L R I

LONG ALTERNATING CYCLES IN EDGE-COLORED COMPLETE GRAPHS

LI H / WANG G / ZHOU S

Unité Mixte de Recherche 8623 CNRS-Université Paris Sud – LRI

12/2007

Rapport de Recherche N° 1481

CNRS – Université de Paris Sud Centre d'Orsay LABORATOIRE DE RECHERCHE EN INFORMATIQUE Bâtiment 490 91405 ORSAY Cedex (France)

Long alternating cycles in edge-colored complete graphs

Hao Li^{1,3}, Guanghui Wang^{1,2}, Shan Zhou^{1,3}

¹ Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S-Universite de Paris-sud, 91405-Orsay cedex, France

² School of Mathematics and System Science, Shandong University, 250100 Jinan, Shandong, China

³ School of Mathematics and Statistics, Lanzhou University, 730000 Lanzhou, China

Abstract. Let K_n^c denote a complete graph on n vertices whose edges are colored in an arbitrary way. And let $\Delta(K_n^c)$ denote the maximum number of edges of the same color incident with a vertex of K_n^c . A properly colored cycle (path) in K_n^c , that is, a cycle (path) in which adjacent edges have distinct colors is called an alternating cycle (path). Our note is inspired by the following conjecture by B. bollobás and P. Erdős(1976): If $\Delta(K_n^c) < \lfloor n/2 \rfloor$, then K_n^c contains an alternating Hamiltonian cycle. We prove that if $\Delta(K_n^c) < \lfloor n/2 \rfloor$, then K_n^c contains an alternating cycle with length at least $\lceil \frac{n+2}{3} \rceil + 1$.

Keywords: alternating cycle, color degree, edge-colored graph

1 Introduction and notation

We use [2] for terminology and notations not defined here. Let G = (V, E) be a graph. An *edge-coloring* of G is a function $C : E \to N(N)$ is the set of nonnegative integers). If G is assigned such a coloring C, then we say that G is an *edge-colored graph*, or simply *colored graph*. Denote by (G, C) the graph G together with the coloring C and by C(e) the *color* of the edge $e \in E$. For a subgraph H of G, let $C(H) = \{C(e) : e \in E(H)\}$ and c(H) = |C(H)|. For a color $i \in C(H)$, let $i_H = |\{e : C(e) = i \text{ and } e \in E(H)\}|$ and say that *color* i and *equal to the color* $i \in c(G)$. For an edge-colored graph G, if c(G) = c, we call it a *c-edge colored* graph.

A properly colored cycle (path) in an edge-colored graph, that is, a cycle(path) in which adjacent edges have distinct colors is called an *alternating* cycle (path). In particular, an *alternating Hamiltonian* cycle (path) is a properly colored Hamiltonian cycle (path). For $l \geq 3$, let AC_l denote an alternating cycle with length l. Besides a number of applications in graph theory and algorithms, the concept of alternating paths and cycles, appears in various other fields: genetics (cf. [9,10,11]), social sciences (cf. [8]). A good resource on alternating paths and cycles is the survey paper [2] by Bang-Jensen and Gutin.

2 Hao Li, Guanghui Wang, Shan Zhou

Grossman and Häggkvist [12] were the first to study the problem of the existence of the alternating cycles in *c*-edge colored graphs. They proved Theorem 1.1 below in the case c = 2. The case $c \ge 3$ was proved by Yeo [17]. Let v be a cut vertex in an edge-colored graph G. We say that v separates colors if no component of G - v is joined to v by at least two edges of different colors.

Theorem 1.1 (Grossman and Häggkvist [12], and Yeo [17]). Let G be a c-edge colored graph, $c \geq 2$, such that every vertex of G is incident with at least two edges of different colors. Then either G has a cut vertex separating colors, or G has an alternating cycle.

Given an edge-colored graph G, let $d^{c}(v)$, named the color degree of a vertex v, be defined as the maximum number of edges adjacent to v, that have distinct colors. In [16], some color degree conditions for the existence of alternating cycles are obtained as follows.

Theorem 1.2 (Li and Wang [16]). Let G be an edge-colored graph with order $n \geq 3$. If $d^c(v) > \frac{n+1}{3}$ for every $v \in V(G)$, then G has an alternating cycle AC such that each color in C(AC) appears at most two times in AC.

