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Abstract. Let K, denote a complete graph on n vertices whose edges
are colored in an arbitrary way. And let A(K};) denote the maximum
number of edges of the same color incident with a vertex of K;,. A prop-
erly colored cycle (path) in K, that is, a cycle (path) in which adjacent
edges have distinct colors is called an alternating cycle (path). Our note
is inspired by the following conjecture by B. bollobas and P. Erdés(1976):
If A(K,) < [n/2], then K, contains an alternating Hamiltonian cycle.
We prove that if A(KS;) < |n/2], then K contains an alternating cycle
with length at least [%2] + 1.
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1 Introduction and notation

We use [2] for terminology and notations not defined here. Let G = (V, E)
be a graph. An edge-coloring of G is a function C' : E — N(N is the set of
nonnegative integers). If G is assigned such a coloring C, then we say that G
is an edge-colored graph, or simply colored graph. Denote by (G, C') the graph
G together with the coloring C' and by C(e) the color of the edge e € E. For
a subgraph H of G, let C(H) = {C(e) : e € E(H)} and ¢(H) = |C(H)|. For a
color i € C(H), let iy = |{e : C(e) =i and e € E(H)}| and say that color i
appears iy times in H. For an edge-colored graph G, if ¢(G) = ¢, we call it a
c-edge colored graph.

A properly colored cycle (path) in an edge-colored graph, that is, a cy-
cle(path) in which adjacent edges have distinct colors is called an alternating
cycle (path). In particular, an alternating Hamiltonian cycle (path) is a prop-
erly colored Hamiltonian cycle (path). For [ > 3, let AC; denote an alternating
cycle with length [. Besides a number of applications in graph theory and al-
gorithms, the concept of alternating paths and cycles, appears in various other
fields: genetics (cf. [9,10,11]), social sciences (cf. [8]). A good resource on alter-
nating paths and cycles is the survey paper [2] by Bang-Jensen and Gutin.
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Grossman and Haggkvist [12] were the first to study the problem of the ex-
istence of the alternating cycles in c-edge colored graphs. They proved Theorem
1.1 below in the case ¢ = 2. The case ¢ > 3 was proved by Yeo [17]. Let v be
a cut vertex in an edge-colored graph G. We say that v separates colors if no
component of G — v is joined to v by at least two edges of different colors.

Theorem 1.1 (Grossman and Haggkvist [12], and Yeo [17]). Let G be a c-edge
colored graph, ¢ > 2, such that every vertex of G is incident with at least two
edges of different colors. Then either G has a cut vertex separating colors, or G
has an alternating cycle.

Given an edge-colored graph G, let d°(v), named the color degree of a vertex
v, be defined as the maximum number of edges adjacent to v, that have distinct
colors. In [16], some color degree conditions for the existence of alternating cycles
are obtained as follows.

Theorem 1.2 (Li and Wang [16]). Let G be an edge-colored graph with order
n > 3. If d°(v) > TLTH for every v € V(G), then G has an alternating cycle AC
such that each color in C(AC) appears at most two times in AC.

Theorem 1.3 (Li and Wang [16]). Let G be an edge-colored graph with order
n > 3. If d°(v) > 3T for every v € V(G), then G contains at least one
alternating triangle or one alternating quadrilateral.

Theorem 1.4 (Li and Wang [16]). Let G be an edge-colored graph with order n.
If d°(v) > d > 2, for every vertex v € V(G), then either G has an alternating
path with length at least 2d, or G has an alternating cycle with length at least

(3 +1.

Consider the edge-colored complete graph, we use the notation K¢ to denote
a complete graph on n vertices, each edge of which is colored by a color from
the set {1,2,---,c}. And A(K() is the maximum number of edges of the same
color adjacent to a vertex of K. And we have the following conjecture due to
Bollobds and Erdés [4].

Conjecture 1.5 (Bollobds and Erdés [4]). If A(Ky) < [ 5], then K, contains
an alternating Hamiltonian cycle.

Bollobds and Erdés managed to prove that A(K;,) < g implies the existence
of an alternating Hamiltonian cycle in K. This result was improved by Chen
and Daykin [7] to A(KY,) < {5 and by Shearer [15] to A(K};) < %. So far the
best asymptotic estimate was obtained by Alon and Gutin [1]

Theorem 1.6 (Alon and Gutin [1]). For every € > 0 there exists an n, = ng(e)
so0 that for everyn > n,, K¢ satisfying A(KS) < (1—% —e)n has an alternating
Hamiltonian cycle.
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In the present paper, we study the long alternating cycles of edge-colored
complete graphs and gain the following result.

Theorem 1.7 If A(KY) < |%], then Ky, contains an alternating cycle with
length at least ["52] + 1.

2 Proof of Theorem 1.7

If P = vivg---v, is a path, let Plv;,v;] denote the subpath v;v;41---v;, and
P~ [’l)i7’l)j] = VjVj—1"" " V-

Lemma 2.1 (Bang-Jensen, Gutin and Yeo[3]). If K¢ contains a properly colored
2-factor, then it has a properly colored Hamiltonian path.

