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Abstract

The following problem was solved by Woodall in 1972: for any
pair of nonnegative integers n and k < n

2 find the minimum inte-
ger g(n, k) such that every graph with n vertices and at least g(n, k)
edges contains a cycle of length n − k. Woodall proved even more:
the size g(n, k), in fact, guarantees the existence of cycles Cp for all
3 ≤ p ≤ n− k.

In the paper an analogous problem for bipartite graphs is con-
sidered. It is proved that every bipartite graph with color classes of
cardinalities m and n, m ≤ n, and size greater than n(m−k−1)+k+1
contains a cycle of length 2m − 2k, where m ≥ 1

2k2 + 3
2k + 4, k ∈ N.

The bound on the number of edges is best possible. What’s more, this
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size condition guarantees the existence of cycles of all even lengths up
to 2m−2k. We characterize also all extremal graphs for this problem.
Finally, we conjecture that the condition on the order may be relaxed
to m ≥ 2k + 2.

keywords: bipartite graph, cycle, long cycle, bipancyclicity, edge con-
dition, size condition
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1 Introduction

We will consider only finite, undirected graphs without loops and multiple
edges. For the standard terminology and notation see e. g. [5].

Let G be a graph with the vertex set V (G) and the edge set E(G). Denote
by |G| the number of vertices in G, which is the order of G, and by ||G|| the
number of edges in G, which is the size of G.

In 1960, Ore proved the following theorem.

Theorem 1.1 (Ore [9]). Let G be a graph with |G| = n and ||G|| ≥
1
2
(n− 1)(n− 2) + 2. Then G contains a hamiltonian cycle.

It is natural to generalize the above problem as follows: for any pair of
nonnegative integers n and k < n

2
, find the minimum integer g(n, k), such

that every graph of order n and size at least g(n, k) contains a cycle of length
n− k.

In 1972, Woodall found the number g(n, k) and, what’s more, proved that
a graph of size at least g(n, k) contains cycles of all lengths up to n− k.

Theorem 1.2 (Woodall [10]). Let G be a graph with |G| = n ≥ 2k + 3,
k ∈ N, and

||G|| ≥ g(n, k) =

(
n− k − 1

2

)
+

(
k + 2

2

)
+ 1.

Then G contains a cycle of length p for each p such that 3 ≤ p ≤ n− k.

This result is best possible. A graph consisting of two cliques, one on
n−k−1 vertices and the other one on k+2 vertices, which share one vertex,
is an extremal graph for this problem. It does not contain any cycle of length
n− k and it has exactly g(n, k)− 1 edges.
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We wish to investigate an analogous problem for bipartite graphs.
Let G = (X,Y ; E) denote a bipartite simple graph with color classes X

and Y and the set of edges E. Such a graph G is called balanced if X and Y
have equal cardinalities.

For A ⊂ V (G) and x ∈ V (G), we denote by e(x,A) the number of edges
between the vertex x and vertices of the set A, by NG(x) the set of neighbors
of the vertex x in G, and by dG(x) the degree of the vertex x in G, so
that dG(x) = e(x, V (G)) = |NG(x)|. The minimal vertex degree in G will be
denoted by δ(G). We write G−A for the subgraph of G induced by V (G)\A.

An xy−path means a path with endvertices x and y, and Ck (resp. Pk) is
a cycle (resp. path) of order k. The balanced bipartite graph G = (X, Y ; E)
is hamiltonian biconnected if for any two vertices x ∈ X and y ∈ Y , there
exists a hamiltonian xy-path in G. It is 2-hamiltonian biconnected if for
any pair of vertices a ∈ X and b ∈ Y, the subgraph G − {a, b} is hamilto-
nian biconnected. G is bipancyclic if it contains cycles of all even lengths
up to |G|.

The aim of this paper is to find the minimum number of edges of
a bipartite graph G = (X, Y ; E) on m + n vertices (|X| = m ≤ n = |Y |),
which guarantees the existence of a cycle of length 2m − 2k in G, for any
integer 0 ≤ k < m

2
. We prove that, for m ≥ 1

2
k2 + 3

2
k + 4, this extremal

number of edges is equal to n(m − k − 1) + k + 2 and this size, in fact,
guarantees the existence of cycles of all even lengths up to 2m− 2k in G. It
is a generalization of the following theorems.

