
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

FAULT-TOLERANT IMPLEMENTATIONS OF
REGULAR REGISTERS BY SAFE REGISTERS

IN LINK MODEL

JOHNEN C / HIGHAM L

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

02/2008

Rapport de Recherche N° 1486

Fault-tolerant Implementations of regular Registers by safe
Registers in Link Model

Colette Johnen
LRI, Univ. Paris-Sud, CNRS, F-91405 Orsay, France - colette@lri.fr

Lisa Higham
Computer Science Department, University of Calgary, Canada - higham@cpsc.ugalgary.ca

February 14, 2008

Abstract

A network that uses locally shared registers can be
modelled by a graph where nodes represent proces-
sors and there is an edge between two nodes if and
only if the corresponding processors communicate
directly by reading or writing registers shared be-
tween them. Two variants are defined by A vari-
ant of the model assumes that registers are single-
writer/single-reader and are located on the edges
(called link models).

This paper is concerned with the three link network
models that arise from specifying the type of shared
registers (safe, regular, or atomic). Specifically, we
seek to determine under what conditions and with
what fault-tolerance guarantees it is possible to trans-
form a solution under one of these models into a so-
lution under models.

The fault tolerant properties we consider are self-
stabilization and wait-freedom. Our principal result
is a wait-free and self-stabilizing compiler from the
regular-link model to the safe-link model.

For all the remaining relationships among these three
models under either self-stabilizing and wait-free re-
quirements, we either observe that they have been
answered by existing research. Thus, our compiler
closes the proposed questions among the three mod-
els. For instance, any self-stabilizing algorithms de-
signed for the atomic-link model (also called R/W
atomicity model) can be implemented using safe reg-
isters instead of atomic registers.

Keywords: network models, distributed algo-

rithms, safe registers, regular registers, atomic reg-
isters link-register models, self-stabilization, wait-
freedom.

1 Introduction

This paper address this question for networks of pro-
cessors that communication by locally shared regis-
ters. A network that uses locally shared registers can
be modelled by a graph where nodes represent pro-
cessors and there is an edge between two nodes if
and only if the corresponding processors communi-
cate directly by reading or writing registers shared
between them. Two variants are defined by specify-
ing whether the registers are multi-reader and located
at the nodes (called state models) or single-reader
and located on the edges (called link models).

The shared registers used by the communicating pro-
cessors further distinguishes possible models. Lam-
port [10] defined three models of registers, differen-
tiated by the possible outcome of read operations that
overlap concurrent write operations. These three reg-
ister types, in order of increasing power, are called
safe, regular, and atomic. Program design is easier
assuming atomic registers rather than regular regis-
ters but the hardware implementation of an atomic
register is costlier than the implementation of a regu-
lar register. Safe registers are cheaper still; they cap-
ture a notion of directly sensing the hardware.

By specifying either state or link communication,
via shared registers that are either safe, regular, or
atomic, we arrive at six different network models

1

that use locally shared registers. For example, the
regular-link model has regular registers located on
the edges of the network. The other models are
named similarly.

An algorithm for any one of these networks could
provide some fault tolerance. So, we consider a
third parameter, namely, wait-freedom, which cap-
tures tolerance of stopping failures of components
of the network, or self-stabilization, which captures
recovery of the network from transient errors of its
components.

Related research Due to one of Lamport’s semi-
nal papers [10] and several other subsequent papers
[1, 6, 11, 2], it is already known how to construct
wait-free, multi-writer multi-reader, shared atomic
registers from only a collection of safe bits each
shared between a single-writer and a single-reader.
However, these constructions are not self-stabilizing.
Hoepman, Papatrianfafiou and Tsigas [8] presented
self-stabilizing versions of some of these well-known
implementations. For instance, they present a wait-
free and self-stabilizing implementation of a single-
writer/single-reader regular binary register using a
single-writer/dual-reader safe binary register. In [8],
it was established that the following impossibility re-
sult : there is not wait-free and self-stabilizing imple-
mentation of single-writer/single-reader regular bi-
nary register by a single-writer/single-reader safe bi-
nary register.

In previous works, we have established that there is
no general wait-free compiler from atomic-state net-
works to atomic-link networks in [7], and no gen-
eral wait-free compiler from atomic-state networks
to regular-link networks in [9]. The proofs proceed
by showing that any such compiler would require
shared registers between any two processors, which
is not the case in general networks. In [7], we also
present a self-stabilizing compiler from networks
where neighbours communicate via atomic-state reg-
isters to systems where neighbours communicate via
atomic-link registers. In [9], a self-stabilizing com-
piler from the atomic-state model to the regular-state
model is presented. This compiler is alsosilent [4].
That is, if, once registers are stabilized, the atomic-
state algorithm does not require the participation of
neighbours, then the transformed regular-state algo-
rithm also does not require the participation of neigh-

bours. As a consequence, our compiler does not add
significant overhead to communication.

Contributions of this paper Our principal result
is a wait-free and self-stabilizing compiler from the
regular-link model to the safe-link model.

Paper overview Section 2 defines the six basic
models we are considering, contains several defini-
tions required for the rest of the paper, and presents
a formal definition of a compiler from one register-
based model to another. In Section 3, we present a
wait-free and self-stabilizing compiler from 1W/1R
pseudo-regular-link register to 1W/1R safe-link reg-
isters. In Section 4, we present a wait-free and self-
stabilizing compiler from 1W/1R regular-link reg-
ister to 1W/1R pseudo-regular-link registers. The
combination of two compilers (presented in Section
5) provides a wait-free and self-stabilizing compiler
from distributed networks where neighbours com-
municate via regular-link registers to distributed net-
works where neighbours communicate via safe-link
registers.

2 Definitions and Models

2.1 Distributed Systems

Shared registers. Let R be a single-writer/multi-
reader register that can contain any value in domain
T . R supports only the operationsREAD andWRITE.
EachREAD andWRITE operation,o, has a time inter-
val corresponding to the time between the invocation
of o, denoted inv(o), and the response ofo, denoted
resp(o). An operationo happens-beforeoperation
o0 READ operations,may overlap aWRITE. Lamport
[10] defined several kinds of such registers depend-
ing on the semantics whenREAD andWRITE opera-
tions overlap. RegisterX is safeif eachREAD that
does not overlap anyWRITE returns the value of the
latestWRITE that happens-before it, and otherwise
returns any value inT . RegisterR is regular if it is
safe and anyREAD that overlaps aWRITE returns the
value of either the latestWRITE that happens-before
it, or the value of some overlappingWRITE.

RegisterR is atomicif it is regular, and if anyREAD,
r, overlaps aWRITE, w, and returns the value writ-
ten byw, then anyREAD, r0, that happens-afterr

2

must not return the value of anyWRITE that happens-
beforew.

Network models. A distributed network can be
modelled by a graphG = (V;E) whereV is a set of
processors and an edgehpqi 2 E if and only if pro-
cessorsp andq can communicate directly. Several
variants have been defined depending on the precise
meaning of “communicate directly”. In this paper we
consider variants where each processor uses a col-
lection of local registers accessible only to itself and
communicates with its neighbours via shared regis-
ters. The type of register and the way these registers
are shared distinguishes the various models.

In thestatenetwork models, each processorp owns a
single-writer multi-reader shared registerRp, which
is writable byp and readable by each ofp’s neigh-
bours.

