HmQrEExmOEZE EHY HEOEHE=

FAULT-TOLERANT IMPLEMENTATIONS OF
REGULAR REGISTERS BY SAFE REGISTERS
IN LINK MODEL

JOHNEN C / HIGHAM L

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud — LRI

02/2008

Rapport de Recherche N° 1486

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE

Batiment 490
91405 ORSAY Cedex (France)

Fault-tolerant Implementations of regular Registers by safe
Registers in Link Model

Colette Johnen
LRI, Univ. Paris-Sud, CNRS, F-91405 Orsay, France - colette@lIri.fr

Lisa Higham
Computer Science Department, University of Calgary, Canada - higham@cpsc.ugalgary.ca

February 14, 2008

Abstract rithms, safe registers, regular registers, atomic reg-
isters link-register models, self-stabilization, wait-

A network that uses locally shared registers can figedom.

modelled by a graph where nodes represent proces-

sors and there is an edge between two nodes if and .

only if the corresponding processors communici:e Introduction

directly by reading or writing registers shared be-

tween them. Two variants are defined by A varithis paper address this question for networks of pro-

ant of the model assumes that registers are singi@ssors that communication by locally shared regis-

writer/single-reader and are located on the edd€&S: A network that uses locally shared registers can

(called link models). be modelled by a graph where nodes represent pro-

This paper is concerned with the three link network >>0'> ?‘”d there is an nge between two nodes_ i
nd only if the corresponding processors communi-

models that arise from specifying the type of sharé§

registers (safe, regular, or atomic). Specifically, cé'ite directly by reading or writing registers shared

seek to determine under what conditions and wi gtween them. Two variants are defined by specify-

what fault-tolerance guarantees it is possible to trans? whether the registers are multi-reader and located

form a solution under one of these models into a s%?— the nodes (called state models) or single-reader

lution under models. and located on the edges (called link models).

I1f'_he shared registers used by the communicating pro-
(fessors further distinguishes possible models. Lam-
ort [10] defined three models of registers, differen-
lated by the possible outcome of read operations that

h _ _ overlap concurrent write operations. These three reg-
For all the remaining relationships among these thrggsy types, in order of increasing power, are called

models under either self-stabilizing and wait-free rgafe regular, and atomic. Program design is easier
quirements, we either observe that they have begfuming atomic registers rather than regular regis-
answered by existing research. Thus, our compilgfs pyt the hardware implementation of an atomic
closes the proposed questions among the three Medsister is costlier than the implementation of a regu-
els. For instance, any self-stabilizing algorithms degyr yegister. Safe registers are cheaper still; they cap-

signed for the atomic-link model (also called R/W,re a notion of directly sensing the hardware.
atomicity model) can be implemented using safe r

isters instead of atomic registers.

The fault tolerant properties we consider are se
stabilization and wait-freedom. Our principal resu
is a wait-free and self-stabilizing compiler from th
regular-link model to the safe-link model.

eIgy specifying either state or link communication,
via shared registers that are either safe, regular, or
Keywords: network models, distributed algo-atomic, we arrive at six different network models

that use locally shared registers. For example, theurs. As a consequence, our compiler does not add
regular-link model has regular registers located gignificant overhead to communication.
the edges of the network. The other models

o a(E‘,%ntributions of this paper Our principal result
named similarly. pap princip

is a wait-free and self-stabilizing compiler from the
An algorithm for any one of these networks coulgbgylar-link model to the safe-link model.

provide some fault tolerance. So, we consider a)]]))
third parameter, namely, wait-freedom, which Calg’_aper overview Section 2 defines the six basic

tures tolerance of stopping failures of componeHﬁOdels we are considering, contains several defini-
of the network, or self-stabilization, which capturd®ns required for the rest of the paper, and presents

recovery of the network from transient errors of i formal definition of a compiler from one register-
components. based model to another. In Section 3, we present a

wait-free and self-stabilizing compiler from 1W/1R
Related research Due to one of Lamport’s semi-pseudo-regular-link register to 1W/1R safe-link reg-
nal papers [10] and several other subsequent papsiérs. In Section 4, we present a wait-free and self-
[1, 6, 11, 2], it is already known how to construcitabilizing compiler from 1W/1R regular-link reg-
Wait—free, multi-writer muIti—reader, shared atomiﬁster to 1W/1R pseudo-regu|ar-|ink registersl The
registers from only a collection of safe bits eackombination of two compilers (presented in Section
shared between a single-writer and a single-read®yprovides a wait-free and self-stabilizing compiler
However, these constructions are not self-stabilizifgem distributed networks where neighbours com-
Hoepman, Papatrianfafiou and Tsigas [8] present@@nicate via regular-link registers to distributed net-

self-stabilizing versions of some of these Weu-knovmorks where neighbours communicate via safe-link
implementations. For instance, they present a Watgyisters.

free and self-stabilizing implementation of a single-

writer/single-reader regular binary register using a

single-writer/dual-reader safe binary register. In[82 Definitions and Models

it was established that the following impossibility re-

sult: there is not wait-free and self-stabilizing implez 1 Distributed Systems

mentation of single-writer/single-reader regular bi-

nary register by a single-writer/single-reader safe I8hared registers. Let R be a single-writer/multi-
nary register. reader register that can contain any value in domain

In previous works, we have established that therelis & supports only the operatioREAD andwRITE.

no general wait-free compiler from atomic-state nde2ChREAD andwRITE operationp, has a time inter-
works to atomic-link networks in [7], and no genval corresponding to the time between the invocation
eral wait-free compiler from atomic-state network@f o, denoted ingo), and the response of denoted

to regular-link networks in [9]. The proofs proceetfSHo). An operationo happens-beforeperation

by showing that any such compiler would requir@ READ operations,may overlap\&RITE. Lamport
shared registers between any two processors, wHitfl defined several kinds of such registers depend-
is not the case in general networks. In [7], we aldgd on the semantics whexEAD andWRITE opera-
present a self-stabilizing compiler from networkdons overlap. Registek is safeif eachREAD that
where neighbours communicate via atomic-state rélfes not overlap anwRrITE returns the value of the
isters to systems where neighbours communicate ReStWRITE that happens-before it, and otherwise
atomic-link registers. In [9], a self-stabilizing comt€turns any value ifi’. RegisterR is regular if it is
piler from the atomic-state model to the regular-sta¥gfe and anReAD that overlaps avRITE returns the
model is presented. This compiler is akitent [4]. value of either the latestRITE that happens-before
That is, if, once registers are stabilized, the atom#é-0r the value of some overlappingrITE.

state algorithm does not require the participation BlegisterR is atomicif it is regular, and if anyREAD,
neighbours, then the transformed regular-state algo-overlaps avrITE, w, and returns the value writ-
rithm also does not require the participation of neigken by w, then anyrReAD, r/, that happens-after

2

must not return the value of anyrITE that happens- noted:

beforew. e RL-WRITE(R, v) to denote the write of value

Network models. A distributed network can be tothe shared registek.

modelled by a grapty = (V, E)) whereV isasetof o , « RL-READ(R) to denote the read of the

processors and an edge;) € E if and only if pro- shared registeR that returns the value.
cessorgy andg can communicate directly. Several

variants have been defined depending on the preci§€ atomic-link model is identical to a model used
meaning of “communicate directly”. In this paper wey Dolev, Israeli and Moran [5]. The atomic-state
consider variants where each processor uses a 6dtdel has been assumed by several others in subse-
lection of local registers accessible only to itself arftHent papers [12].

communicates with its neighbours via shared regiSistriputed algorithms, distributed systems. A
ters. The type of register and the way these registgfstributed algorithmis an assignment of a program
are shared distinguishes the various models. 5 each processor in the network, and this assign-
In thestatenetwork models, each procesgawns a ment gives rise to distributed systemWe use the
single-writer multi-reader shared regist@g, which termnetworkto mean just the topology and the com-
is writable byp and readable by each pfs neigh- munication model andystemo mean the network
bours. together with the algorithm. Of course, the assigned

In thelink network models, for each edggq) € E, Program mustuse only the operations available in the
there are two single-writer single-reader registeREWork model.