Theorem 1.3 (Mitchem and Schmeichel [8]). Let G = (X, Y ; E) be a
balanced bipartite graph of order 2n (|X| = |Y | = n). If ||G|| ≥ n2 − n + 2,
then G is bipancyclic.

Theorem 1.4 (Bagga and Varma [4]). Let G = (X, Y ; E) be a bipartite
graph with |X| = m ≤ n = |Y |. If ||G|| ≥ n(m− 1) + 2, then G contains
cycles C2p for all 2 ≤ p ≤ m.

We also characterize all extremal graphs of size n(m− k− 1)+ k +1 that
do not contain any cycle of length 2m− 2k.

The main result of this paper (Theorem 2.1) and its proof are presented
in Section 2. A version for balanced bipartite graphs of this theorem was first
announced in [1]. In Section 3 we formulate a conjecture which is a stronger
form of Theorem 2.1.
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2 Main theorem

Let us define the family Gm,n,k of bipartite graphs G = (X, Y ; E) with
|X| = m ≤ n = |Y | such that X = A ∪ B, |B| = k + 1, dG(v) = n for
every v ∈ A and dG(w) = 1 for every w ∈ B. Note that every graph of the
family Gm,n,k has size equal to n(m−k− 1)+k +1 and does not contain any
cycle of length 2m− 2k. Moreover, if we add any edge to a graph of Gm,n,k,
then it will contain a cycle C2m−2k.

Our purpose is to prove the following theorem.

Theorem 2.1. Let G = (X,Y ; E) be a bipartite graph with |X| = m ≤
n = |Y |, where m ≥ 1

2
k2 + 3

2
k + 4, k ∈ N. If

||G|| ≥ f(m,n, k) = n(m− k − 1) + k + 1,

then either G contains a cycle of length 2m − 2k, or else ||G|| = f(m,n, k)
and G is isomorphic to a graph of the family Gm,n,k.
In both cases G contains C2p for all 2 ≤ p ≤ m− k − 1.

In the course of the proof of Theorem 2.1, we shall use the following
results.

Theorem 2.2 (Bagga and Varma [3]). Let G = (X, Y ; E) be a balanced
bipartite graph of order 2n. If for every pair of nonadjacent vertices x ∈ X
and y ∈ Y, dG(x) + dG(y) ≥ n + 1, then G is bipancyclic.

Theorem 2.3 (Amar, Favaron, Mago and Ordaz [2]). Let G = (X, Y ; E)
be a balanced bipartite graph of order 2n. If ||G|| ≥ n2 − n + 3, then G is
hamiltonian biconnected and 2-hamiltonian biconnected.

Proof of Theorem 2.1

The proof will be divided into two steps. We first show that Theorem
2.1 is true for m = n. In the second step we will consider the situation when
m < n.

Step 1. m = n

We will proceed by induction on k.
Without loss of generality we can assume that size of G is equal to

f(n, n, k), for otherwise we may consider a spanning subgraph of G with
exactly f(n, n, k) edges instead of G.
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Set k = 0. We want to show that if G is a balanced bipartite graph with
|G| = 2n ≥ 8 and ||G|| = n2 − n + 1 then G is bipancyclic unless G ∈ Gn,n,0.

Applying Theorem 2.2 to the graph G, we get that either G is bipancyclic,
or else there are two nonadjacent vertices x ∈ X and y ∈ Y such that
dG(x) + dG(y) ≤ n. But then ||G − {x, y}|| ≥ n2 − n + 1− n = (n − 1)2, so
G− {x, y} is a complete balanced bipartite graph on 2n− 2 vertices (hence
G contains cycles of all even lengths up to 2n − 2). If so, then, in fact,
dG(x) + dG(y) = n. Since x and y are not adjacent, then their degrees are
both greater than zero. In case dG(x) ≥ 2 and dG(y) ≥ 2 it is easy to find
a hamiltonian cycle in G. It remains to consider the case when one vertex,
say x, has degree 1. Then vertex y has degree n− 1 and it is joined with all
vertices of the set X \ {x}. It means that G ∈ Gn,n,0.