In the link network models, for each edgehpqi 2 E,
there are two single-writer single-reader registers.
RegisterRpq is writable byp and readable byq; reg-
isterRqp is writable byq and readable byp.

Each of these state and link model types is fur-
ther refined by specifying whether the shared reg-
isters are atomic, regular, or safe. Thus, there are
six different network models that arise by specifying
two parameter for the shared registers: Strength2
fatomic, regular, safeg and Location2 flink, stateg.
We name the six register-based models as in indi-
cated in Table 1.

state models link models
atomic registers atomic-state atomic-link
regular registers regular-state regular-link

safe registers safe-state safe-link

Table 1: Six register-based network models

Given a graphG, we use Strength-Location(G)
to denote the network with topologyG and net-
work model Strength-Location. For example
Regular-Link(G) is the network with topologyG
that has regular single-writer mono-reader shared
registers located at each eadge. We use similar no-
tation for theWRITE and READ operations on each
of these models. For example, in an regular-link net-
work model, theWRITE andREAD operations are de-

noted:

� RL-WRITE(R, �) to denote the write of value�
to the shared registerR.

� � �RL-READ(R) to denote the read of the
shared registerR that returns the value�.

The atomic-link model is identical to a model used
by Dolev, Israeli and Moran [5]. The atomic-state
model has been assumed by several others in subse-
quent papers [12].

Distributed algorithms, distributed systems. A
distributed algorithmis an assignment of a program
to each processor in the network, and this assign-
ment gives rise to adistributed system. We use the
termnetworkto mean just the topology and the com-
munication model andsystemto mean the network
together with the algorithm. Of course, the assigned
program must use only the operations available in the
network model.

Configurations and computations. A configura-
tion of a distributed system is a collection of values
assigned to all the registers of the system. In acom-
putation step, several processors simultaneously ex-
ecute the next step of their programs. Acomputation
of a distributed system is a maximal sequences of
configurations that are reached by consecutive com-
putation steps.

Distributed problems and solutions. Without
loss of generality we assume that a distributed com-
putation problem is specified as a predicate over
computations. A (deterministic) distributed algo-
rithm Alg solves problemP on network classN if
for any networkN 2 N all computations of algo-
rithmAlg onN satisfies predicateP .

2.2 Fault-tolerance

Wait-freedom. Informally, an operation is wait-
free if no processor invoking the operation can be
forced to wait indefinitely for another processor.
Such robustness implies that a stopping failure (or
very slow execution) of any subset of processors can-
not prevent another processor from correctly com-
pleting its operation. An operation on a shared ob-
ject is wait-free if every invocation of the operation
completes in a finite number of steps of the invoking

3

processor regardless of the number of steps taken by
any other processor.

Self-stabilization. Informally, an algorithm is self-
stabilizing if after a burst of transient errors of some
components of a distributed system (which leaves
the system in an arbitrary configuration) the system
recovers and returns to the specified configurations.
Let P be a predicate defined on configurations. The
set of configurations satisfyingP is anattractor if
and only if

� convergence: starting from any configuration,
any computation reaches a configuration satisfy-
ing P .

� closure: For any configurationC satisfyingP ,
the successor configuration reached by any com-
putation step applied toC also satisfiesP .

Let PS be a predicate defined on computations. A
distributed system isself-stabilizing toPS if and
only if there is a predicate,Leg, on configurations
such that:

� convergence and closure:The set of configura-
tions satisfyingLeg is an attractor.

� correctness:Any computation from a configura-
tion satisfyingLeg satisfiesPS.

A self-stabilizing system cannot terminate because it
is possible that at termination a fault occurs, which
would never be detected and thus not corrected.

2.3 Transformations and compilers

A transformation of one system on aspecifiednet-
work model to a system on another network model
(called thetarget model) is achieved by transform-
ing each operation available at the specification level
to a program of operations available in the target
model. For example, letG be a graph. To transform
an algorithm for Regular-Link(G) to an algorithm
for Safe-Link(G) we replace each RL-WRITE and
RL-READ by every processorp with a program for
p that uses only local operations and the operations
SL-WRITE and SL-READ. Thus aprogram trans-
formation from Regular-Link(G) to Safe-Link(G)
is just a mapping� where �(RL-WRITE(R, �))
and �(RL-READ(R)) are programs whose opera-
tions are on registers in Safe-Link(G) and such that
�(RL-READ(R)) returns a value.

We are concerned with program transformations that
preserve correctness. Since correctness is defined by
a predicate on computations, and the computations
differ in each network model, we need to make pre-
cise what is meant by “preserves correctness”.

Consider a specified systemS. More formally, let
S = (G;N ; P) whereG is a graph andP is a col-
lection of programs, one for each node ofG. We can
associate a set of computations,C, with S in the nat-
ural way: C is just the set of all computations that
can arise by executing the programs inP on the net-
workN = N (G).

Now let � be a transformation fromN to bN . Given
� , there is another way to associate a set of compu-
tations withS. Denote by�(P) the set of all the
programs inP after being transformed by� . Any
computation of the target systemT = (G; bN ; �(P))
can beinterpretedas a computation ofS by attach-
ing the value returned by each�(READ) to the cor-
respondingREAD invocation. (Such a computation
looks just like a computation ofS except the value
returned by eachREAD is obtained via the transfor-
mation� instead of directly by executingS.)

For correctness of� we require that this derived com-
putation is allowed byS. In that case, we say that�
is animplementationof S onT .

Let A denote a collection of algorithms for network
modelN . A transformation� is a compiler forA
from N to bN if � is an implementation ofS =
(G;N ; P) onT = (G; bN ; �(P)) for anyP 2 A and
any graphG. A transformation is aself-stabilizing
compiler (resp. wait free compilerfrom N to bN
if it is a compiler fromN to bN and, it maps self-
stabilizing systems to self-stabilizing systems (resp.
it maps wait-free systems to wait-free systems).

2.3.1 How to prove the correctness of self-
stabilizing compiler

There are two major components of the proof of self-
stabilizing compiler: termination and correctness.

Termination: In the self-stabilizing framework it
is possible that initially the program counters of
some processors are inside their� (RL-WRITE) or
� (RL-READ) programs and their register values are
corrupted and inconsistent. In this case, some

4

� (RL-WRITE) and� (RL-READ) programs are only
partially executed. So it is essential to establish that
any complete or partial execution of� (RL-WRITE)
and� (RL-READ) terminates.

Correctness: Consider a specified systemS =
(G;N ; Alg) whereAlg 2 A and the target system
T = (G; bN ; �(Alg)) thatS is transformed to by the
transformation� . We would like to show that the
possible computations ofT correspond to computa-
tion of S, or, more precisely, that the interpretation
of any computation ofT is a computation ofS. Ac-
tually, we cannot quite achieve this goal because the
algorithms being considered are self-stabilizing. So
we show correctness of� in two substeps. First we
show (inConvergence) that the set of legitimate con-
figurations is an attractor. Next we show that, starting
from any legitimate configuration, any computation
from that point on has an interpretation as a compu-
tation ofS.

3 Compiler from pseudo-regular-
link to safe-link

RegisterR is pseudo-regularif it is safe and any
READ that overlaps asingleWRITE returns the value
of either the latestWRITE that happens-before it, or
the value of the overlappingWRITE.