RegisterR,, is writable byp and readable by; reg- Configurations and computations. A configura-
ister Ry, is writable byg and readable by. tion of a distributed system is a collection of values
Each of these state and link model types is fussigned to all the registers of the system. tom-
ther refined by specifying whether the shared regutation stepseveral processors simultaneously ex-
isters are atomic, regular, or safe. Thus, there &eute the next step of their programscémputation

six different network models that arise by specifyingf a distributed system is a maximal sequences of
two parameter for the shared registers: Strengthconfigurations that are reached by consecutive com-
{atomic, regular, safeand Locationc {link, state.. putation steps.

We name the six register-based models as in infjiyrinyted problems and solutions. Without

cated in Table 1. loss of generality we assume that a distributed com-
putation problem is specified as a predicate over
computations. A (deterministic) distributed algo-
rithm Alg solves problen® on network classV if

for any networkN € N all computations of algo-
rithm Alg on N satisfies predicat®.

state models link models
atomic registers| atomic-state| atomic-link
regular registers| regular-state regular-link
safe registers | safe-state | safe-link

Table 1: Six register-based network models 22 Fault-tolerance

Given a graphG, we use Strength-Locati¢G) Wait-freedom. Informally, an operation is wait-
to denote the network with topolog§ and net- free if no processor invoking the operation can be
work model Strength-Location. For exampléorced to wait indefinitely for another processor.
Regular-LinKG) is the network with topologyG Such robustness implies that a stopping failure (or
that has regular single-writer mono-reader shareery slow execution) of any subset of processors can-
registers located at each eadge. We use similar not prevent another processor from correctly com-
tation for thewRITE and READ operations on eachpleting its operation. An operation on a shared ob-
of these models. For example, in an regular-link ngéct is wait-freeif every invocation of the operation
work model, thewRITE andREAD operations are de-completes in a finite number of steps of the invoking

3

processor regardless of the number of steps takerMdy are concerned with program transformations that
any other processor. preserve correctness. Since correctness is defined by
e . . redi n com ion nd th m ion
Self-stabilization. Informally, an algorithm is self- ap e(.j cate on computations, and the computations
L . differ in each network model, we need to make pre-
stabilizing if after a burst of transient errors of some

L . cise what is meant by “preserves correctness”.
components of a distributed system (which leaves y'p

the system in an arbitrary configuration) the systerPnsider a specified systeh More formally, let
recovers and returns to the specified configuratiofs= (G,, P) whereG is a graph and” is a col-
Let P be a predicate defined on configurations. THgetion of programs, one for each node(afWe can
set of configurations satisfying is anattractor if associate a set of computations,with S in the nat-
and only if ural way: C is just the set of all computations that
« convergence: starting from any configuration,C2" arise by executing the programsiron the net-

any computation reaches a configuration satisfﬁyprkN =N(G). N

ing P. Now let r be a transformation from\/ to . Given

« closure: For any configuratiorC' satisfying P, 7 there is another way to associate a set of compu-
tions with.S. Denote byr(P) the set of all the

the successor configuration reached by any cold : _
putation step applied t6' also satisfies. programs inP after being transformed by. Any

. . . m ion of the tar CTOES P
Let PS be a predicate defined on computations. X pu.tato ot the target syst . (G, N, 7(P))
N . S . can beinterpretedas a computation of by attach-
distributed system iself-stabilizing toPS if and .
) . : .) ing the value returned by eael{READ) to the cor-
only if there is a predicatel.eg, on configurations . . : :
) respondingrREAD invocation. (Such a computation
such that: . . .
, looks just like a computation of except the value
e convergence and closureThe set of configura- oy med by eackeAD is obtained via the transfor-
tions satisfyingLeg is an attractor. mationr instead of directly by executing.)

* correciness:Any computation from a conflgura-For correctness af we require that this derived com-

tion satisfyingLeg satisfies?S. putation is allowed by5. In that case, we say that
A self-stabilizing system cannot terminate becausgdtanimplementatiorof S on 7.

is possible that at termination a fault occurs, whiq_h . .
et A denote a collection of algorithms for network
would never be detected and thus not corrected.

model V. A transformationr is a compiler for A
from NV to N if 7 is an implementation of§ =
2.3 Transformations and compilers (G,N,P)onT = (G,N,7(P)) forany P € A and
any graphG. A transformation is aelf-stabilizing
A transformation of one system onspecifiednet- compiler (resp. wait free compilerfrom A to N
work model to a system on another network modiélit is a compiler fromA” to A/ and, it maps self-
(called thetarget model) is achieved by transformstabilizing systems to self-stabilizing systems (resp.
ing each operation available at the specification leiemaps wait-free systems to wait-free systems).
to a program of operations available in the target
model. For example, le¥ be a graph. To transform
an algorithm for Regular-LinlG) to an algorithm
for Safe-LinKG) we replace each RWwRITE and

RL-READ very pr with rogram for .
by every p ocessay th a progra O There are two major components of the proof of self-
p that uses only local operations and the operations

SL-WRITE and SLREAD. Thus aprogram trans- stabilizing compiler: termination and correctness.
formation from Regular-LinKG) to Safe-LinKG) Termination: In the self-stabilizing framework it

is just a mappingr where 7(RL-wWRITE(R, v)) is possible that initially the program counters of
and 7(RL-READ(R)) are programs whose operasome processors are inside the{({RL-WRITE) or
tions are on registers in Safe-Lif) and such that 7(RL-READ) programs and their register values are
7(RL-READ(R)) returns a value. corrupted and inconsistent. In this case, some

2.3.1 How to prove the correctness of self-
stabilizing compiler

7(RL-wWRITE) and7(RL-READ) programs are only ecution of 71(PSEUDGRL-WRITE(R,,, V')) that
partially executed. So it is essential to establish thaterlaps PR-read. PR-read has to return a suitable
any complete or partial execution ofRL-WRITE) value (meaningv or v'). The safe registers are
and7(RL-READ) terminates. accessed in the opposite order by PR-write and
PR-read; thus at most a single safe register{ of

Correctness: Consider a specified systesi = Rl R2,q, R3,,} can be read by PR-read when

(G, N, Alg) where Alg € A and the target syste : : . .
T = (G,N,7(Alg)) thatS is transformed to by th';};‘;fw'ﬁe"’}“ overlapping write to the same register by

transformationr. We would like to show that the

possible computations Gf correspond to computa-Compiler 1 Code of Self-stabilizing compiler from
tion of S, or, more preqsely, that the_ Interpretatiogseydo-regular-link networks to safe-link networks
of any computation of" is a computation ob. Ac- The 1W, 1R pseudo-regular registeR,f) is re-

tually, we cannot quite achieve this goal because the .o by3 1W, 1R safe registersR1,,, R2,,, and
algorithms being considered are self-stabilizing. bar=opd

we show correctness afin two substeps. First we
show (inConvergencg that the set of legitimate con-c4e on the processor p:
figurations is an attractor. Next we show that, StartiQ'Q(PSEUDORL—WRITE(
from any legitimate configuration, any computation [#*
from that point on has an interpretation as a compu-
tation of S.