Now assume the theorem holds for k − 1, k ≥ 1; we will prove that it
holds also for k.
Let us start with the observation that f(n, n, k)−f(n−1, n−1, k−1) = n−k.
In the proof we shall consider two cases.

Case 1. There are two vertices x ∈ X and y ∈ Y in the graph G such that
dG(x) + dG(y) ≤ n− k.

Then G − {x, y} is a balanced bipartite graph with 2n − 2 vertices
and at least f(n, n, k) − (n − k) = f(n − 1, n − 1, k − 1) edges. By
the inductive hypothesis there are cycles of all even lengths up to
2(n − 1) − 2(k − 1) = 2n − 2k contained in G − {x, y}, hence also
in G, unless G − {x, y} ∈ Gn−1,n−1,k−1. In the latter case dG(x) +
dG(y) = n − k and x and y are not adjacent, because ||G − {x, y}|| =
f(n − 1, n − 1, k − 1). Moreover, X \ {x} = A ∪ B, where A =
{v : dG−{x,y}(v) = n − 1}, B = {v : dG−{x,y}(v) = 1} and |B| = k.
We see at once that cycles of all even lengths up to 2n − 2k − 2 are
contained in G−{x, y}, hence also in G. What remains to show is that
either C2n−2k ⊂ G or G ∈ Gn,n,k.
It is easy to check that C2n−2k ⊂ G in case dG(x) ≥ 2. It remains to
consider what happens when dG(x) ≤ 1. Suppose that dG(x) = 0. Then
dG(y) = n − k > k, which implies that there is at least one vertex in
the set A, say v1, and at least one vertex, say v2, in the set B which are
joined with the vertex y. In this case it is a simple matter to find a cycle
C2n−2k contained in G which passes through the vertices v1, y and v2.
So suppose that dG(x) = 1, which implies dG(y) = n− k − 1 > k. Then
either the vertex y is joined with all vertices in the set A (which means
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that G ∈ Gn,n,k), or, again, y is joined with some vertex of A and with
at least one vertex in B, and we again find a cycle of length 2n − 2k
contained in G.

Case 2. For every pair of vertices x ∈ X and y ∈ Y in the graph G, we have
dG(x) + dG(y) ≥ n− k + 1.

Firstly, observe that this assumption implies that δ(G) ≥ 2, for other-
wise G has more than n(n−k) edges, which contradicts the assumption
made at the beginning of Step 1 that ||G|| = f(n, n, k).

Suppose now that there exists 2 ≤ p ≤ n− k such that G does not
contain any cycle of length 2p.
Theorem 2.2 implies that there are two nonadjacent vertices x1 ∈ X
and y1 ∈ Y such that dG(x1) + dG(y1) ≤ n. Let G1 := G − {x1, y1}.
Observe that ||G1|| ≥ f(n, n, k)− n. Now, we apply Theorem 2.2 to
the graph G1. Again, G1 is not bipancyclic, so there are two
nonadjacent vertices x2 ∈ X ∩ V (G1) and y2 ∈ Y ∩ V (G1) such that
dG1(x2) + dG1(y2) ≤ n− 1. Write G2 := G − {x1, y1, x2, y2}. We have
||G2|| ≥ ||G1|| − (n− 1) ≥ f(n, n, k)− n− (n− 1). We now apply
Theorem 2.2 to the graph G2, and so on. After k + 1 steps we finally
get the graph Gk+1 := G− {x1, x2, . . . , xk+1, y1, y2, . . . , yk+1} such that
||Gk+1|| ≥ ||Gk|| − (n− k) ≥ f(n, n, k)− n− (n− 1)− . . .− (n− k) =
= f(n, n, k)− 2n−k

2
· (k + 1) = n2 − 2nk − 2n + 1

2
k2 + 3

2
k + 1.