Let A be the set of algorithms for the pseudo-
regular-link model that satisfy: every processor
p, for any p’s neighbour, namedq, executes
�1(PSEUDO-RL-WRITE(Rpq, -)) at least once after
any transient failure.

We will show that Algorithm 1 is a wait-free and self-
stabilizing compiler from pseudo-regular-link net-
works to safe-link networks for all algorithms inA.

During the execution of
�1(PSEUDO-RL-WRITE(Rpq, -)) the written value
is written into three distinct safe registers (named
R1pq, R2pq, andR3pq). During the execution of
�1(RL-READ(Rpq)) the same three safe registers
are readed in the oppositer order.

Let us name PR-read, an execution of
�1(RL-READ(Rpq)). Let us name PR-write, the lat-
est execution of�1(PSEUDO-RL-WRITE(Rpq, v)).
If it exists, let us name PR-write’, the single ex-

ecution of �1(PSEUDO-RL-WRITE(Rpq, v’)) that
overlaps PR-read. PR-read has to return a suitable
value (meaningv or v0). The safe registers are
accessed in the opposite order by PR-write and
PR-read; thus at most a single safe register off
R1pq, R2pq, R3pqg can be read by PR-read when
there is an overlapping write to the same register by
PR-write’.

Compiler 1 Code of Self-stabilizing compiler from
pseudo-regular-link networks to safe-link networks
The 1W, 1R pseudo-regular register (Rpq) is re-
placed by3 1W, 1R safe registers:R1pq, R2pq, and
R3pq.

Code on the processor p:
�1(PSEUDO-RL-WRITE(Rpq, new s))

[** begin of pre section **]
SL-WRITE(R1pq, new s);

[** end of pre section, **]
[** begin of unsafe section **]
SL-WRITE(R2pq, new s);

[** end of unsafe section, **]
[** begin of post section **]
SL-WRITE(R3pq, new s);

[** end of post section **]

�1(RL-READ(Rqp))
v1, v2, andv3 are local variables of the function.
v3 �SL-READ(R3qp);
v2 �SL-READ(R2qp);
v1 �SL-READ(R1qp);
if (v3==v2) or (v1==v2) then returnv2
elsereturnv1; fi

If the R3pq read is overlapped then the subsequent
read ofR2pq and ofR1pq will be the value just writ-
ten by PR-write’ (v1 = v2 = v0). If the R2pq read
is overlapped then the subsequent read ofR1pq will
be the value just written by PR-write’ (v1 = v0); and
the previous read of ofR3pq will be the value writ-
ten by PR-write (v3 = v). At the time of the read of
R3pq, PR-write did not start to write in this safe reg-
isters. If theR1pq read is overlapped then the pre-
vious reads of ofR3pq andR2pq will be the value
written by PR-write (v3 = v2 = v). At the time of
the reads, PR-write did not start to write in the safe

5

registers ofR3pq andR2pq. Therefore, it is possi-
ble to ensure that PR-read returnsv or v0. Hence the
value return by PR-read satisfies the requirement of
a pseudo-regular register.

3.1 Proof of Compiler 1

Let p andq be two neighbour processors. In this sec-
tion, all registers are 1W and 1R; the writer is proces-
sorp and the reader isq. Also, the registerREGpq
is simplely denotedREG.

3.1.1 Termination

In this section, we prove that any execution (partial
or complete) of�1(PSEUDO-RL-WRITE(R,-)) and
�1(PSEUDO-RL-READ(R)) terminates.

Lemma 3.1 Any �1(PSEUDO-RL-WRITE(R,-)) ex-
ecution byp terminates.

Proof: During the execution of
�1(PSEUDO-RL-WRITE(R,-)), p performs at
most three SL-WRITE operations. 2

Lemma 3.2 Any�1(PSEUDO-RL-READ(R)) execu-
tion byp terminates.

Proof: During the execution of
�1(PSEUDO-RL-READ(R)), p performs at most
three SL-READ operations and a internal operation.
2

Theorem 3.1 If �1 is a compiler from pseudo-
regular-link model to safe-link model then�1 is a
wait-free compiler.

Proof: Any �1(PSEUDO-RL-READ(R)) or
�1(PSEUDO-RL-WRITE(R,-)) is done in finite
number of steps regardless of other processor
actions. 2

3.1.2 Legitimate Configurations

In this section, we will prove the set of configurations
verifyingLeg1 is an attractor.

Definition 3.1 L1s(p) � [R3 == R2 ^ p’s
programcounter is in the pre section of
�1(PSEUDO-RL-WRITE(R,-))]
L2s(p; q) � [R1 == new state ^ p’s pro-
gram counter is in the unsafe section of
�1(PSEUDO-RL-WRITE(R,-))]
L3s(p; q) � [R1 == R2 == new state ^
p’s programcounter is in the post section of
�1(PSEUDO-RL-WRITE(R,-))]
L4s(p; q) � [R1 == R2 == R3 ==
new state ^ p’s programcounter is not in
code of�1(PSEUDO-RL-WRITE(R,-))]

Correct state1(p; q) � L1s(p; q) _ L2s(p; q)
_ L3s(p; q) _ L4s(p)

Leg1 � (8(p; q) 2 E Correct state1(p; q) �
True).

Lemma 3.3 Correct state1(p; q) is closed

Proof: L4s(p; q) stays verified tillp is not starting
a �1(PSEUDO-RL-WRITE(R,-)) execution, because
the value ofR1, R2, andR3 are not modified. If
L4s(p; q) is verified then we haveR2 == R3, at
the time wherep enters in the pre section. Thus
L1s(p; q) is verified.

During the pre section, only the value ofR1 is mod-
ified; thus,L1s(p; q) is verified till p’s counter stays
in the pre section ifL4s(p; q) was verified before en-
tering in the pre section. Whenp’s program counter
exits of the pre section, we haveR1 == new state
and thep’s program counter is in the unsafe section.
ThusL2s(p; q) is verified.

L2s(p; q) stays verified tillp’s counter stays in the
unsafe section, because the value ofR1 is not mod-
ified during the unsafe section. Whenp’s program
counter exits of the unsafe section, we haveR2 ==
new state and thep’s program counter is in the post
section. ThusL3s(p; q) is verified, ifL2s(p; q) was
verified whenp’s program counter was in the unsafe
section.

6

L3s(p; q) stays verified till p’s counter stays in
the post section, because only the value ofR3 is
modified during the post section. Whenp’s program
counter exits of the post section, we haveR3 ==
new state. ThusL4s(p; q) is verified, ifL3s(p; q)
was verified whenp’s program counter was in the
post section. 2

Lemma 3.4 Let A be the set of algorithms for the
pseudo-regular-link model that satisfy: every pro-
cessor p, for any p’s neighbour, namedq, exe-
cutes�1(PSEUDO-RL-WRITE(R,-)) at least once af-
ter any transient failure. LetProt be a protocol ofA.
The set of configuration verifyingLeg1 is an attrac-
tor of target systemT = (G; safe-link; �1(Prot))

Proof: We need to prove that any execution ofT
reaches a configuration whereCorrect state1(p; q)
is verified.

Let us study the first complete execution of
�1(PSEUDO-RL-WRITE(R,-)) done after a transient
failure. Such an execution exists becauseProt be-
longs toA.