'

R4, NEWS))

begin of pre section **]
SL-WRITE(R1,4, NEWS);

[** end of pre section, **]

[** begin of unsafe section **]

3 Compiler from pseudo-regular- [*?:nvf,ﬁf Eﬁfjﬁgsnei\?f:r)] -

link to safe-link [** begin of post section **]
SL-WRITE(R3,4, NEWS);
RegisterR is pseudo-regularif it is safe and any [**end of post section **]
READ that overlaps aingle WRITE returns the value

of either the lateswRITE that happens-before it, orm1(RL-READ(R,;))
the value of the overlappingRITE. v1l, v2, andv3 are local variables of the function.

v3 <—SL-READ(R3,);

v2 <—SL-READ(R24,);

vl +—SL-READ(R1);

if (v3==v2) or (v1==v2) then returm?2
elsereturnuv1; fi

Let A be the set of algorithms for the pseudo-
regular-link model that satisfy. every processor
p, for any p's neighbour, namedg, executes
T1(PSEUDO-RL-WRITE(R,q, -)) at least once after
any transient failure.

We will show that Algorithm 1 is a wait-free and self-
stabilizing compiler from pseudo-regular-link ne
works to safe-link networks for all algorithms ih.

'Tf the R3,, read is overlapped then the subsequent
. _ read ofR2,, and of R1,, will be the value just writ-
During the execution of ten by PR-write’ ¢1 = v2 = v'). If the R2,, read
71(PSEUDORL-WRITE(Ry,, -)) the written value s gverlapped then the subsequent readkdf, will

is written into three distinct safe registers (nameg the value just written by PR-writes { = +'); and
Rlpg, R2pq, and R3,,). During the execution of the previous read of aR3,, will be the value writ-
T1(RL-READ(R,,)) the same three safe registekgn py PR-write ¢3 = v). At the time of the read of
are readed in the oppositer order. R3,,, PR-write did not start to write in this safe reg-
Let us name PR-read, an execution dadters. If theR1,, read is overlapped then the pre-
71(RL-READ(R,,)). Let us name PR-write, the latvious reads of ofR3,, and R2,, will be the value
est execution ofr1(PSEUDGRL-WRITE(R,,, V)). written by PR-write (3 = v2 = v). At the time of

If it exists, let us name PR-write’, the single exthe reads, PR-write did not start to write in the safe

5

registers ofR3,, and R2,,. Therefore, it is possi-3.1.2 Legitimate Configurations
ble to ensure that PR-read returner v'. Hence the) _ _ _ _
value return by PR-read satisfies the requirement!Bfthis section, we will prove the set of configurations

Definition 3.1 Lis(p) = [R3 == R2 A p's
3.1 Proof of Compiler 1 programcounter is in the pre section of
71(PSEUDGRL-WRITE(R,-))]
Letp andg be two neighbour processors. In this sed-2,(p,q) = [R1 == new_state A p'S pro-

tion, all registers are 1W and 1R; the writer is procegram.counter is in the unsafe section of
sorp and the reader ig. Also, the registeREG,, 71(PSEUDG-RL-WRITE(R,-))]
is simplely denoted?EG. L3s(p,q) = [Rl == R2 == new_state A
p’S programcounter is in the post section of
o 71(PSEUDGRL-WRITE(R,-))]
3.1.1 Termination Li,(p,q) = [Rl == R2 == R3 ==

. . . .nlew,state A p's programcounter is not in
In this section, we prove that any execution (partlglocle ofr1(PSEUDGRL-WRITE(R,-)) |

or complete) ofr1(PSEUDGRL-WRITE(R,-)) and

71(PSEUDCG RL-READ(R)) terminates.
Correct_statel(p,q) = Lls(p,q) V L24(p,q)

V L34(p,q) V L4s(p)
Lemma 3.1 Any 71(PSEUDGRL-WRITE(R,-)) ex-

ecution byp terminates. Legl = (¥Y(p,q) € E Correct_statel(p,q) =

True).
Proof: During the execution of
71(PSEUDORL-WRITE(R,-)), p performs at Lemma 3.3 Correct_statel(p, q) is closed
most three SLWRITE operations. O
Proof: L44(p,q) stays verified tillp is not starting
aT1(PSEUDCGRL-WRITE(R,-)) execution, because
Lemma 3.2 Any71(PSEUDGRL-READ(R)) execu- the value ofRl, R2, and R3 are not modified. If
tion byp terminates. L44(p, q) is verified then we havéR2 == R3, at
the time wherep enters in the pre section. Thus

Proof: During the execution of L1,(p, q) is verified.

71(PSEUDGRL-READ(R)), p performs at most During the pre section, only the value Bfl is mod-

three SLREAD operations and a internal operatiorfied; thus,L1,(p,) is verified till p's counter stays
0O in the pre section if.44(p, q¢) was verified before en-

tering in the pre section. Whess program counter
exits of the pre section, we havel == new_state

. . and thep’s program counter is in the unsafe section.
Theorem 3.1If 71 is a compiler from pseudo—Thungs(p q) is verified.

regular-link model to safe-link model ther is a

: . L2 verifi illp’ nter in th
wait-free compiler. s(p, q) stays verified tillp’s counter stays in the

unsafe section, because the valudrifis not mod-
ified during the unsafe section. Wheis program
Proof: Any 71(PSEUDGRL-READ(R)) or counter exits of the unsafe section, we h&#==
71(PSEUDCGRL-WRITE(R,-)) is done in finite new_state and thep’'s program counter is in the post
number of steps regardless of other processearction. Thud.3,(p, q) is verified, if L2,(p, q) was
actions. O verified wherp’s program counter was in the unsafe
section.

L34(p,q) stays verified till p's counter stays in theith call ofr1(PSEUDGRL-WRITE(R,-)) does
the post section, because only the valueRS is not exist therst1(z) has the valueroo.

modified during the post section. Wheis program ¢ The writtenvalue during the ith execution of
counter exits of the post section, we hali == 71(PSEUDGRL-WRITE(R,-)) is denoted
new_state. ThusL44(p, q) is verified, if L34(p, q) PR-valugi).

was verified wherp’s program counter was in the

post section. Observation3.1For i > 0, at time etl(:),

L44(p, q) is verified and value a2 is PR-valugi).