Higgkvist [13] announced a non-trivial proof of the fact that every edge-
colored complete graph graph satisfying above Bollobas-Erdés condition con-
tains a properly colored 2-factor. Lemma 2.1 and Haggkvist’s result imply that
every edge-colored complete graph satisfying Bollobas-Erdds condition has an
alternating Hamiltonian path.

Proof of Theorem 1.7.

If n = 3, the conclusion holds clearly. So we assume that n > 4. By contra-
diction. Suppose that our conclusion does not hold. Then let P = vyvs --- v, be
an alternating Hamiltonian path of K. Choose s satisfying the followings:

Ry. C(v1vs) # C(v1va).
RQ. S Z [%HW + 1.
R3. Subject to Ry, Rg, s is minimum.

Lemma 2.2

(1.1) s < [5] + f%1 L
(1.2) Fori > s, if C(v1v;) # C(v1v2), then C(v1v;) # C(viviy1).

Proof. By Rj, for [%2] +1 < j < s — 1, we have that C(v1v;) = C(vyv2
s > | %] + [242], then there exist at least L JHTE2 - (1422 ) +1 >
edges w1th the color C(vivz) incident with vy, a contradiction with A(KS
2],

’ Since P is an alternating Hamiltonian path, then C(v;—1v;) # C(v;vi41).
If there exists ¢ > s such that C(viv;) # C(vive) and C(viv;) = C(vvi41),
then Plvy,v;]vjvy is an alternating cycle with length i > s > [282] 4+ 1, a
contradiction.

). If
5]
) <

30

Then choose t satisfying the followings:

Rll. C(vvy) # C(vp—1vp).
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! 2
Ry t<n— (%}. /
R5. Subject to R}, Ry, t is maximum.

Similarly, we have the following lemma, here we omit the details.

Lemma 2.3
(31)t > [2] - [252] +2
(3.2) Fori <t, if C(v;un) # C(vp—1vy), then C(v;vy,) # C(vi—1v;).

Lemma 2.4. s < t.

Proof. Otherwise, we have that s > t. If s > ¢, then AC? = vyvsP[v, v, |viv;
P~ [v,v1] is an alternating cycle. And |[AC?| = |Plvs, v,]| + |Plv1,v¢]| > (n —
5] =221+ 2) + ([5]1 - 221 +2) = 2([5] - [22]) +4 > [H2] + 1, a
contradiction.

So we assume that s =¢. For s +1 < j <n —1, we conclude that C(viv;) =
C(v1v2). Otherwise, there is an alternating cycle AC! = vyv; Plv;, v, Ju,vs P~ [vs,
v,] with length |[AC!| > 2+ |V (P[v1,vs])| = 34 [%$2], which gives a contradic-
tion. Similarly, for 2 < j < s — 1, it holds that C(v;v,) = C(v,—1v,). Then by
A(Ky) < | 5], consider vertex v and the color C(vivp), it holds that n—s < [ ],
then s > [§]. Similarly, consider vertex v, and the color C(v,_1vy), we have
that s —1 < | ], then s < [ 5| + 1, a contradiction.

Lemma 2.5. For2 < j < s—1, C(v,v;) = C(vp—1v,); And fort+1 < j <n-—1,
C(’Ul’Uj) = C(’Ulvg).

Proof. By symmetry, we only prove the first part. Otherwise, there exists 2 <
j < s—1 such that C(vjv,) # C(vp—1vy). Clearly, j < ¢, thus by Lemma 2.3
we have that C(vj_1v;) # C(vjv,). Then we get an alternating cycle AC?
0105 P[vg, vpJupv; P~ [vj,v1]. And it holds that |AC?| > |V(Plus,vn])| + 2
[V (Plvg, vn])| +3 > [%£2] + 3, a contradiction.

IVl

Denote A = {v: C(v1v) # C(v1v2)} and B = {v : C(v,v) # C(vp—1vn)}.

Lemma 2.6. |[ANV(Pvs,v])| + [BNV(Plvg,ve])| = 2([ 5] — [HTH} +1).

Proof. By Ry, |[ANV (Plvs,va])| > n— (5] —1)—(("*21 —1) > [2]-[=E2] 2.

Then by Lemma 2.5, we obtain that ANV (Plus, v,]) = ANV (Plvs, ve])U{v,}) =

(ANV(Plug,ve)))U(AN{vy,}). Tt follows that [ANV (Plus, ve])| > [g] [ +2]
1.

1. Similarly, we can obtain that |B N V(Plvg,v])| > [%] — [252]
[ANV(Plvs, i) + BNV (Plog,ve]] > 2([5] - [%52] + ).

Now we completes the proof of Theorem 1.7 as follows. We have that |V (P[vs,
v])| < n— |[V(Plvr,vs-1])| = [V(Plogg1,v))| < n—2[227. And by Lemma
2.6, |A NV (Plog,u)| + B N V(Plog, )| = 4]+ |B| > 2([2] - [2£2] +1) >
n—2["%214+1 > |V(Pvs,vs])|, then it follows that there exists v; (s+1 < j <)
such that v; € A and v;_; € B. So we get an alternating Hamiltonian cycle
v1v; Plvj, vplvnvi—1 P~ [vj_1, v1], a contradiction. This completes the proof.
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