Theorem 1.3 (Li and Wang [16]). Let G be an edge-colored graph with order $n \geq 3$. If $d^c(v) \geq \frac{37n-17}{75}$ for every $v \in V(G)$, then G contains at least one alternating triangle or one alternating quadrilateral.

Theorem 1.4 (Li and Wang [16]). Let G be an edge-colored graph with order n. If $d^c(v) \ge d \ge 2$, for every vertex $v \in V(G)$, then either G has an alternating path with length at least 2d, or G has an alternating cycle with length at least $\lfloor \frac{2d}{3} \rfloor + 1$.

Consider the edge-colored complete graph, we use the notation K_n^c to denote a complete graph on n vertices, each edge of which is colored by a color from the set $\{1, 2, \dots, c\}$. And $\Delta(K_n^c)$ is the maximum number of edges of the same color adjacent to a vertex of K_n^c . And we have the following conjecture due to Bollobás and Erdős [4].

Conjecture 1.5 (Bollobás and Erdős [4]). If $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$, then K_n^c contains an alternating Hamiltonian cycle.

Bollobás and Erdős managed to prove that $\Delta(K_n^c) < \frac{n}{69}$ implies the existence of an alternating Hamiltonian cycle in K_n^c . This result was improved by Chen and Daykin [7] to $\Delta(K_n^c) < \frac{n}{17}$ and by Shearer [15] to $\Delta(K_n^c) < \frac{n}{7}$. So far the best asymptotic estimate was obtained by Alon and Gutin [1]

Theorem 1.6 (Alon and Gutin [1]). For every $\epsilon > 0$ there exists an $n_o = n_0(\epsilon)$ so that for every $n > n_o$, K_n^c satisfying $\Delta(K_n^c) \le (1 - \frac{1}{\sqrt{2}} - \epsilon)n$ has an alternating Hamiltonian cycle.

In the present paper, we study the long alternating cycles of edge-colored complete graphs and gain the following result.

Theorem 1.7 If $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$, then K_n^c contains an alternating cycle with length at least $\lceil \frac{n+2}{3} \rceil + 1$.

2 Proof of Theorem 1.7

If $P = v_1 v_2 \cdots v_p$ is a path, let $P[v_i, v_j]$ denote the subpath $v_i v_{i+1} \cdots v_j$, and $P^-[v_i, v_j] = v_j v_{j-1} \cdots v_i$.

Lemma 2.1 (Bang-Jensen, Gutin and Yeo[3]). If K_n^c contains a properly colored 2-factor, then it has a properly colored Hamiltonian path.

Häggkvist [13] announced a non-trivial proof of the fact that every edgecolored complete graph graph satisfying above Bollobás-Erdős condition contains a properly colored 2-factor. Lemma 2.1 and Häggkvist's result imply that every edge-colored complete graph satisfying Bollobás-Erdős condition has an alternating Hamiltonian path.

Proof of Theorem 1.7.

If n = 3, the conclusion holds clearly. So we assume that $n \ge 4$. By contradiction. Suppose that our conclusion does not hold. Then let $P = v_1 v_2 \cdots v_n$ be an alternating Hamiltonian path of K_n^c . Choose s satisfying the followings:

 $\begin{array}{l} R_1. \ C(v_1v_s) \neq C(v_1v_2).\\ R_2. \ s \geq \lceil \frac{n+2}{3} \rceil + 1.\\ R_3. \ \text{Subject to } R_1, R_2, \ s \ \text{is minimum.} \end{array}$

Lemma 2.2

(1.1) $s \leq \lfloor \frac{n}{2} \rfloor + \lceil \frac{n+2}{3} \rceil - 1.$ (1.2) For $i \geq s$, if $C(v_1v_i) \neq C(v_1v_2)$, then $C(v_1v_i) \neq C(v_iv_{i+1}).$

Proof. By R_3 , for $\lceil \frac{n+2}{3} \rceil + 1 \le j \le s-1$, we have that $C(v_1v_j) = C(v_1v_2)$. If $s \ge \lfloor \frac{n}{2} \rfloor + \lceil \frac{n+2}{3} \rceil$, then there exist at least $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n+2}{3} \rceil - (1 + \lceil \frac{n+2}{3} \rceil) + 1 \ge \lfloor \frac{n}{2} \rfloor$ edges with the color $C(v_1v_2)$ incident with v_1 , a contradiction with $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$.