Lemma 3.4 Let A be the set of algorithms for theBeforest1(1), the registerk2 may have two dis-
pseudo-regular-link model that satisfy: every prdinct values : its initial value and the writ-
cessorp, for any p’s neighbour, named;, exe- ten value during the single partial execution of
cutesr1(PSEUDORL-WRITE(R,-)) at least once af- 71(PSEUDORL-WRITE(R,-)).

ter any transient failure. LeProt be a protocol ofA.

The set of configuration verifyingeg1 is an attrac- Definition 3.3 We denote by PR-valge1) the ini-
tor of target systeri’ = (G, safe-link 71(Prot)) tial value of R2. We denote byt1(—1) the time0.

If there exists a partial execution of
Proof: We need to prove that any execution Bf 71(PSEUDORL-WRITE(R,-)) then et1(0) denotes
reaches a configuration whetrrect_statel(p, q) - the end time of this partial execution, and we define
is verified. (1) st1(0) has the time). If the partial execution
Let us study the first complete execution ofrites avalue inR2 then we denoted by PR-valiie
T1(PSEUDGRL-WRITE(R,-)) done after a transientthe written value, otherwise PR-vali@é the initial
failure. Such an execution exists becad¥at be- value ofR2.

longs toA. If there does not exist a partial execution of
Whenp’s program counter exits of the pre section;1(PsEUDGRL-WRITE(R,-)) thenet1(0) is defined
we have Rl == new_state and thep’s program has the tim@. We denoted by PR-val(8 the initial
counter is in the unsafe section : thii8,(p,q) is value ofR2.

verified. u

Observation 3.2 OnceCorrect_statel (p, q) is ver-
ified, at any time of the intervaét1(7), et1(i + 1)]
3.1.3 Correctness the value ofR1 (resp. R2, and R3) is PR-valui)
or PR-valuéi + 1).
Consider a specified system S =

(G, pseudo-regular-linkdig) where Alg € A oo oieciness i achieved if (1) any

i f h f [ie. :
S is transformed by the transformationl (i.e r1(PSEUDGRL-READ(R)) that is not over-

Com.pller 1)_ o' = (G_’ safe-lln.k m1(4lg) lapped by a 71(PSEUDORL-WRITE(R,-))

In this section, we will establish that any computaai s the written value by the latest

tion of T' from a legitimate configuration, has an in%l(PSEUDoRL-WRlTE(R,-)) that happens-before

terpretation as a computation §f it; and if (2) a 71(PSEUDGRL-READ(R)) over-
L lapped by a singler1(PSEUDGRL-WRITE(R,-))

Definition 3.2 returns the written value of either the
e st1(i) denote the start time of the ith call of |5test 71(PSEUDORL-WRITE(R,-)) that
71(PSEUDORL-WRITE(R,-)). If the ith call happens-before it, or of the overlapping
of T1(PSEUDGRL-WRITE(R,-)) does not exist -1 (pseupoRL-WRITE(R,-)). More precisely,
thenst1(i) has the valuetoo. The following properties have to be proven to estab-
e ctl(i) denotes the end time of the ith call dish the correctness. Once ti@brrect_statel(p, q)
T1(PSEUDGRL-WRITE(R,-)) by processop. If is verified, for any; > —1,

e any 71(PSEUDCGRL-READ(R)) starting after the predicatel14(p,q) or L4s(p, q) is verified. At
etl(i) and terminating beforet1(i + 1) retuns the end of PR-read, we hav® == v3. There is a
PR-valugi). contradiction.

e any 71(PSEUDOCRL-READ(R)) starting after Case 2: PR-read returnsv2. According to
etl(i) and terminating beforet1(i + 2) retuns 71(PSEUDGRL-READ(R)) code, at the end of
PR-valugi) or PR-valu¢i + 1). PR-read, we havev2 == w3 or v2 ==

vl. 2 is not equal to PR-valy¢) value and

Lemma 3.5 Once that Correct_statel(p,q) is not equal to PR-valyé+ 1). value only if

is verified, for any i > —1, any the read of the safe registdt2 overlaps the ex-

71(PSEUDGRL-READ(R)) starting afteret1(i) and ecution of unsafe section done during thet+
terminating beforest1(i + 1) retuns PR-valug). 1th call of 71(PSEUDGRL-READ(R)) if 7« >

0 or otherwise during the partial execution of
Proof: During the execution of 71(PSEUDOGRL-READ(R)).

T1(PSEUDORL-READ(R)), L4s(p,q) is always atthe starting time of the read dt2, the execution
verified, and no value is written in the safe registeg post section has not started. The reapre-
R2. Thus, the return value is the value B2 at gdes the read ak2, thus at the ending time d&3
time etl(i). At time etl(i), the value ofR2 is (eaq, the execution of post section has not started.
PR-valugi) (by definition of PR-valug + 1)). O e conclude that the read &3 cannot overlap the
execution of post section. At the end of PR-read,
v3 == PR-valu¢i) or v3 == PR-valugi+1).
Lemma3.6 Once that Correct_statel(p,q) Therefore, we have2 # v3.
is verified, for any i > -1, any
71(PSEUDGRL-READ(R)) starting afteret1(i) and
terminating beforest1(i + 2) retuns PR-valug) or
PR-valugi + 1).

At the ending time of the read of the safe regigter

the execution of pre section is terminated, because
the execution of pre section precedes the execution
of the unsafe section. Thus at the starting tim&of
read, the execution of pre section is terminated. The
read of R1 cannot overlap the execution of pre sec-
Let us name PR-read,d (PSEUDORL-READ(R)) tion. We conclude, that at the end of PR-reald==

execution starting afteretl(i) and terminating pr-valugi) or v1 == PR-valugi + 1). Therefore,
before st1(i + 2) that does not return PR-valli¢ e havey2 # v1.

either PR-valug + 1).

Proof: We will do a proof by contradiction.

At the end of PR-read, we have2 # wv1 and

. v2 # v3. There is a contradiction. O
Case 1. PR-read returnsvl. According to

71(PSEUDGRL-READ(R)) code, at the end of PR-
read, we have2 # v3.

vl is not equal to PR-valye) value and is not4 Compiler from regular-link to
equal to PR-valug + 1) value only if the read of) i
R1 overlaps the execution of pre section done dur- pseUdo regmar link

ing the: + 1th call of r1(PSEUDGRL-READ(R)) if

i > 0 or otherwise during the partial execution df€t A be the set of algorithms for the regular-
71(PSEUDO-RL-READ(R)). At the starting time of link model that satisfy: every processap,
the read ofR1 done during PR-read, the executiof” any p's neighbour, namedgq, executes
of unsafe section has not started. The reatdaind 72(RL-WRITE(R,, -)) at least once after any
of R2 precedes the read dt1, thus at the endingransient failure.

time of R2 read, the execution of unsafe section h&ge will show that Algorithm 2 is a wait-free and
not started. We conclude that during the read?6f self-stabilizing compiler from regular-link networks
and R2, none writing is done in these registers artd pseudo-regular-link networks for all algorithms in

8

A.

If we could ensure that no more than one write could
overlap a read operation, a pseudo-regular register
would suffice in place of a regular register. For a

Compiler 2 Code of Self-stabilizing compiler fromsingle-reader single-writer model, this observation
regular-link networks to pseudo-regular-link neguggests that we try to avoid overlap by having sev-

works
Flagl0..2],,, R[0..2],,, andRC, are 1W, 1R
pseudo-regular registers.

