S: S1, S2, ..., Sk with S1 = Sy, S2 =
x1 − postfix(S1), S3 = x2 − postfix(S2), ..., Sk = xk−1 − postfix(Sk−1).
Therefore Sk = xk−1 − postfix(xk−2 − postfix(...(x1 − postfix(Sy))...)).
By property 1 (i), Sk = x1 · x2 · ... · xk−1 − postfix(Sy)
Now by property 1 (ii),
supportx1·x2·...·xk−1−postfix(Sy)(xk → y) = supportSy

((x1 · ... ·xk−1) ·xk →
y)
Since only the tuples of CSD having y as a target are useful for the cal-
culation of the support of rules having y as a consequent, we get:

11

supportx1·x2·...·xk−1−postfix(Sy)(xk → y) = supportCSD(r)

But since at the kth call of SNKrec, rule r is handled by add rule.

We have: supportSk−1
(xk → y) ≥ min supp.

Therefore:
supportCSD(r) ≥ min supp

(2) We reason ad absurdum. Assume that there exists a rule r′ ≺ r,
with r′ = xp1 · ... · xpq → y ∈ CSD, p1 < ... < pq ∈ {1, ..., k} and
q < k, such that supportCSD(r′) ≥ min supp and measureIM,CSD(r′) ≥
min meas.
There exists a succession of recursive calls of SNKrec that build the be-
ginning of ant(r′).

Assume that r′ is completely built: then at the qth call of SNKrec,
add rule would have been called and would have eliminated rule r since
r′ ≺ r. It is impossible. Therefore, the process of building r′ has been
stopped at the jth recursive call of SNKrec.
Let r′′ = xp1 · xp2 · ... · xpj → y, with j < q.
In the same way as in (1), we can prove that supportCSD(r′′ = supportSj

(xpj →
y) where Sj is the value of the parameter S at the jth call.
But since r′′ ≺ r′ ≺ r, we have supportCSD(r′′) ≥ supportCSD(r) ≥
min supp by definition of support.

Now, since no more recursive call is done, measureIM,CSD(r′′) ≥
min meas.
Then SNKrec would have called the add rule method which would have
added r′′ to RESULTS. As r′′ ≺ r, r would have been removed from
RESULTS, a contradiction.
In conclusion, there exists no such rule r′.

Theorem 2 (Completeness)
Let CSD be a categorised sequential database, IM an interestingness
measure, min supp a support threshold and min meas an interestingness
measure threshold for IM . Let QCSD,min supp,IM,min meas = { rules r on
CSD satisfying suppCSD(r) ≥ min supp, measIM,CSD(r) ≥ min meas
and s.t. 6 ∃ r′ on CSD with suppCSD(r′) ≥ min supp, measIM,CSD(r′) ≥
min meas and r′ ≺ r}. Then any rule of QCSD,min supp,IM,min meas can
be obtained by SNK(CSD, min supp, IM, min meas).

Proof:

Let r ∈ QCSD,min supp,IM,min meas. Let us show that r can be ob-
tained by SNK. Assume that r is of the form x1 · ... · xk → y.

We show that r is returned by SNK after k recursive calls of SNKrec.
Base case : k = 1. Then SNK calls SNKrec with S = Sy and p = ∅.
As r ∈ Q, supportCSD(x → y) ≥ min supp. But as already shown
supportCSD(x → y) = supportSy

(x → y). Since r ∈ Q, measureIM,CSD(x →

12

y) ≥ min meas.
Therefore at the first call of SNKrec the add rule method is called. Since
r ∈ Q, there is no rule r′ ∈ RESULTS that can be contained by r. Con-
sequently r is added to RESULTS and will stay in it until the algorithm
is completed.

General case : k > 1. Let us show that SNKrec performs k consec-
utive recursive calls.
Let S1 = Sy, S2 = x1 − postfix(S1), ..., Sk = xk−1 − postfix(Sk−1) be the
succesive values of parameter S in the k consecutive calls of SNKrec.
Let r′j = x1 · ... · xj → y for 1 ≤ j ≤ k − 1
(a) Since supportCSD(r) ≥ min supp, supportSy

≥ min supp.
By property 1 (i) and (ii):
supportSj

(xj → y) = supportSy
(x1 · ... · xj → y), 1 ≤ j ≤ k − 1

But supportSy
(x1 · ... · xj → y) ≥ supportSy

(x1 · ... · xk → y) ≥ min supp
Thus we get:
supportCSD(r′j) = supportSy

(r′j) ≥ min supp.

(b) r′j ≺ r for 1 ≤ j ≤ k − 1
(c) r′j is a rule defined on CSD.
From (a), (b), (c) and the fact that r ∈ Q, we can conclude that measureIM,CSD(r′j) <
min meas. Therefore, SNKrec will be called once more with parameter
Sj+1.

We have shown that k recursive calls of SNKrec will be done, leading
to rule r at the kth call.
At that step, SNKrec will call add rule method that will check whether
r can be added to RESULTS. As r ∈ Q, there can be no rule r′ ∈
RESULTS such that r′ ≺ r, since any rule in RESULTS satisfies sup-
port and interestingness measure requirements (cf. soundness part).

In conclusion r will be added to RESULTS, without possibility of
removing it, and r will be returned by the main SNK method.

Theorems 1 and 2 give the following characterization of SNK output:

Theorem 3 (Soundness and Completeness of SNK) Let CSD
be a categorised sequential database and IM be an interestingness mea-
sure. Given support and interestingness measure thresholds, SNK returns
exactly all the most general sequential nuggets of knowledge in CSD for
IM .