Whenp’s program counter exits of the pre section,
we haveR1 == new state and thep’s program
counter is in the unsafe section : thusL2s(p; q) is
verified. 2

3.1.3 Correctness

Consider a specified system S =
(G;pseudo-regular-link; Alg) where Alg 2 A.
S is transformed by the transformation�1 (i.e.
Compiler 1) toT = (G; safe-link; �1(Alg))

In this section, we will establish that any computa-
tion of T from a legitimate configuration, has an in-
terpretation as a computation ofS.

Definition 3.2
� st1(i) denote the start time of the ith call of
�1(PSEUDO-RL-WRITE(R,-)). If the ith call
of �1(PSEUDO-RL-WRITE(R,-)) does not exist
thenst1(i) has the value+1.

� et1(i) denotes the end time of the ith call of
�1(PSEUDO-RL-WRITE(R,-)) by processorp. If

the ith call of�1(PSEUDO-RL-WRITE(R,-)) does
not exist thenst1(i) has the value+1.

� The writtenvalue during the ith execution of
�1(PSEUDO-RL-WRITE(R,-)) is denoted
PR-value(i).

Observation 3.1 For i > 0, at time et1(i),
L4s(p; q) is verified and value ofR2 is PR-value(i).

Before st1(1), the registerR2 may have two dis-
tinct values : its initial value and the writ-
ten value during the single partial execution of
�1(PSEUDO-RL-WRITE(R,-)).

Definition 3.3 We denote by PR-value(�1) the ini-
tial value ofR2. We denote byet1(�1) the time0.

If there exists a partial execution of
�1(PSEUDO-RL-WRITE(R,-)) then et1(0) denotes
the end time of this partial execution, and we define
(1) st1(0) has the time0. If the partial execution
writes a value inR2 then we denoted by PR-value(0)
the written value, otherwise PR-value(0) the initial
value ofR2.

If there does not exist a partial execution of
�1(PSEUDO-RL-WRITE(R,-)) thenet1(0) is defined
has the time0. We denoted by PR-value(0) the initial
value ofR2.

Observation 3.2 OnceCorrect state1(p; q) is ver-
ified, at any time of the interval[et1(i), et1(i+ 1)]
the value ofR1 (resp. R2, andR3) is PR-value(i)
or PR-value(i+ 1).

Then correctness is achieved if (1) any
�1(PSEUDO-RL-READ(R)) that is not over-
lapped by a �1(PSEUDO-RL-WRITE(R,-))
returns the written value by the latest
�1(PSEUDO-RL-WRITE(R,-)) that happens-before
it; and if (2) a �1(PSEUDO-RL-READ(R)) over-
lapped by a single�1(PSEUDO-RL-WRITE(R,-))
returns the written value of either the
latest �1(PSEUDO-RL-WRITE(R,-)) that
happens-before it, or of the overlapping
�1(PSEUDO-RL-WRITE(R,-)). More precisely,
The following properties have to be proven to estab-
lish the correctness. Once thatCorrect state1(p; q)
is verified, for anyi � �1,

7

� any �1(PSEUDO-RL-READ(R)) starting after
et1(i) and terminating beforest1(i+ 1) retuns
PR-value(i).

� any �1(PSEUDO-RL-READ(R)) starting after
et1(i) and terminating beforest1(i+ 2) retuns
PR-value(i) or PR-value(i+ 1).

Lemma 3.5 Once that Correct state1(p; q)
is verified, for any i � �1, any
�1(PSEUDO-RL-READ(R)) starting afteret1(i) and
terminating beforest1(i+ 1) retuns PR-value(i).

Proof: During the execution of
�1(PSEUDO-RL-READ(R)), L4s(p; q) is always
verified, and no value is written in the safe register
R2. Thus, the return value is the value ofR2 at
time et1(i). At time et1(i), the value ofR2 is
PR-value(i) (by definition of PR-value(i+ 1)). 2

Lemma 3.6 Once that Correct state1(p; q)
is verified, for any i � �1, any
�1(PSEUDO-RL-READ(R)) starting afteret1(i) and
terminating beforest1(i+ 2) retuns PR-value(i) or
PR-value(i+ 1).

Proof: We will do a proof by contradiction.

Let us name PR-read, a�1(PSEUDO-RL-READ(R))
execution starting afteret1(i) and terminating
beforest1(i+ 2) that does not return PR-value(i)
either PR-value(i+ 1).

Case 1: PR-read returnsv1. According to
�1(PSEUDO-RL-READ(R)) code, at the end of PR-
read, we havev2 6= v3.

v1 is not equal to PR-value(i) value and is not
equal to PR-value(i+ 1) value only if the read of
R1 overlaps the execution of pre section done dur-
ing thei + 1th call of �1(PSEUDO-RL-READ(R)) if
i � 0 or otherwise during the partial execution of
�1(PSEUDO-RL-READ(R)). At the starting time of
the read ofR1 done during PR-read, the execution
of unsafe section has not started. The read ofR3 and
of R2 precedes the read ofR1, thus at the ending
time ofR2 read, the execution of unsafe section has
not started. We conclude that during the read ofR3
andR2, none writing is done in these registers and

the predicateL1s(p; q) or L4s(p; q) is verified. At
the end of PR-read, we havev2 == v3. There is a
contradiction.

Case 2: PR-read returnsv2. According to
�1(PSEUDO-RL-READ(R)) code, at the end of
PR-read, we havev2 == v3 or v2 ==
v1. v2 is not equal to PR-value(i) value and
is not equal to PR-value(i+ 1). value only if
the read of the safe registerR2 overlaps the ex-
ecution of unsafe section done during thei +
1th call of �1(PSEUDO-RL-READ(R)) if i �
0 or otherwise during the partial execution of
�1(PSEUDO-RL-READ(R)).

At the starting time of the read ofR2, the execution
of post section has not started. The read ofR3 pre-
cedes the read ofR2, thus at the ending time ofR3
read, the execution of post section has not started.
We conclude that the read ofR3 cannot overlap the
execution of post section. At the end of PR-read,
v3 == PR-value(i) or v3 == PR-value(i+ 1).
Therefore, we havev2 6= v3.

At the ending time of the read of the safe registerR2,
the execution of pre section is terminated, because
the execution of pre section precedes the execution
of the unsafe section. Thus at the starting time ofR1
read, the execution of pre section is terminated. The
read ofR1 cannot overlap the execution of pre sec-
tion. We conclude, that at the end of PR-read,v1 ==
PR-value(i) or v1 == PR-value(i+ 1). Therefore,
we havev2 6= v1.

At the end of PR-read, we havev2 6= v1 and
v2 6= v3. There is a contradiction. 2

4 Compiler from regular-link to
pseudo-regular-link

Let A be the set of algorithms for the regular-
link model that satisfy: every processorp,
for any p’s neighbour, named q, executes
�2(RL-WRITE(Rpq, -)) at least once after any
transient failure.

We will show that Algorithm 2 is a wait-free and
self-stabilizing compiler from regular-link networks
to pseudo-regular-link networks for all algorithms in

8

Compiler 2 Code of Self-stabilizing compiler from
regular-link networks to pseudo-regular-link net-
works
Flag[0::2]pq, R[0::2]pq, andRCqp are 1W, 1R
pseudo-regular registers.

� is the addition modulo3.