@ is the addition modulg.

Code on the processor p:

72(RL-WRITE(R,,, New state)

color is alocal variable of the procedure.
color «+—PSEUDGRL-READ(RC gp);
writing(R,,, new state, color);

72(RL-READ(Rp))
f10..2], v[0..2], andc are local variables.
for c :=0to 2do
PSEUDGRL-WRITE(RC)y, C);
(flcl.vlc]) «<— reading®R;, C) ;
done
if (f[0] == f[1] == 2) thenreturn@[1]) ;
elsereturng|2]); fi

writing(R,,, value, c) :
PSEUDO-RL-WRITE(R[c],,,
[** begin of pre section **]
PSEUDORL-WRITE(Flaglc & 2],,,, C);
[** end of pre section, begin of post section **]
PSEUDORL-WRITE(Flaglc & 1],,,, C);
[** end of post section **]

value);

reading®,y, C)

f andv are local variables.
f «+—PSEUDO-RL-READ(F'laglc],,);
if fAcdlthenf:=cad2;fi
V <—PSEUDORL-READ(R[f],,);
return(f, v);

eral pseudo-registers available for the writer and ar-
ranging communication from the reader to direct the
writer which one to use. To implement this idea
in the pseudo-regular-link model, the regular-register
R,, is implemented with three pseudo-regular copies
R[i],, wherei € {0,1,2}. (only one of them con-
tains the last written value.) Each lipl has a color
values in{0, 1, 2} written by the readey and read by
the writerp. Processop implements an RLWRITE

to Ry, by writing to the copyR[i]pq if it believes
the current color of the link ig. Three additional
pseudo-regular registers are needgdyg|[i] where

i € {0,1,2}, which are used to help the reader de-
termine which of the three copies has the latest value.

The values of the pseudo-reguldéagli],, where

i € {0,1,2} help ¢ to find out which of three
registers R[i],, contains the most recent value.
The Flag[i]pq value “point” to the one having the
most recent value of both registefdfi & 1],,, and
Rli ®2],,.

In a 72(RL-WRITE(R,,, -)) execution,p first reads
RC,, to get a colori € {0,1,2}. It then
writes its new state td[:], , and set both registers
Flagli @ 2],, and Flag[i ® 1], to i thus making
them “point to” the register just written. Notice that
during the execution of writing{,4, v, col), no write
operation in a register dfet(col) is done.

72(RL-READ(R,,)) is done in three steps. Dur-
ing the stepi, only the registers ofet (i) are read.
The first action of the step is to set the current
color of the link tos: (i.e. write operation in its out-
put registerRC,,,). Then, the step is concluded
by the execution of reading,,). First action of
reading®,q, ¢), is to find out which of both regis-
ters R[i @ 2], and R[i & 1], has the more recent
value. This piece of information is stored in the reg-
ister Flag[:],,,. Second action is to read the register
having the more recent value betweji & 2], and
Rli®1],,.

writing(R,v0,0) , _) R[i @ 2]}.
reading(R,0) | |reading(R,1) | |reading(R,2)
return (—,-) | [return (0,v0) | |return (0,v0) Let ActR be an execution of reading(c) by the
R-read returns vO processon.
The ith call of72(RL-WRITE(R, -)) interferes with
witing® V1D | ding(R.0) | |reading(R.1) | | reading(R.2) ActR, iff ActR starts during the time interval
return (1,v1) | |return (—,—) return (1,v1) [StQ(l) ,6t2(’[;))

R-read returns v1

We need to show that the value returned by

writing(R,v2.2) _ ' . 72(RL-READ(R)) satisfies the semantics of a reg-
reading(R,2) | jreading(R.1) | |reading®.2) |)13 register. The correctness proof has three main
return (2, v2) | |return (2,v2) | |return (-,—)
R-read returns v2 StepS,
[Step 1] At most oner2(RL-WRITE(R, -)) can in-
Figure 1. Examples of2(RL-READ(R,,)) execu- terfere with a given execution of readidy(c).
tion without overlapping2(RL-WRITE(R,,, -)) €X- As a consequence, by the definition of pseudo-
ecution regular registers, pseudo-regular registers in

Set(i) for anyi, satisfy the stronger semantics
of regular registers.

4.1 Proof of Compiler 2 [Step 2] The pair of values(f[i],v[i]) return by
a readingR, ¢) execution is the same as the

Letp andq be two neighbour processors. In this sec- paijr of values that would have been compute-
tion, all registers are 1W and 1R. When the writer of it reading®, ¢) had been executed instanta-

a register is processgrand the reader ig, we do neously at either (1) the end of the most re-

not indicate the name of the writer or the reader of cent preceding writingg, -, ¢’) execution where

the registerREG),, is simplely denoted EG. d # ¢ or (2) the end of the interfering
72(RL-WRITE(R, -)) execution.

4.2 Preamble [Step 3] The final value returned by
72(RL-READ(R)) is either the value of an

Definition 4.1 overlapping or the most recent preceding

e st2(i) denote the start time of the ith call ~T2(RL-WRITE(R, -)) execution.

of 72(RL-wWRITE(R,-)). If the ith call of

72(RL-WRITE(R, -)) does not exist thent2(i) Observation 4.1 Only the registers ofSet(c) are
has the valuerco. read by an execution of reading(c).

e ct2(i) denotes the end time of the ith call oictR does not interfere with any
72(RL-WRITE(R, -)) by processop. If the ith 72(RL-wRITE(R, -)) execution iff it exists > —1
call of 72(RL-WRITE(R, -)) does not exist thensuch that ActR starts during the time interval
et2(i) has the valuer-oo. [et2(7),st2(¢ + 1)).

» We denote byt2(—1) the time0. writing(R, -, ¢) does not write in any register of

o If there exists a partial execution ofSet(c).

T2(RL-WRITE(R, -)) then et2(0) denotes Only a writing(R, -, ¢’) execution where: # ¢
the end time of this partial execution, and Wgrites in some registers dfet(c).
definest2(0) has the timé).

e If there does not exist a partial execution q&ny REG.READING done during an execution
T2(RL-WRITE(R, -)) thenet2(0) is defined has of reading®, c) is overlapped by at most a
the time0. single REG.WRITING operation, this operation
is part of the unigue interfering execution of

Definition 4.2 DefineSet(i) = {Flag[i], R[i ® 1], 72(RL-WRITE(R, -)) (it starts before the starting

10

time of readingR, c) and ends after it, we havehe latest writingR, -, ¢’) wherec’ # ¢ that happens-

c # c). before it. And, if a writing, -, ¢’) whered # ¢
interfers with readingg, c) execution, then it returns

Lemma4.1 Let ActR be an execution ofthe value of either the writind{, -, c’) wherec # ¢

reading(R, c¢). Let o be a PSEUDOGRL-WRITE that happens-before it, or the written value of the

operation on a register afet(c) done by processoroverlapping writingR, -, ¢’) wherec' # c.

p during the execution ofictR. Operationo is

part of the execution of the2(RL-WRITE(R, -)) Lemma4.2Let ActR be an execution of

interfering with Act. reading(R, c) by the processorg. If it exists
i > —1 such thatActR starts during the time

