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Abstract. Let Kc
n denote a complete graph on n vertices whose edges

are colored in an arbitrary way. And let ∆(Kc
n) denote the maximum

number of edges of the same color incident with a vertex of Kc
n. A prop-

erly colored cycle (path) in Kc
n, that is, a cycle (path) in which adjacent

edges have distinct colors is called an alternating cycle (path). Our note
is inspired by the following conjecture by B. bollobás and P. Erdős(1976):
If ∆(Kc

n) < bn/2c, then Kc
n contains an alternating Hamiltonian cycle.

We prove that if ∆(Kc
n) < bn/2c, then Kc

n contains an alternating cycle
with length at least dn+2

3
e + 1.
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1 Introduction and notation

We use [2] for terminology and notations not defined here. Let G = (V,E)
be a graph. An edge-coloring of G is a function C : E → N(N is the set of
nonnegative integers). If G is assigned such a coloring C, then we say that G
is an edge-colored graph, or simply colored graph. Denote by (G, C) the graph
G together with the coloring C and by C(e) the color of the edge e ∈ E. For
a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)} and c(H) = |C(H)|. For a
color i ∈ C(H), let iH = |{e : C(e) = i and e ∈ E(H)}| and say that color i
appears iH times in H. For an edge-colored graph G, if c(G) = c, we call it a
c-edge colored graph.

A properly colored cycle (path) in an edge-colored graph, that is, a cy-
cle(path) in which adjacent edges have distinct colors is called an alternating
cycle (path). In particular, an alternating Hamiltonian cycle (path) is a prop-
erly colored Hamiltonian cycle (path). For l ≥ 3, let ACl denote an alternating
cycle with length l. Besides a number of applications in graph theory and al-
gorithms, the concept of alternating paths and cycles, appears in various other
fields: genetics (cf. [9,10,11]), social sciences (cf. [8]). A good resource on alter-
nating paths and cycles is the survey paper [2] by Bang-Jensen and Gutin.
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Grossman and Häggkvist [12] were the first to study the problem of the ex-
istence of the alternating cycles in c-edge colored graphs. They proved Theorem
1.1 below in the case c = 2. The case c ≥ 3 was proved by Yeo [17]. Let v be
a cut vertex in an edge-colored graph G. We say that v separates colors if no
component of G− v is joined to v by at least two edges of different colors.

Theorem 1.1 (Grossman and Häggkvist [12], and Yeo [17]). Let G be a c-edge
colored graph, c ≥ 2, such that every vertex of G is incident with at least two
edges of different colors. Then either G has a cut vertex separating colors, or G
has an alternating cycle.

Given an edge-colored graph G, let dc(v), named the color degree of a vertex
v, be defined as the maximum number of edges adjacent to v, that have distinct
colors. In [16], some color degree conditions for the existence of alternating cycles
are obtained as follows.

Theorem 1.2 (Li and Wang [16]). Let G be an edge-colored graph with order
n ≥ 3. If dc(v) > n+1

3 for every v ∈ V (G), then G has an alternating cycle AC
such that each color in C(AC) appears at most two times in AC.

Theorem 1.3 (Li and Wang [16]). Let G be an edge-colored graph with order
n ≥ 3. If dc(v) ≥ 37n−17

75 for every v ∈ V (G), then G contains at least one
alternating triangle or one alternating quadrilateral.

Theorem 1.4 (Li and Wang [16]). Let G be an edge-colored graph with order n.
If dc(v) ≥ d ≥ 2, for every vertex v ∈ V (G), then either G has an alternating
path with length at least 2d, or G has an alternating cycle with length at least
d 2d

3 e+ 1.

Consider the edge-colored complete graph, we use the notation Kc
n to denote

a complete graph on n vertices, each edge of which is colored by a color from
the set {1, 2, · · · , c}. And ∆(Kc

n) is the maximum number of edges of the same
color adjacent to a vertex of Kc

n. And we have the following conjecture due to
Bollobás and Erdős [4].