Code on the processor p:
�2(RL-WRITE(Rpq, new state))
color is a local variable of the procedure.

color �PSEUDO-RL-READ(RCqp);
writing(Rpq, new state, color);

�2(RL-READ(Rqp))
f [0::2], v[0::2], andc are local variables.

for c := 0 to 2do
PSEUDO-RL-WRITE(RCpq, c);
(f[c],v[c]) � reading(Rqp, c) ;

done
if (f [0] == f [1] == 2) then return(v[1]) ;
elsereturn(v[2]); fi

writing(Rpq, value, c) :
PSEUDO-RL-WRITE(R[c]pq, value);
[** begin of pre section **]
PSEUDO-RL-WRITE(Flag[c� 2]pq, c);
[** end of pre section, begin of post section **]
PSEUDO-RL-WRITE(Flag[c� 1]pq, c);
[** end of post section **]

reading(Rqp, c) :
f andv are local variables.

f �PSEUDO-RL-READ(Flag[c]qp);
if f 6= c� 1 then f := c� 2 ; fi
v �PSEUDO-RL-READ(R[f]qp);
return(f, v);

A.

If we could ensure that no more than one write could
overlap a read operation, a pseudo-regular register
would suffice in place of a regular register. For a
single-reader single-writer model, this observation
suggests that we try to avoid overlap by having sev-
eral pseudo-registers available for the writer and ar-
ranging communication from the reader to direct the
writer which one to use. To implement this idea
in the pseudo-regular-link model, the regular-register
Rpq is implemented with three pseudo-regular copies
R[i]pq wherei 2 f0; 1; 2g. (only one of them con-
tains the last written value.) Each linkpq has a color
values inf0; 1; 2gwritten by the readerq and read by
the writerp. Processorp implements an RL-WRITE

to Rpq by writing to the copyR[i]pq if it believes
the current color of the link isi. Three additional
pseudo-regular registers are needed,Flag[i] where
i 2 f0; 1; 2g, which are used to help the reader de-
termine which of the three copies has the latest value.

The values of the pseudo-regularsFlag[i]pq where
i 2 f0; 1; 2g help q to find out which of three
registersR[i]pq contains the most recent value.
The Flag[i]pq value “point” to the one having the
most recent value of both registersR[i� 1]pq and
R[i� 2]pq.

In a �2(RL-WRITE(Rpq, -)) execution,p first reads
RCqp to get a color i 2 f0; 1; 2g. It then
writes its new state toR[i]pq, and set both registers
Flag[i� 2]pq and Flag[i� 1]pq to i thus making
them “point to” the register just written. Notice that
during the execution of writing(Rpq, v, col), no write
operation in a register ofSet(col) is done.

�2(RL-READ(Rpq)) is done in three steps. Dur-
ing the stepi, only the registers ofSet(i) are read.
The first action of the stepi is to set the current
color of the link toi (i.e. write operation in its out-
put registerRCpq). Then, the stepi is concluded
by the execution of reading(Rpq, i). First action of
reading(Rpq, i), is to find out which of both regis-
tersR[i� 2]pq andR[i� 1]pq has the more recent
value. This piece of information is stored in the reg-
isterFlag[i]pq. Second action is to read the register
having the more recent value betweenR[i� 2]pq and
R[i� 1]pq.

9

writing(R,v0,0)
reading(R,1) reading(R,2)

return (0,v0)return (0,v0)

writing(R,v2,2)
reading(R,2)reading(R,1)

return (2,v2)

reading(R,2)

return (2, v2)

reading(R,2)

return (1,v1)

writing(R,v1,1)
reading(R,0)

return (1,v1)

reading(R,1)

R−read returns v0

R−read returns v1

R−read returns v2

reading(R,0)

return (−,−)

return (−,−)

return (−,−)

Figure 1: Examples of�2(RL-READ(Rpq)) execu-
tion without overlapping�2(RL-WRITE(Rpq, -)) ex-
ecution

4.1 Proof of Compiler 2

Let p andq be two neighbour processors. In this sec-
tion, all registers are 1W and 1R. When the writer of
a register is processorp and the reader isq, we do
not indicate the name of the writer or the reader of
the register:REGpq is simplely denotedREG.

4.2 Preamble

Definition 4.1
� st2(i) denote the start time of the ith call
of �2(RL-WRITE(R, -)). If the ith call of
�2(RL-WRITE(R, -)) does not exist thenst2(i)
has the value+1.

� et2(i) denotes the end time of the ith call of
�2(RL-WRITE(R, -)) by processorp. If the ith
call of �2(RL-WRITE(R, -)) does not exist then
et2(i) has the value+1.

� We denote byet2(�1) the time0.

� If there exists a partial execution of
�2(RL-WRITE(R, -)) then et2(0) denotes
the end time of this partial execution, and we
definest2(0) has the time0.

� If there does not exist a partial execution of
�2(RL-WRITE(R, -)) thenet2(0) is defined has
the time0.

Definition 4.2 DefineSet(i) = fFlag[i], R[i� 1],

R[i� 2]g.

Let ActR be an execution of reading(R, c) by the
processorq.
The ith call of�2(RL-WRITE(R, -)) interferes with
ActR, iff ActR starts during the time interval
[st2(i),et2(i))

We need to show that the value returned by
�2(RL-READ(R)) satisfies the semantics of a reg-
ular register. The correctness proof has three main
steps,

[Step 1] At most one�2(RL-WRITE(R, -)) can in-
terfere with a given execution of reading(R, c).
As a consequence, by the definition of pseudo-
regular registers, pseudo-regular registers in
Set(i) for any i, satisfy the stronger semantics
of regular registers.

[Step 2] The pair of values(f [i]; v[i]) return by
a reading(R, c) execution is the same as the
pair of values that would have been compute-
dif reading(R, c) had been executed instanta-
neously at either (1) the end of the most re-
cent preceding writing(R, -, c’) execution where
c0 6= c or (2) the end of the interfering
�2(RL-WRITE(R, -)) execution.

[Step 3] The final value returned by
�2(RL-READ(R)) is either the value of an
overlapping or the most recent preceding
�2(RL-WRITE(R, -)) execution.

Observation 4.1 Only the registers ofSet(c) are
read by an execution of reading(R, c).

ActR does not interfere with any
�2(RL-WRITE(R, -)) execution iff it existsi � �1
such that ActR starts during the time interval
[et2(i),st2(i+ 1)).

writing(R, -, c) does not write in any register of
Set(c).

Only a writing(R, -, c0) execution wherec 6= c0

writes in some registers ofSet(c).

Any REG READING done during an execution
of reading(R, c) is overlapped by at most a
single REG WRITING operation, this operation
is part of the unique interfering execution of
�2(RL-WRITE(R, -)) (it starts before the starting

10

time of reading(R, c) and ends after it, we have
c0 6= c).

Lemma 4.1 Let ActR be an execution of
reading(R, c). Let o be a PSEUDO-RL-WRITE

operation on a register ofSet(c) done by processor
p during the execution ofActR. Operation o is
part of the execution of the�2(RL-WRITE(R, -))
interfering withAct.

Proof: o is done during the execution of
writing(R, -, c’) wherec 6= c0 (according to observa-
tion 4.1). This execution of writing(R, -, c’) is done
during an execution of�2(RL-WRITE(R, -)) named
R-write.

R-write cannot ends before the starting time of
ActR, and cannot starts after the end ofActR.