Proof: o is done during the execution ofnterval [et2(i),st2(i 4+ 1)) then ActR returns

writing(R, -, ¢’) wherec # ¢’ (according to observa-(flag(s, ¢), valugi, c)).

tion 4.1). This execution of writing¢, -, ¢") is done

during an execution of2(RL-WRITE(R, -)) named Proof: ActR does not interfere with any any
R-write. 72(RL-WRITE(R, -)) execution (see Observation
R-write cannot ends before the starting time g1)- During the_exe_cutlon oflctlt no PSEUDG
ActR. and cannot starts after the endftR. L-WRITE operation is done on registers 8ét(c)

' (see Lemma 4.1). The result dictR is similar at

Assume that R-write starts after or at the starting timye, o<1t of an instantly execution of readiRg¢)
of ActR. During R-write, only writing@, -, c) is 54 timeet2(4). O

performed; none register read duridgtR is writ-
ten by R-write (see the Observation 4.1). There is a
contradiction. We conclude that R-write starts befofgmma 4.3 Let ActR be an execution of

the starting time ofActR. reading®, ¢) by the processorg. If it ex-
R-write is the single interferingists ¢ > 0 such that ActR starts dur-
72(RL-WRITE(R, -)) execution withActR. O ing the time interval §£2(i),et2(¢)) then

ActR returns (fladi, c),valud, c)) or

The previous lemma concludes the first stdfi@d(éi —1,c).valugi — 1,c)).
of the correctness prove. At most one .) .
72(RL-WRITE(R, -)) can interfere with a giVenProof: ActR interferes V_/lt_h_ the ith call of
execution of reading{, ¢). As a consequence, b)72(RL'WR'TE(R’) (see definition 4.2).

the definition of pseudo-regular registers, pseudet oRR be aPSEUDG-RL-READ operation onR (a
regular registers inSet(i) for any i, satisfy the register ofSet(c)) done by processoy during the

stronger semantics of regular registers. execution ofActR. OperationoR is overlapped by
at most a singleeSEUDGRL-WRITE operation on
Definition 4.3 R, namedoW. BecauseolV is part of the exe-

o flag(i, c) denotes the flag value returned by thgdtion of the ith call ofr2(RL-wRITE(R, -)) (see
execution of an instantly reading(c) done at Lémma 4.1) and during the execution of ith call of
time et2(i). 72(RL-WRITE(R, -)), a register ofSet(c) is written

at most one time. The registers of target systems are

valug(i, ¢) denotes the register value returned b ;
.the ej((azéﬁztion of an insta?wtl readirfg(c) done Efseudo-regular. ThusR returns the value iR be-
y ' fore the invocation obW, or the written value by

at timeet2(1).

oW.
Observation 4.2Vi > —1, valugi,c) is the value Let 7/ be the PSEUDORL-READ operation on
of registerR[flag(i, c)],, at timeet2(i). Flag[c] done by processarduring the execution of

ActR. rF returns flagi — 1, ¢) or flag(s, c).

If reading®, c) execution is not interfered byAssume that F returns flagi, c). Let us nam¢ the
writing(R, -, ¢’), then it return the value written byvalue fladi, c¢). Atthe end of-F', the execution of ith

11

P-RL-w(R[1],vI’) : P-RL—-write(F[2],1)

writing(R,v1°,1)

P—RL-read(F[2])
return 1

P—RL-read(R[1])
return v1’

reading(R,2) returns (1,v1’)

P-RL-write(R[1],v])

writing(R,v2,2) ‘ ‘ writing(R,v1,1)

P—-RL-read(F[0])
return 2

reading(R,0) returns (2,v2)

P-RL-read(R[2])
return v2

P—RL-write(R[1],v1")

writing(R,v1,1)

writing(R,v1°,1)

P-RL-read(F[0])
return 1

reading(R,0) returns (1,v1) or (1,v1’)

P-RL-read(R[1])
return vl or v1’

puted if readingR, c) had been executed instanta-
neously at either (1) the end of the most recent pre-
ceding writing®, -, c’) execution where’ # ¢ or

(2) the end of the interfering2(RL-WRITE(R, -))
execution.

4.2.1 Termination

In this section, we prove that any execution (partial
or complete) ofr2(RL-WRITE) and 72(RL-READ)
terminates.

Lemma 4.4 Any 72(RL-wRITE(R, -)) execution
terminates.
Proof: During the execution of

72(RL-WRITE(R, -)), p performs at most three
PSEUDGRL-WRITE and one PSEUDG-RL-READ
operations. O

Lemma 4.5 72(RL-READ(R)) execution termi-

nates.

Figure 2: Examples of reading(c) execution inter- Proof: During the execution of2(RL-READ(R)),
fered by ar2(RL-WRITE(R, -)) execution p performs at most si*SEUDG-RL-READ, three
PSEUDGRL-WRITE, and four internal operationsl

call of 72(RL-WRITE(R, -)) is nearly over, the writ-
ing operation inR|[f] is done. Thus, thesEuDG
RL-READ operation on?[f] read valuéi, c)). ActR
returns (flag, c), valugi, c)).

Assume that F' returns flagi — 1, ¢). Let us name
£ the value flagi — 1,¢). If f # flag(i, ¢) then the Proof: Any 72(RL-READ) or 72(RL-WRITE) is

ith call of 72(RL-WRITE(R, -)) does not write in done in finite number of steps regardless of other
the pseudo-regular regist&f]. Thus, the value of Processor actions. O
R[f] is unchanged, it is valyé— 1, c). Thus,ActR

returns (flagi — 1, ¢),valudi — 1, ¢)).

If f == flag(i,c) then thePSEUDORL-READ 422 |egitimate Configuration

operation onRZ[f] read valué — 1, ¢) or valugi, c).

Thus, ActR returns (flagi,c), valudi,c)) or Inthissection, we will prove the set of configurations
(flag(i — 1, ¢), valugi — 1, ¢)). O verifying Leg?2 is an attractor.

Theorem 4.1 If 72 is a compiler from regular-link
model to pseudo-regular-link model ther2 is a
wait-free compiler.

The proofs of lemma 4.2 and 4.3 conclude the sdeefinition 4.4 Let p and ¢ be two neighbour pro-
ond step of correctness proof. The pair of valuesssors.

(f[i], v[4]) return by a readinggk, c) execution is the L1,(p,q) = [p’S programcounter is in the pre
same as the pair of values that would have been cagection of writingz, -, -)]

12

L2.(p,q) = [p's programcounter is in the postwhereCorrect_state2(p, q) is verified for any pair
section of writingR, -, -) and Flag[c & 2] == of neighbours.

c] Let us study the first complete execution of
L3.(p,q) = [p's programcounter is not in ;2(RL-wRITE(R, -)) done after a transient failure.
the pre or post section of writingg, -, -) and Such an execution exists becauddert belongs toA.

de € {0,1,2} such that Flaglc®?2] ==

When p's program counter is in the pre section,
Flagle® 1]==c] ps P P

L1,(p, q) is verified. O

Correct_state2(p,q) = L1,.(p,q) V L2,(p,q)

V L3.(p,q
7"() 4.2.3 Correctness

Leg2 = (V(p,q) € E Correct_state2(p,q) = consider a specified system S =
True). (G,regular-link Alg) where Alg € A. S is
transformed by the transformatio (i.e. Compiler

Lemma 4.6 Let p and ¢ be two neighbour proces-2) toT = (G, pseudo-regular-link-2(Alg)).

sors.Correct_state2(p,) is closed In this section, we will establish that any computa-

_ o _ tion of T" from a legitimate configuration, has an in-
the pre section.