Conjecture 1.5 (Bollobás and Erdős [4]). If ∆(Kc
n) < bn

2 c, then Kc
n contains

an alternating Hamiltonian cycle.

Bollobás and Erdős managed to prove that ∆(Kc
n) < n

69 implies the existence
of an alternating Hamiltonian cycle in Kc

n. This result was improved by Chen
and Daykin [7] to ∆(Kc

n) < n
17 and by Shearer [15] to ∆(Kc

n) < n
7 . So far the

best asymptotic estimate was obtained by Alon and Gutin [1]

Theorem 1.6 (Alon and Gutin [1]). For every ε > 0 there exists an no = n0(ε)
so that for every n > no, Kc

n satisfying ∆(Kc
n) ≤ (1− 1√

2
−ε)n has an alternating

Hamiltonian cycle.
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In the present paper, we study the long alternating cycles of edge-colored
complete graphs and gain the following result.

Theorem 1.7 If ∆(Kc
n) < bn

2 c, then Kc
n contains an alternating cycle with

length at least dn+2
3 e+ 1.

2 Proof of Theorem 1.7

If P = v1v2 · · · vp is a path, let P [vi, vj ] denote the subpath vivi+1 · · · vj , and
P−[vi, vj ] = vjvj−1 · · · vi.

Lemma 2.1 (Bang-Jensen, Gutin and Yeo[3]). If Kc
n contains a properly colored

2-factor, then it has a properly colored Hamiltonian path.

Häggkvist [13] announced a non-trivial proof of the fact that every edge-
colored complete graph graph satisfying above Bollobás-Erdős condition con-
tains a properly colored 2-factor. Lemma 2.1 and Häggkvist’s result imply that
every edge-colored complete graph satisfying Bollobás-Erdős condition has an
alternating Hamiltonian path.

Proof of Theorem 1.7.

If n = 3, the conclusion holds clearly. So we assume that n ≥ 4. By contra-
diction. Suppose that our conclusion does not hold. Then let P = v1v2 · · · vn be
an alternating Hamiltonian path of Kc

n. Choose s satisfying the followings:

R1. C(v1vs) 6= C(v1v2).
R2. s ≥ dn+2

3 e+ 1.
R3. Subject to R1, R2, s is minimum.

Lemma 2.2
(1.1) s ≤ bn

2 c+ dn+2
3 e − 1.

(1.2) For i ≥ s, if C(v1vi) 6= C(v1v2), then C(v1vi) 6= C(vivi+1).

Proof. By R3, for dn+2
3 e + 1 ≤ j ≤ s − 1, we have that C(v1vj) = C(v1v2). If

s ≥ bn
2 c+ dn+2

3 e, then there exist at least bn
2 c+ dn+2

3 e − (1 + dn+2
3 e) + 1 ≥ bn

2 c
edges with the color C(v1v2) incident with v1, a contradiction with ∆(Kc

n) <
bn

2 c.
Since P is an alternating Hamiltonian path, then C(vi−1vi) 6= C(vivi+1).

If there exists i ≥ s such that C(v1vi) 6= C(v1v2) and C(v1vi) = C(vivi+1),
then P [v1, vi]viv1 is an alternating cycle with length i ≥ s ≥ dn+2

3 e + 1, a
contradiction.

Then choose t satisfying the followings:

R
′

1. C(vtvn) 6= C(vn−1vn).
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R
′

2. t ≤ n− dn+2
3 e.

R
′

3. Subject to R
′

1, R
′

2, t is maximum.

Similarly, we have the following lemma, here we omit the details.

Lemma 2.3
(3.1) t ≥ dn

2 e − dn+2
3 e+ 2.

(3.2) For i ≤ t, if C(vivn) 6= C(vn−1vn), then C(vivn) 6= C(vi−1vi).

Lemma 2.4. s < t.