Assume that R-write starts after or at the starting time
of ActR. During R-write, only writing(R, -, c) is
performed; none register read duringActR is writ-
ten by R-write (see the Observation 4.1). There is a
contradiction. We conclude that R-write starts before
the starting time ofActR.

R-write is the single interfering
�2(RL-WRITE(R, -)) execution withActR. 2

The previous lemma concludes the first step
of the correctness prove. At most one
�2(RL-WRITE(R, -)) can interfere with a given
execution of reading(R, c). As a consequence, by
the definition of pseudo-regular registers, pseudo-
regular registers inSet(i) for any i, satisfy the
stronger semantics of regular registers.

Definition 4.3
� flag(i; c) denotes the flag value returned by the
execution of an instantly reading(R, c) done at
timeet2(i).

� value(i; c) denotes the register value returned by
the execution of an instantly reading(R, c) done
at timeet2(i).

Observation 4.2 8i � �1, value(i; c) is the value
of registerR[flag(i; c)]pq at timeet2(i).

If reading(R, c) execution is not interfered by
writing(R, -, c’), then it return the value written by

the latest writing(R, -, c’) wherec0 6= c that happens-
before it. And, if a writing(R, -, c’) wherec0 6= c
interfers with reading(R, c) execution, then it returns
the value of either the writing(R, -, c’) wherec0 6= c
that happens-before it, or the written value of the
overlapping writing(R, -, c’) wherec0 6= c.

Lemma 4.2 Let ActR be an execution of
reading(R, c) by the processorq. If it exists
i � �1 such thatActR starts during the time
interval [et2(i),st2(i+ 1)) then ActR returns
(flag(i; c), value(i; c)).

Proof: ActR does not interfere with any any
�2(RL-WRITE(R, -)) execution (see Observation
4.1). During the execution ofActR no PSEUDO-
RL-WRITE operation is done on registers ofSet(c)
(see Lemma 4.1). The result ofActR is similar at
the result of an instantly execution of reading(R, c)
at timeet2(i). 2

Lemma 4.3 Let ActR be an execution of
reading(R, c) by the processorq. If it ex-
ists i � 0 such that ActR starts dur-
ing the time interval [st2(i),et2(i)) then
ActR returns (flag(i; c),value(i; c)) or
(flag(i� 1; c),value(i� 1; c)).

Proof: ActR interferes with the ith call of
�2(RL-WRITE(R, -)) (see definition 4.2).

Let oR be aPSEUDO-RL-READ operation onR (a
register ofSet(c)) done by processorq during the
execution ofActR. OperationoR is overlapped by
at most a singlePSEUDO-RL-WRITE operation on
R, namedoW . BecauseoW is part of the exe-
cution of the ith call of�2(RL-WRITE(R, -)) (see
Lemma 4.1) and during the execution of ith call of
�2(RL-WRITE(R, -)), a register ofSet(c) is written
at most one time. The registers of target systems are
pseudo-regular. Thus,oR returns the value inR be-
fore the invocation ofoW , or the written value by
oW .

Let rF be the PSEUDO-RL-READ operation on
Flag[c] done by processorq during the execution of
ActR. rF returns flag(i� 1; c) or flag(i; c).

Assume thatrF returns flag(i; c). Let us namef the
value flag(i; c). At the end ofrF , the execution of ith

11

writing(R,v1,1)
P−RL−write(R[1],v1’)

writing(R,v1’,1)

P−RL−read(R[1])

writing(R,v1’,1)

P−RL−read(F[2])

P−RL−w(R[1],v1’)

reading(R,2) returns (1,v1’)

P−RL−write(F[2],1)

P−RL−read(F[0])

writing(R,v2,2) writing(R,v1,1)

P−RL−write(R[1],v1)

P−RL−read(R[2])

reading(R,0) returns (2,v2)

P−RL−read(F[0]) P−RL−read(R[1])

return 1 return v1 or v1’

reading(R,0) returns (1,v1) or (1,v1’)

return 2 return v2

return v1’return 1

Figure 2: Examples of reading(R, c) execution inter-
fered by a�2(RL-WRITE(R, -)) execution

call of �2(RL-WRITE(R, -)) is nearly over, the writ-
ing operation inR[f] is done. Thus, thePSEUDO-
RL-READ operation onR[f] read value(i; c)). ActR
returns (flag(i; c), value(i; c)).

Assume thatrF returns flag(i� 1; c). Let us name
f the value flag(i� 1; c). If f 6= flag(i; c) then the
ith call of �2(RL-WRITE(R, -)) does not write in
the pseudo-regular registerR[f]. Thus, the value of
R[f] is unchanged, it is value(i� 1; c). Thus,ActR
returns (flag(i� 1; c),value(i� 1; c)).
If f == flag(i; c) then the PSEUDO-RL-READ

operation onR[f] read value(i� 1; c) or value(i; c).
Thus, ActR returns (flag(i; c), value(i; c)) or
(flag(i� 1; c), value(i� 1; c)). 2

The proofs of lemma 4.2 and 4.3 conclude the sec-
ond step of correctness proof. The pair of values
(f [i]; v[i]) return by a reading(R, c) execution is the
same as the pair of values that would have been com-

puted if reading(R, c) had been executed instanta-
neously at either (1) the end of the most recent pre-
ceding writing(R, -, c’) execution wherec0 6= c or
(2) the end of the interfering�2(RL-WRITE(R, -))
execution.

4.2.1 Termination

In this section, we prove that any execution (partial
or complete) of�2(RL-WRITE) and�2(RL-READ)
terminates.

Lemma 4.4 Any �2(RL-WRITE(R, -)) execution
terminates.

Proof: During the execution of
�2(RL-WRITE(R, -)), p performs at most three
PSEUDO-RL-WRITE and one PSEUDO-RL-READ

operations. 2

Lemma 4.5 �2(RL-READ(R)) execution termi-
nates.

Proof: During the execution of�2(RL-READ(R)),
p performs at most sixPSEUDO-RL-READ, three
PSEUDO-RL-WRITE, and four internal operations.2

Theorem 4.1 If �2 is a compiler from regular-link
model to pseudo-regular-link model then�2 is a
wait-free compiler.

Proof: Any �2(RL-READ) or �2(RL-WRITE) is
done in finite number of steps regardless of other
processor actions. 2

4.2.2 Legitimate Configuration

In this section, we will prove the set of configurations
verifyingLeg2 is an attractor.

Definition 4.4 Let p and q be two neighbour pro-
cessors.
L1r(p; q) � [p’s programcounter is in the pre
section of writing(R, -, -)]

12

L2r(p; q) � [p’s programcounter is in the post
section of writing(R, -, -) andFlag[c� 2] ==
c]
L3r(p; q) � [p’s programcounter is not in
the pre or post section of writing(R, -, -) and
9c 2 f0; 1; 2g such that Flag[c� 2] ==
Flag[c� 1]== c]

Correct state2(p; q) � L1r(p; q) _ L2r(p; q)
_ L3r(p; q)

Leg2 � (8(p; q) 2 E Correct state2(p; q) �
True).

Lemma 4.6 Let p and q be two neighbour proces-
sors.Correct state2(p; q) is closed

Proof: L1r(p; q) is verified till p’s counter stays in
the pre section.

Whenp’s program counter exits of the pre section,
we haveFlag[c� 2] == c and thep’s program
counter is in the post section. ThusL2r(p; q) is veri-
fied.