Since P is an alternating Hamiltonian path, then $C(v_{i-1}v_i) \neq C(v_iv_{i+1})$. If there exists $i \geq s$ such that $C(v_1v_i) \neq C(v_1v_2)$ and $C(v_1v_i) = C(v_iv_{i+1})$, then $P[v_1, v_i]v_iv_1$ is an alternating cycle with length $i \geq s \geq \lceil \frac{n+2}{3} \rceil + 1$, a contradiction.

Then choose t satisfying the followings:

$$R'_1$$
. $C(v_t v_n) \neq C(v_{n-1} v_n)$.

Hao Li, Guanghui Wang, Shan Zhou

 $\begin{array}{l} R_2'. \ t \leq n - \lceil \frac{n+2}{3} \rceil. \\ R_3'. \ \text{Subject to} \ R_1', R_2', \ t \ \text{is maximum}. \end{array}$

Similarly, we have the following lemma, here we omit the details.

Lemma 2.3

 $\begin{array}{l} (3.1) \ t \geq \lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 2. \\ (3.2) \ For \ i \leq t, \ if \ C(v_i v_n) \neq C(v_{n-1} v_n), \ then \ C(v_i v_n) \neq C(v_{i-1} v_i). \end{array}$

Lemma 2.4. s < t.

Proof. Otherwise, we have that $s \ge t$. If s > t, then $AC^0 = v_1 v_s P[v_s, v_n] v_l v_t$ $P^-[v_t, v_1]$ is an alternating cycle. And $|AC^0| = |P[v_s, v_n]| + |P[v_1, v_t]| \ge (n - \lfloor \frac{n}{2} \rfloor - \lceil \frac{n+2}{3} \rceil + 2) + (\lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 2) = 2(\lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil) + 4 \ge \lceil \frac{n+2}{3} \rceil + 1$, a contradiction.

So we assume that s = t. For $s + 1 \le j \le n - 1$, we conclude that $C(v_1v_j) = C(v_1v_2)$. Otherwise, there is an alternating cycle $AC^1 = v_1v_jP[v_j, v_n]v_nv_sP^-[v_s, v_n]$ with length $|AC^1| \ge 2 + |V(P[v_1, v_s])| \ge 3 + \lceil \frac{n+2}{3} \rceil$, which gives a contradiction. Similarly, for $2 \le j \le s - 1$, it holds that $C(v_jv_n) = C(v_{n-1}v_n)$. Then by $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$, consider vertex v_1 and the color $C(v_1v_2)$, it holds that $n-s < \lfloor \frac{n}{2} \rfloor$, then $s > \lceil \frac{n}{2} \rceil$. Similarly, consider vertex v_n and the color $C(v_{n-1}v_n)$, we have that $s - 1 < \lfloor \frac{n}{2} \rfloor$, then $s < \lfloor \frac{n}{2} \rfloor + 1$, a contradiction.

Lemma 2.5. For $2 \le j \le s-1$, $C(v_n v_j) = C(v_{n-1}v_n)$; And for $t+1 \le j \le n-1$, $C(v_1v_j) = C(v_1v_2)$.

Proof. By symmetry, we only prove the first part. Otherwise, there exists $2 \leq j \leq s-1$ such that $C(v_jv_n) \neq C(v_{n-1}v_n)$. Clearly, $j \leq t$, thus by Lemma 2.3 we have that $C(v_{j-1}v_j) \neq C(v_jv_n)$. Then we get an alternating cycle $AC^2 = v_1v_sP[v_s, v_n]v_nv_jP^-[v_j, v_1]$. And it holds that $|AC^2| \geq |V(P[v_s, v_n])| + 2 \geq |V(P[v_t, v_n])| + 3 \geq \lceil \frac{n+2}{3} \rceil + 3$, a contradiction.