Whenp’s program counter exits of the pre SeCtiorbefinition 4.5 If at time et2(i), L3,(p,q) is veri-
we have Flagle ® 2] == c and thep’s program g oo it avists: € {0,1,2} Flaglc®?2] ==
counter is in the post section. Thii&, (p, q) is veri- Flagle® 1] == c. cis den,otéd colcfi)

fied.
e . If at time et2(i), L3,(p,q) is verified then
L2,(p, q) stays verified tillp’s counter stays in theR[coIor(i)] is denoted stal@).

post section, because the valuefdfig[c @ 2] is not
modified during the post section. Whgis program
counter exits of the pre section, we hav&ig[c & 2] Observation 4.3 The writtenvalue during the ith
== Flag[c & 1] == ¢ and thep’s program counter execution ofr2(RL-WRITE(R, -)) is statdi). Dur-
is not in the pre or post section. Thii8, (p,q) is N the ith execution of 2(RL-WRITE(R, -)) the
verified if L2, (p, g) was verified wherp's program ©nly procedure executed is writing(-, color(¢)).
counter was in the post section.

L3,(p, q) stays verified tillp is not entering in the Then correctness is achieved if (1) any
pre section; because the value Bfag[.] are not 72(RL-READ(R)) that is not overlapped returns the
modified. O written value of the latest2(RL-WRITE(R, -)) that

happens-before it; and if (2) am2(RL-READ(R))

that is overlapped byr2(RL-WRITE(R,V’)) ex-
Lemma 4.7 Let A be the set of algorithms fore€cutions returns the value of either the latest
the regular-link model that satisfy: every proceg-1(PSEUDGRL-WRITE) on R that happens-
sor p, for any p’s neighbour, named;, executes Pefore it, or the written value by a overlapping
T2(RL-WRITE(R, -)) at least once after any tran-72(RL-WRITE(R, -)) execution. More precisely,
sient failure. LetProt be a protocol ofd. The set of The following property have to be proven to es-
configuration verifyingLeg2 is an attractor of target tablish the correctness. G'orrect_state2(p, q) is
system” = (G, pseudo-regular-linkr2(Prot)) verified atet2(i) wherei > 1, thenvk > 0,

e any 72(RL-READ(R)) starting after or att2(i)
Proof: Letp andg be a pair of neighbour. We needto and terminating beforest2(i + & + 1) retuns
prove that any execution @f reaches a configuration ~ Statéj) wherej € [i,i + k]

13

Observation 4.4 If at time et2(i),

Let! be an integer greater than or equaltolf 3j €

Correct_state2(p,q) predicate is verified, we[i,[] such that (fla¢/,cl), valugl, c1)) = (color(j),

have :
e valug(i, ¢) is statdi) if ¢ # color()
e flag(i, ¢) is color(7) if ¢ # color(7)
e flag(i, c) is not coloKi) if ¢ = color(z)

Definition 4.6 Notice T'I(i,k) the time interval
[et2(7), st2(i + k + 1)).

writing(R,v0,0) ’ writing(R,v0’,0))

reading(R,1)
return (0,v0 or v0’)

reading(R,2)
return (0,v0 or v0’)
R-read returns v0 or vO’

writing(R,v0,0) ’ writing(R,v1,1) ‘

reading(R,0) | |reading(R,1) reading(R,2)
return (—,—) return (0,v0) | [return (—,v0 or v1)
R-read returns v0 or v1

writing(R,v0,0) H writing(R,v2,2) |

reading(R,0) | |reading(R,1) reading(R,2)

return (—,—) return (—,v0 or v2) | | return (0,v0)

R-read returns vO or v2

writing(R,v2,2) H writing(R,v2’,2) [

reading(R,0) | |reading(R,1) reading(R,2)

return (2,v2) | |return (2,v2 or v2’) | | return (—,—)

R-read returns v2 or v2’

writing(R,v2,2) ‘] writing(R,v1,1) ‘
reading(R,0) | |reading(R,1) reading(R,2)
return (2,v2) | |return (2,v2)J return (—,—)

R-read returns v2

Figure 3: Examples of2(RL-READ(R)) execution
with an overlapping2(RL-WRITE(R, -)) execution

Lemma 4.8 The predicateCorrect_state2(p, q) is
verified at timeet2(7) wheres > 0.

statdj)) thencl = color(j) Vj € [i,!]

Proof: Noticec2 the value flag/, c1). ¢2 # ¢1 (Ob-
servation 4.4).

Notice c3 the only integer value i§0,1,2 such that
¢3 # cl, and such that3 # c2.

During TI(i — 1,1 — i), no WRITE operation in the
pseudo-regular registd®[c2] was performed. Oth-
erwise, the valug, c1) would be statgj) wherej €
[i,] (valugl,cl) is the value of the pseudoregister
R[c2] at timeet2(l), because? is the value of the
pseudo-registeFlag|cl] at timeet2(1).) Only, the
executions of writingk, -, c2) include awRITE op-
eration in the pseudo-regular regis®fc2]. Thus,
duringT'I(i,l — 1), no execution of writingR, -, c2)
was performed.

If during TI(;—1,l—4), an execution of
writing(R, -, c3) was performed then flégcl)
would be ¢3, because (1) only the executions of
writing(R, -, ¢') wherec # ¢l include awRITE
operation in the pseudo-regular regist€tag[cl],
and (2) duringT1(: — 1,1 —1i), no execution of
writing(R, -, c2) was performed. Thus, during
TI(i—1,1—1), no execution of writingR, -, c3)
was performed.

During TI(i—1,l—1), only executions of
writing(R, -, c1) was done. According to the code
of writing(R, -, c1)Vj € [i,!],c1 = color(y). O

Let R-read be an execution of2(RL-READ(R)).
Assume that reading, c) invocation done during
R-read returns a too older value to be acceptable.
Then,c is the color of the lastest writingg, -, -) ex-
ecution that happen-before R-read. clf= 2 then
the flag value returned by the readify() invoca-
tion and the readind{, 1) invocation done during
R-read is2. R-read returns the value computed by
readingR, 1). If ¢ # 2 then the flag value returned
by the readingR, 0) invocation is not equal to the
one returned by the reading(1) invocation. R-read
call returns the value computed by readiRgR).

Theorem 4.2 Assume thaCorrect_state2(p, q) is
verified at et2(i). If ¢« > 0 then any
72(RL-READ(R)) starting and terminating during

14

writing(R,v0.0) H writing(R,v0’,0) H writing(R.v1,1) H writing(R,v2,2) .

reading(R,0)
return (—,—)

reading(R,1)
return (0,v0 or v0’)

reading(R,2)
return (—,v0” or v1)

R-read returns vO’ or v1

Figure 4: Example of-2(RL-READ(R)) execution

Compiler 3 Code of Self-stabilizing compiler from
regular-link networks to safe-link networks

with several overlapping2(RL-WRITE(R, -)) exe-
cutions

Flag:[0..2],,,
R1[0..2]

Flag[0..2],,,
R3[0..2]

Flags[0..2],,,

pq? RQ[O..Q]pq, pq? RClqu RCqul

andRCj3,4, are 1W, 1R safe registers.