L2r(p; q) stays verified tillp’s counter stays in the
post section, because the value ofFlag[c� 2] is not
modified during the post section. Whenp’s program
counter exits of the pre section, we haveFlag[c� 2]
== Flag[c� 1] == c and thep’s program counter
is not in the pre or post section. ThusL3r(p; q) is
verified if L2r(p; q) was verified whenp’s program
counter was in the post section.

L3r(p; q) stays verified tillp is not entering in the
pre section; because the value ofFlag[:] are not
modified. 2

Lemma 4.7 Let A be the set of algorithms for
the regular-link model that satisfy: every proces-
sor p, for any p’s neighbour, namedq, executes
�2(RL-WRITE(R, -)) at least once after any tran-
sient failure. LetProt be a protocol ofA. The set of
configuration verifyingLeg2 is an attractor of target
systemT = (G;pseudo-regular-link; �2(Prot))

Proof: Letp andq be a pair of neighbour. We need to
prove that any execution ofT reaches a configuration

whereCorrect state2(p; q) is verified for any pair
of neighbours.

Let us study the first complete execution of
�2(RL-WRITE(R, -)) done after a transient failure.
Such an execution exists becauseProt belongs toA.

When p’s program counter is in the pre section,
L1r(p; q) is verified. 2

4.2.3 Correctness

Consider a specified system S =
(G; regular-link; Alg) where Alg 2 A. S is
transformed by the transformation�2 (i.e. Compiler
2) toT = (G;pseudo-regular-link; �2(Alg)).

In this section, we will establish that any computa-
tion of T from a legitimate configuration, has an in-
terpretation as a computation ofS.

Definition 4.5 If at time et2(i), L3r(p; q) is veri-
fied then it existsc 2 f0; 1; 2g Flag[c� 2] ==
Flag[c� 1] == c. c is denoted color(i).

If at time et2(i), L3r(p; q) is verified then
R[color(i)] is denoted state(i).

Observation 4.3 The writtenvalue during the ith
execution of�2(RL-WRITE(R, -)) is state(i). Dur-
ing the ith execution of�2(RL-WRITE(R, -)) the
only procedure executed is writing(R, -, color(i)).

Then correctness is achieved if (1) any
�2(RL-READ(R)) that is not overlapped returns the
written value of the latest�2(RL-WRITE(R, -)) that
happens-before it; and if (2) any�2(RL-READ(R))
that is overlapped by�2(RL-WRITE(R, v’)) ex-
ecutions returns the value of either the latest
�1(PSEUDO-RL-WRITE) on R that happens-
before it, or the written value by a overlapping
�2(RL-WRITE(R, -)) execution. More precisely,
The following property have to be proven to es-
tablish the correctness. IfCorrect state2(p; q) is
verified atet2(i) wherei � 1, then8k � 0,

� any �2(RL-READ(R)) starting after or atet2(i)
and terminating beforest2(i+ k + 1) retuns
state(j) wherej 2 [i; i+ k]

13

Observation 4.4 If at time et2(i),
Correct state2(p; q) predicate is verified, we
have :

� value(i; c) is state(i) if c 6= color(i)

� flag(i; c) is color(i) if c 6= color(i)

� flag(i; c) is not color(i) if c = color(i)

Definition 4.6 Notice TI(i; k) the time interval
[et2(i), st2(i+ k + 1)).

reading(R,2)

return (0,v0 or v0’)

writing(R,v0’,0)

reading(R,1)

return (0,v0 or v0’)

R−read returns v0 or v0’

reading(R,2)

return (0,v0)

reading(R,0)

return (−,−)

reading(R,1)

R−read returns v0 or v2

return (−,v0 or v2)

reading(R,2)

return (−,v0 or v1)

reading(R,1)

return (2,v2 or v2’)

R−read returns v2 or v2’

reading(R,2)

return (−,−)

reading(R,2)

return (−,−)

writing(R,v0,0)

writing(R,v0,0) writing(R,v2,2)

writing(R,v0,0)

writing(R,v1,1)

reading(R,0) reading(R,1)

return (−,−) return (0,v0)

R−read returns v0 or v1

writing(R,v2,2) writing(R,v2’,2)

reading(R,0)

return (2,v2)

writing(R,v2,2)

reading(R,0) reading(R,1)

return (2,v2) return (2,v2)

R−read returns v2

writing(R,v1,1)

Figure 3: Examples of�2(RL-READ(R)) execution
with an overlapping�2(RL-WRITE(R, -)) execution

Lemma 4.8 The predicateCorrect state2(p; q) is
verified at timeet2(i) wherei � 0.

Let l be an integer greater than or equal toi. If @j 2
[i; l] such that (flag(l; c1), value(l; c1)) = (color(j),
state(j)) thenc1 = color(j) 8j 2 [i; l]

Proof: Noticec2 the value flag(l; c1). c2 6= c1 (Ob-
servation 4.4).

Noticec3 the only integer value inf0,1,2g such that
c3 6= c1, and such thatc3 6= c2.

During TI(i� 1; l � i), no WRITE operation in the
pseudo-regular registerR[c2] was performed. Oth-
erwise, the value(l; c1) would be state(j) wherej 2
[i; l] (value(l; c1) is the value of the pseudoregister
R[c2] at timeet2(l), becausec2 is the value of the
pseudo-registerFlag[c1] at timeet2(l).) Only, the
executions of writing(R, -, c2) include aWRITE op-
eration in the pseudo-regular registerR[c2]. Thus,
duringTI(i; l � i), no execution of writing(R, -, c2)
was performed.

If during TI(i� 1; l � i), an execution of
writing(R, -, c3) was performed then flag(l; c1)
would be c3, because (1) only the executions of
writing(R, -, c’) where c0 6= c1 include a WRITE

operation in the pseudo-regular registerFlag[c1],
and (2) duringTI(i� 1; l � i), no execution of
writing(R, -, c2) was performed. Thus, during
TI(i� 1; l � i), no execution of writing(R, -, c3)
was performed.

During TI(i� 1; l � i), only executions of
writing(R, -, c1) was done. According to the code
of writing(R, -, c1)8j 2 [i; l]; c1 = color(j). 2

Let R-read be an execution of�2(RL-READ(R)).
Assume that reading(R, c) invocation done during
R-read returns a too older value to be acceptable.
Then,c is the color of the lastest writing(R, -, -) ex-
ecution that happen-before R-read. Ifc = 2 then
the flag value returned by the reading(R, 0) invoca-
tion and the reading(R, 1) invocation done during
R-read is2. R-read returns the value computed by
reading(R, 1). If c 6= 2 then the flag value returned
by the reading(R, 0) invocation is not equal to the
one returned by the reading(R, 1) invocation. R-read
call returns the value computed by reading(R, 2).

Theorem 4.2 Assume thatCorrect state2(p; q) is
verified at et2(i). If i � 0 then any
�2(RL-READ(R)) starting and terminating during

14

writing(R,v0’,0) writing(R,v1,1)writing(R,v0,0)

reading(R,0) reading(R,1)

return (−,−) return (0,v0 or v0’)

reading(R,2)

return (−,v0’ or v1)

R−read returns v0’ or v1

writing(R,v2,2)

Figure 4: Example of�2(RL-READ(R)) execution
with several overlapping�2(RL-WRITE(R, -)) exe-
cutions

TI(i; k) wherek � 0, retuns state(j) wherej 2
[i; i+ k].