Denote $A = \{v : C(v_1v) \neq C(v_1v_2)\}$ and $B = \{v : C(v_nv) \neq C(v_{n-1}v_n)\}.$

Lemma 2.6. $|A \cap V(P[v_s, v_t])| + |B \cap V(P[v_s, v_t])| \ge 2(\lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 1).$

 $\begin{array}{l} \textbf{Proof. By } R_1, |A \cap V(P[v_s,v_n])| \geq n - (\lfloor \frac{n}{2} \rfloor - 1) - (\lceil \frac{n+2}{3} \rceil - 1) \geq \lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 2. \\ \text{Then by Lemma 2.5, we obtain that } A \cap V(P[v_s,v_n]) = A \cap (V(P[v_s,v_t]) \cup \{v_n\}) = (A \cap V(P[v_s,v_t])) \cup (A \cap \{v_n\}). \text{ It follows that } |A \cap V(P[v_s,v_t])| \geq \lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 1. \\ \text{Similarly, we can obtain that } |B \cap V(P[v_s,v_t])| \geq \lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 1. \\ \text{Then } |A \cap V(P[v_s,v_t])| + |B \cap V(P[v_s,v_t]| \geq 2(\lceil \frac{n}{2} \rceil - \lceil \frac{n+2}{3} \rceil + 1). \end{array}$

Now we completes the proof of Theorem 1.7 as follows. We have that $|V(P[v_s, v_t])| \leq n - |V(P[v_1, v_{s-1}])| - |V(P[v_{t+1}, v_l])| \leq n - 2\lceil \frac{n+2}{3}\rceil$. And by Lemma 2.6, $|A \cap V(P[v_s, v_t])| + |B \cap V(P[v_s, v_t])| = |A| + |B| \geq 2(\lceil \frac{n}{2}\rceil - \lceil \frac{n+2}{3}\rceil + 1) > n - 2\lceil \frac{n+2}{3}\rceil + 1 > |V(P[v_s, v_t])|$, then it follows that there exists v_j $(s+1 \leq j \leq t)$ such that $v_j \in A$ and $v_{j-1} \in B$. So we get an alternating Hamiltonian cycle $v_1v_jP[v_j, v_n]v_nv_{j-1}P^-[v_{j-1}, v_1]$, a contradiction. This completes the proof.

4

References

- N. Alon and G. Gutin, Properly colored Hamiltonian cycles in edge colored complete graphs, Random Structures and Algorithms 11(1997), 179-186
- 2. J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-colored multigraphs: a survey, Discrete Math. 165-166(1997), 39-60.
- 3. J. Bang-Jensen, G. Gutin and A. Yeo, Properly coloured Hamiltonian paths in edge-colored complete graphs, Discrete Appl. Math. 82(1998), 247-250.
- B. Bollobás and P. Erdős, Alternating Hamiltonian cycles, Israel J. Math. 23(1976), 126-131.
- 5. J.A. Bondy and U.S.R. Murty. Graph Theory with Applications, Macmillan Press[M]. New York, 1976.
- L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in "Proceedings, Ninth S-E Conference on Combinatorics, Graph Theory and Computing, 1978", 181-187.
- C.C. Chen and D.E. Daykin, Graphs with Hamiltonian cycles having adjacent lines different colors. J. Combin. Theory Ser B21(1976), 135-139.
- W.S. Chow, Y. Manoussakis, O. Megalakaki, M. Spyratos and Z. Tuza, Paths through fixed vertices in edge-colored graphs, J. des Mathematques, Informatique et Science, Humaines 32(1994), 49-58
- 9. D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra, vol. 5(Verlag Hölder-Pichler-Tempsky, Wien; Teubner, Stuttgart, 1987), 95-103.
- 10. D. Dorninger, Hamiltonian circuits determing the order of chromosomes, Discrete Appl. Math. 50(1994), 159-168.
- 11. D. Dorninger and W. Timischl, Geometrical constraints on Bennett's predictions of chromosome order. Heredity 58(1987), 321-325.
- J.W. Grossman and R. Häggkvist, Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser B 34(1983),77-81
- 13. R. Häggkvist, A talk at Intern. Colloquium on Combinatorics and Graph Theory at Balatonlelle, Hungary, July 15-19, 1996
- 14. G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and edgecoloring conjecture, Discrete Math. 62(1)(1986), 29-33.
- 15. J. Shearer, A property of the colored complete graph. Discrete Math. 25(1979), 175-178.
- 16. H. Li and G. Wang, Color degree and alternating cycles in edge-colored graphs, RR L.R.I NO1461(2006)
- 17. A. Yeo, Alternating cycles in edge-coloured graphs. J. Combin. Theory Ser B 69(1997), 222-225.