4 Related work and discussion

In this paper, we have proposed a definition of sequential association rules
and introduced sequential nuggets of knowledge. Those definitions are
based on the works presented in [11], but unlike classical sequential pat-
tern mining, our approach focuses on rules with predefined targets as
consequents. We have designed SNK, an algorithm based on a pattern-
growth strategy (as PrefixSpan [11]) to generate the most general sequen-
tial nuggets of knowledge using an interestingness measure that evaluates

13

the pertinence of a rule. Other efficient works have been proposed for
sequential pattern mining. SPADE [15] is as fast as PrefixSpan but uses
a bitmap structure which is better adapted to the study of very long se-
quences but less suitable for short sequences. [9] had proposed a method
to generate sequential association rules, but is based on an a priori-like
strategy with two steps, a candidate test step and a candidate genera-
tion step. This approach generates many unnecessary candidates that
our pattern-growth approach avoids.
Sequential nuggets of knowledge are defined by a good interestingness
measure value. SNK offers the choice between a dozen of interestingness
measures. The choice of a suitable measure for a given application do-
main can be guided by the examination of criteria described in [7] and
in [12]. On the other hand, [8] proposes a statistical bootstrap-based
method to assess the significance of a measure (thus avoiding false dis-
coveries) that could be used with SNK. A first implementation of SNK
is freely available on the web (http://www.lri.fr/∼rance/SNK/) with
some other functionalities.
We envisage to use our algorithm in applications, e.g. on web logs and
molecular biology.

5 Acknowledgement

Authors are very grateful to Céline Arnaud for her great help for the
implementation of SNK applet. This work was supported in part by the
French ACI IMPBio grant RAFALE.

References

[1] Agrawal,R., Imielinski,T., Swami,A.N., (1993) Mining Association
Rules between Sets of Items in Large Databases,Proc. of the 1993 ACM
SIGMOD International Conference on Management of Data, 207–216.

[2] Agrawal,R., Srikant,R., (1995) Mining sequential patterns, In Proc.
Eleventh International Conference on Data Engineering, 3–14.

[3] Azé,J., Kodratoff,Y., (2002) A study of the Effect of Noisy Data in
Rule Extraction Systems, Proc. of the Sixteenth European Meeting on
Cybernetics and Systems Research (EMCSR’02) (2) 781–786.

[4] Bairoch,A., Apweiler,R., Wu,C.H., Barker,W.C., Boeckmann,.B,
Ferro,S., Gasteiger,E., Huang,H., Lopez,R., Magrane,M., Martin,M.J.,
Natale,D.A., O’Donovan,C., Redaschi,N., Yeh,L.S., (2005) The Univer-
sal Protein Resource (UniProt) Nucleic Acids Res. 33: D154–159.

[5] Finn,R.D., Mistry,J., Schuster-Backler,B., Griffiths-Jones,S., Hol-
lich,V., Lassmann,T., Moxon,S., Marshall,M., Khanna,A., Durbin,R.,
Eddy,S.R., Sonnhammer,E.L.L., Bateman,A. (2006) Pfam: clans, web
tools and services. Nucleic Acids Research, Database Issue 34:D247–
D251.

[6] Froidevaux,C.,Lisacek, F.,Rance,B.(2007) Extracting Sequential
Nuggets of Knowledge Proc. of DEXA’07, 740-750.

14

[7] Geng, L., Hamilton H.J. (2006) Interestingness Measures for Data
Mining: A Survey, ACM Computing surveys, Vol 38, No3, Article 9.

[8] Lallich S., Teytaud O. and Prudhomme E. (2006), Association rule
interestingness: measure and statistical validation, in Quality Measures
in data Mining, (Guillet F. and Hamilton H.J. eds.), Springer.

[9] Masseglia,F.,Tanasa,D.,Trousse,B. (2004) Web Usage Mining: Se-
quential Pattern Extraction with a Very Low Support, APWeb 2004,
LNCS3007, 513–522.

[10] Nikitin,F., Rance,B., Itoh,M., Kanehisa,M., Lisacek,F. (2004) Using
Protein Motif Combinations to Update KEGG Pathway Maps and Or-
thologue Tables, Genome Informatics, 2:266–275.

[11] Pei,J., Han,J., Mortazavi-Asl,B., Wang,J., Pinto,H., Chen,Q.,
Dayal,U., Hsu,M.-C. (2004) Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach, IEEE Transactions on Knowledge
and Data Engineering, 16:1424–1440.

[12] Tan,P.N.,Kumar,V., Srivastava,J. (2002) Selecting the Right Inter-
estingness Measure for Association Patterns, SIGKDD’02.

[13] Wootton, J.C. and Federhen, S. (1993) Statistics of local complex-
ity in amino acid sequences and sequence databases. Comput. Chem.
17:149–163.

[14] Yun H., Ha D., Hwang B. and Ryu K.H. (2003), Mining association
rules on significant rare data using relative support, The Journal of
Systems and Software 67 (2003), 181-191.

[15] Zaki,M.J. (2001) SPADE: An Efficient Algorithm for Mining Fre-
quent Sequences, Machine Learning Journal, special issue on Unsuper-
vised Learning (Doug Fisher, ed.), 42:31–60.

[16] Zhang, T. (2000) Association Rules. In T. Terano, H. Liu, A.L.P.
Chen (Eds), Proceding of PAKDD 2000, LNAI 1805, 245–256, Springer-
Verlag, 2000.

15

	RR1476entête.pdf
	RR1476rapp.pdf