Proof: Let R-read be an execution of
�2(RL-READ(R)) starting and terminating dur-
ing TI(i; k).

Any execution of reading(R, c) done during R-read
returns (flag(l; c), value(l; c)) wherel 2 [i; i + k].
Because, this execution starts duringTI(i; k) (see
lemma 4.2, and lemma 4.3).

For anyc value of integer intervalf0; 1; 2g, we no-
tice lc the interger value such that the execution of
reading(R, c) done during R-read returns (flag(lc; c),
value(lc; c)). The execution of reading(R, c) done
during R-read starts during the time interval [st2(lc),
et2(lc + 1)) (see lemma 4.2, and lemma 4.3). We
have l0 � l1 � l2 because during R-read,
reading(R, 0) is performed before reading(R, 1), and
reading(R, 1) is performed before reading(R, 2).

Assume that R-read returns value(l2; 2) and @j 2
[i; i + l2], such that value(l2; 2) = state(j). Ac-
cording lemma 4.8,8j 2 [i; i + l2], we have2 =
color(j). According to observation 4.4, flag(l0; 0) =
2 = color(l0) and flag(l1; 1) = 2 = color(l1). In this
case, R-read returns value(l1; 1). There is a contra-
diction.

Assume that R-read returns value(l1; 1) and
@j 2 [i; i + l1] such that value(l1; 1) = state(j).
According lemma 4.8,8j 2 [i; i + l1], we have1 =
color(j). According to observation 4.4, flag(l0; 0)
= 1 = color(l0). In this case, R-read returns
value(l2; 2). There is a contradiction. 2

5 Compiler from regular-link to
safe-link

Compiler 3 Code of Self-stabilizing compiler from
regular-link networks to safe-link networks
Flag1[0::2]pq, Flag2[0::2]pq, Flag3[0::2]pq,
R1[0::2]pq, R2[0::2]pq, R3[0::2]pq, RC1qp, RC2qp,
andRC3qp are 1W, 1R safe registers.

� is the addition modulo3.

Code on the processor p:
� (RL-WRITE)(Rpq, new state)
col is a local variable of the procedure.

col � REG READING(RCqp);
REG WRITING(R[col]pq, value);
REG WRITING(Flag[col � 2]pq,col);
REG WRITING(Flag[col � 1]pq,col);

� (RL-READ)(Rqp)
f [0::2], v[0::2], andc are local variables.

for c := 0 to 2do
REG WRITING(RCpq,c) ;
f [c] � REG READING(Flag[c]qp);
if f [c] 6= c� 1 then f[c] := c� 2; fi
v[c] � REG READING(R[f [c]]qp);

done
if (f [0] == f [1] == 2) then return(v[1]) ;
elsereturn(v[2]) ; fi

REG WRITING(REGpq, new state)
SL-WRITE(REG1pq, new state);
SL-WRITE(REG2pq, new state);
SL-WRITE(REG3pq, new state);

REG READING(REGqp)
v1, v2, andv3 are local variables of the function.
v3 �SL-READ(REG3qp);
v2 �SL-READ(REG2qp);
v1 �SL-READ(REG1qp);
if (v3 == v2) or (v1 == v2) then returnv2;
elsereturnv1; fi

15

LetA be the set of algorithms for the pseudo-regular-
link model that satisfy: every processorp, for anyp’s
neighbour, namedq, executes� (RL-WRITE)(Rpq,-)
at least once after any transient failure.

Compiler 3 is the combination of the two previously
presented wait-free and stabilizing compilers.

According the the properties of the Compiler 1 and
Compiler 2, Compiler 3 is a wait-free and stabiliz-
ing compiler from regular-link networks to safe-link
networks for all algorithms inA,

6 Conclusion

Lamport

compiler

Regular−LinkAtomic−Link

Safe−Link

: B Wait−free and Self−Stabilizing compilerA

Figure 5: Transformations between link network
models

Lamport [10] presented a wait-free implementation
of an atomic single-writer/single-reader register with
regular single-writer/single-reader registers. This
transformer requires two regular registers – one writ-
ten by the writer and the other written by the reader.
The relationship between the atomic-link model and
the regular-link model is an instance of this rela-
tionship between atomic single-writer/single-reader
registers and regular single-writer/single-reader reg-
isters. Thus, Lamport’s implementation constitutes
a wait-free compiler, which we call AL-RL, from
atomic-link networks to regular-link networks. It is
straightforward to confirm that AL-RL is also self-
stabilizing.

Using the compiler AL-RL and Compiler 3, self-
stabilizing algorithms designed for the atomic-link
model could be implemented in the safe-link model
in such way that the write and read operations in the
target system are wait-free. Many self-stabilizing
algorithms are designed for the atomic-link model
[5, 3]. Now, these algorithms could be implemented

in the safe-link model in such way that the write and
read operations in the target system are wait-free.

The known compiler between link model are sum-
marized in the figure 5. The transformation that is
not presented in this paper is labelled by the biblio-
graphical reference.

References

[1] U Abraham. On interprocess communica-
tion and the implementation of multi-writer
atomic registers. Theoretical Computer Sci-
ence, 149(2):257–298, 1995.

[2] H Attiya and JL Welch. Distributed comput-
ing: fundamentals, simulations and advanced
topics. McGraw-Hill, Inc., 1998.

[3] S. Dolev. Self-Stabilization. The MIT Press,
2000.

[4] S Dolev, MG Gouda, and M Schneider. Mem-
ory requirements for silent stabilization. In
PODC96, the 15th Annual ACM Symposium
on Principles of Distributed Computing, pages
27–34, 1996.

[5] S Dolev, A Israeli, and S Moran. Self-
stabilization of dynamic systems assuming
only Read/Write atomicity.Distributed Com-
puting, 7(1):3–16, 1993.

[6] S Haldar and K Vidyasankar. Constructing 1-
writer multireader multivalued atomic variables
from regular variables.Journal of the Associ-
ation of the Computing Machinery, 42(1):186–
203, 1995.

[7] L Higham and C Johnen. Relationships be-
tween communication models in networks us-
ing atomic registers. InIPDPS’06, the 20th
IEEE International Parallel & Distributed Pro-
cessing Symposium, 2006.

[8] JH Hoepman, M Papatriantafilou, and P Tsi-
gas. Self-stabilization of wait-free shared mem-
ory objects.Journal of Parallel and Distributed
Computing, 62(5):818–842, 2002.

16

[9] C. Johnen and L. Higham. Fault-tolerant
implementations of atomic-state communica-
tion model for distributed computing. In
DISC’07, the 21th International Symposium on
Distributed Computing, Springer LNCS:4731,
pages 485–486, 2007. Brief announcement.

[10] L Lamport. On interprocess communication.
Distributed Computing, 1(2):77–101, 1986.

[11] M Li, J Tromp, and PMB Vitanyi. How to
share concurrent wait-free variables.Journal
of the Association of the Computing Machin-
ery, 43(4):723–746, 1996.

[12] M Nesterenko and A Arora. Stabilization-
preserving atomicity refinement. Jour-
nal of Parallel and Distributed Computing,
62(5):766–791, 2002.

17

	RR1486entete.pdf
	RR1486rapp.pdf