TI(i, k) wherek > 0, retuns statgj) wherej €
[i,i + K].
execution

Proof: Let R-read be an

@ is the addition modulg.

ofcode on the processor p:

72(RL-READ(R)) starting and terminating dur-7(RL-WRITE)(R,,, newstate)

ingTI(i, k).

Any execution of readingt, c) done during R-read
returns (flagl, ¢), valugl, ¢)) wherel € [i,i + k.
Because, this execution starts durifid(i, k) (see
lemma 4.2, and lemma 4.3).

For anyc value of integer interva{0, 1,2}, we no- T§

tice [, the interger value such that the execution o
reading®, c) done during R-read returns (fidg),
valugl., c)). The execution of reading c) done
during R-read starts during the time intervalJ(/.),
et2(l. + 1)) (see lemma 4.2, and lemma 4.3). We
have [, < [I; < [y because during R-read,
readingR, 0) is performed before reading(1), and
readingR, 1) is performed before reading(2).

Assume that R-read returns vajiig2) and3j €
[i,7 + l2], such that valu@,,2) = statdj). Ac-
cording lemma 4.8Y; € [i,i + l3], we have2 =
color(j). According to observation 4.4, flélg, 0) =

2 = color(ly) and flad/,,1) = 2 = color(/y). In this
case, R-read returns valiig 1). There is a contra-
diction.

Assume that R-read returns valliel)
#j € [i,i + [1] such that valug;,1) = statdy).
According lemma 4.8yj € [i,i + [1], we havel =
color(;). According to observation 4.4, flég,0)
= 1 = color(ly). In this case, R-read returns
valug(l,, 2). There is a contradiction. |

col is a local variable of the procedure.

col <— REG_READING(RCy);
REG-WRITING(R[col],,,, value);
REG.WRITING(Flag[col & 2],,,,col);

REG-WRITING(Flag[col & 1],,,,col);

RL-READ)(Ryp)
f10..2], v[0..2], andc are local variables.

for ¢ := 0 to 2do
REG_.WRITING(RC,C) ;
fle] +— REG.READING(Flag]c],,);
if flc] # c® 1thenf[c]:=c 2;fi
v[c] +— REG_READING(R][f]c]]

done

it (£[0] == /1]

elsereturn@[2]) _fl

ap)’

= 2) thenreturn@[1]) ;

REG.WRITING(REG),, new.state)

SL-WRITE(REG1,,, Nnew.state);
SL-WRITE(REG,,, newstate);
SL-WRITE(REG3,,, Nnew.state);

and REG.READING(REG ;)
vl, v2, andv3 are local variables of the function.

v3 «—SL-READ(REGS3,,),

v2 +—SL-READ(REG2,),

vl <—SL-READ(REG1),

if (v3 == v2) or (vl == v2) thenreturnv?2;
elsereturno1; fi

5 Compiler from regular-link to
safe-link

15

Let A be the set of algorithms for the pseudo-regulan the safe-link model in such way that the write and
link model that satisfy: every procesggrfor anyp’s read operations in the target system are wait-free.

neighbour, named, executes (RL-WRITE)(Ry,-) The known compiler between link model are sum-

at least once after any transient failure. marized in the figure 5. The transformation that is
Compiler 3 is the combination of the two previouslyiot presented in this paper is labelled by the biblio-
presented wait-free and stabilizing compilers. graphical reference.

According the the properties of the Compiler 1 and
Compiler 2, Compiler 3 is a wait-free and stabiliz-
ing compiler from regular-link networks to safe-lindReferences
networks for all algorithms i,
[1] U Abraham. On interprocess communica-
. tion and the implementation of multi-writer
6 Conclusion atomic registers. Theoretical Computer Sci-
ence 149(2):257-298, 1995.
A — = :B Wait—free and Self-Stabilizing compiler
[2] H Attiya and JL Welch. Distributed comput-
Regular-Link ing: fundamentals, simulations and advanced
topics McGraw-Hill, Inc., 1998.

compiler

[3] S. Dolev. Self-Stabilization The MIT Press,
2000.

[4] S Dolev, MG Gouda, and M Schneider. Mem-
ory requirements for silent stabilization. In
PODC96, the 15th Annual ACM Symposium
on Principles of Distributed Computingages
27-34, 1996.

Figure 5: Transformations between link network
models

Lamport [10] presented a wait-free implementation

of an atomic single-writer/single-reader register wit5] S Dolev, A lIsraeli, and S Moran. Self-
regular single-writer/single-reader registers. This Stabilization of dynamic systems assuming
transformer requires two regular registers — one writ- Only Read/Write atomicity. Distributed Com-
ten by the writer and the other written by the reader. Puting 7(1):3-16, 1993.

The relationship between the atomic-link model an? i i
the regular-link model is an instance of this rela 6] S Haldar a_md K V|dya§ankar. Confstruct_mg 1-
tionship between atomic single-writer/single-reader wrltermultlreadgr multivalued atomic varlabl'es
registers and regular single-writer/single-reader reg- frqm regular varlablgs.]ourna_l of the Associ-
isters. Thus, Lamport’s implementation constitutes ation of the Computing Machinert2(1):186-
a wait-free compiler, which we call AL-RL, from 203, 1995.

atomic-link networks to regular-link networks. It is]
straightforward to confirm that AL-RL is also self- =~ .\ . - .o mmunication models in networks us-

stabilizing. ing atomic registers. IMPDPS’06, the 20th

Using the compiler AL-RL and Compiler 3, self- |EEE International Parallel & Distributed Pro-
stabilizing algorithms designed for the atomic-link cessing Symposiyr2006.

model could be implemented in the safe-link model

in such way that the write and read operations in thi8] JH Hoepman, M Papatriantafilou, and P Tsi-
target system are wait-free. Many self-stabilizing gas. Self-stabilization of wait-free shared mem-
algorithms are designed for the atomic-link model ory objects.Journal of Parallel and Distributed
[5, 3]. Now, these algorithms could be implemented Computing 62(5):818-842, 2002.

L Higham and C Johnen. Relationships be-

16

[9]

[10]

[11]

[12]

C. Johnen and L. Higham. Fault-tolerant
implementations of atomic-state communica-
tion model for distributed computing. In
DISC’07, the 21th International Symposium on
Distributed Computing, Springer LNCS:4731
pages 485-486, 2007. Brief announcement.

L Lamport. On interprocess communication.
Distributed Computingl(2):77-101, 1986.

M Li, J Tromp, and PMB Vitanyi. How to
share concurrent wait-free variablesournal

of the Association of the Computing Machin-
ery, 43(4):723-746, 1996.

M Nesterenko and A Arora. Stabilization-
preserving atomicity refinement. Jour-
nal of Parallel and Distributed Computing
62(5):766—791, 2002.

17

	RR1486entete.pdf
	RR1486rapp.pdf