Proof. Otherwise, we have that s ≥ t. If s > t, then AC0 = v1vsP [vs, vn]vlvt

P−[vt, v1] is an alternating cycle. And |AC0| = |P [vs, vn]| + |P [v1, vt]| ≥ (n −
bn

2 c − dn+2
3 e + 2) + (dn

2 e − dn+2
3 e + 2) = 2(dn

2 e − dn+2
3 e) + 4 ≥ dn+2

3 e + 1, a
contradiction.

So we assume that s = t. For s + 1 ≤ j ≤ n− 1, we conclude that C(v1vj) =
C(v1v2). Otherwise, there is an alternating cycle AC1 = v1vjP [vj , vn]vnvsP

−[vs,
vn] with length |AC1| ≥ 2+ |V (P [v1, vs])| ≥ 3+ dn+2

3 e, which gives a contradic-
tion. Similarly, for 2 ≤ j ≤ s − 1, it holds that C(vjvn) = C(vn−1vn). Then by
∆(Kc

n) < bn
2 c, consider vertex v1 and the color C(v1v2), it holds that n−s < bn

2 c,
then s > dn

2 e. Similarly, consider vertex vn and the color C(vn−1vn), we have
that s− 1 < bn

2 c, then s < bn
2 c+ 1, a contradiction.

Lemma 2.5. For 2 ≤ j ≤ s−1, C(vnvj) = C(vn−1vn); And for t+1 ≤ j ≤ n−1,
C(v1vj) = C(v1v2).

Proof. By symmetry, we only prove the first part. Otherwise, there exists 2 ≤
j ≤ s − 1 such that C(vjvn) 6= C(vn−1vn). Clearly, j ≤ t, thus by Lemma 2.3
we have that C(vj−1vj) 6= C(vjvn). Then we get an alternating cycle AC2 =
v1vsP [vs, vn]vnvjP

−[vj , v1]. And it holds that |AC2| ≥ |V (P [vs, vn])| + 2 ≥
|V (P [vt, vn])|+ 3 ≥ dn+2

3 e+ 3, a contradiction.

Denote A = {v : C(v1v) 6= C(v1v2)} and B = {v : C(vnv) 6= C(vn−1vn)}.

Lemma 2.6. |A ∩ V (P [vs, vt])|+ |B ∩ V (P [vs, vt])| ≥ 2(dn
2 e − dn+2

3 e+ 1).

Proof. By R1, |A∩V (P [vs, vn])| ≥ n−(bn
2 c−1)−(dn+2

3 e−1) ≥ dn
2 e−d

n+2
3 e+2.

Then by Lemma 2.5, we obtain that A∩V (P [vs, vn]) = A∩(V (P [vs, vt])∪{vn}) =
(A∩V (P [vs, vt]))∪ (A∩{vn}). It follows that |A∩V (P [vs, vt])| ≥ dn

2 e−dn+2
3 e+

1. Similarly, we can obtain that |B ∩ V (P [vs, vt])| ≥ dn
2 e − dn+2

3 e + 1. Then
|A ∩ V (P [vs, vt])|+ |B ∩ V (P [vs, vt]| ≥ 2(dn

2 e − dn+2
3 e+ 1).

Now we completes the proof of Theorem 1.7 as follows. We have that |V (P [vs,
vt])| ≤ n − |V (P [v1, vs−1])| − |V (P [vt+1, vl])| ≤ n − 2dn+2

3 e. And by Lemma
2.6, |A ∩ V (P [vs, vt])| + |B ∩ V (P [vs, vt])| = |A| + |B| ≥ 2(dn

2 e − dn+2
3 e + 1) >

n−2dn+2
3 e+1 > |V (P [vs, vt])|, then it follows that there exists vj (s+1 ≤ j ≤ t)

such that vj ∈ A and vj−1 ∈ B. So we get an alternating Hamiltonian cycle
v1vjP [vj , vn]vnvj−1P

−[vj−1, v1], a contradiction. This completes the proof.
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