For n ≥ 1
2
k2 + 3

2
k + 4, we have

n2 − 2nk − 2n +
1

2
k2 +

3

2
k + 1 ≥ (n− k − 1)2 − (n− k − 1) + 3,

and Gk+1 is hamiltonian biconnected and 2-hamiltonian biconnected
by Theorem 2.3, and also bipancyclic by Theorem 1.3. It follows that
there are cycles of all even lengths up to 2n−2k−2 contained in Gk+1,
hence also in G. So the hypothesis, that there exists 2 ≤ p ≤ n− k
such that C2p 6⊂ G, implies that G does not contain any cycle of length
2n− 2k.
Let V ′ := V (G)\V (Gk+1).
We need to consider several subcases.

Subcase 2.1. There are two vertices x ∈ X ∩ V ′ and y ∈ Y ∩ V ′ such that
e(x, V ′) = e(y, V ′) = 0.
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Since dG(x) + dG(y) ≥ n− k + 1, there is a vertex u ∈ Y ∩ V (Gk+1)
which is joined with x, and there is a vertex v ∈ X ∩ V (Gk+1) which
is joined with y. There exists a uv-path of order 2n− 2k − 2 in Gk+1,
because Gk+1 is hamiltonian biconnected. It means that there is a path
P2n−2k = x1y1x2y2 . . . x2n−2ky2n−2k (x1 = x, y1 = u, x2n−2k = v,
y2n−2k = y) contained in G, which passes through all vertices of the
graph Gk+1. Since C2n−2k 6⊂ G, if x1yi ∈ E then xiy2n−2k 6∈ E, for
otherwise x1y1x2y2 . . . xiy2n−2kx2n−2k . . . yix1 is a cycle of length 2n−2k
contained in G. Thus, we have e(x, V (Gk+1)) + e(y, V (Gk+1)) ≤ n− k,
which, in this case, means that dG(x) + dG(y) ≤ n− k, contradicting
the assumption.

Subcase 2.2. For every pair of vertices x ∈ X ∩ V ′ and y ∈ Y ∩ V ′, we have
e(x, V ′) 6= 0 or e(y, V ′) 6= 0.
We then consider an edge xy with x ∈ X ∩ V ′, y ∈ Y ∩ V ′.

Subcase 2.2.1. For at least one edge xy with x ∈ X ∩ V ′, y ∈ Y ∩ V ′, we have
e(x, V (Gk+1)) ≥ 1 and e(y, V (Gk+1)) ≥ 1.

Then, again, there is a vertex u ∈ Y ∩ V (Gk+1) which is joined
with x, and there is a vertex v ∈ X ∩ V (Gk+1) which is joined
with y, and there exists a uv-path of order 2n − 2k − 2 in Gk+1.
We can extend this path to a cycle of length 2n− 2k using edges
ux, xy, yv, a contradiction with the assumption that C2n−2k 6⊂ G.

Subcase 2.2.2. For every edge xy with x ∈ X ∩ V ′, y ∈ Y ∩ V ′, we have
e(x, V (Gk+1)) = 0 or e(y, V (Gk+1)) = 0.

Without loss of generality we may assume that e(x, V (Gk+1)) = 0.
Then, for all vertices u ∈ Y ∩ V ′, we have e(u, V (Gk+1)) ≥ 2.
Indeed, dG(x) ≤ k (because x is joined only with at most k vertices
of V ′, which is a consequence of the construction of Gk+1), so, by
assumption made at the beginning of Case 2, dG(u) ≥ n− 2k + 1.
For n ≥ 1

2
k2 + 3

2
k + 4, it follows that dG(u) ≥ k + 2, which leads

to e(u, V (Gk+1)) ≥ 2.
Since δ(G) ≥ 2, the vertex x has at least two neighbors in V ′,
say y, y′. By the above observation, there are two different ver-
tices v1, v2 ∈ X ∩ V (Gk+1) such that v1y ∈ E and v2y

′ ∈ E.
Gk+1 is hamiltonian, so there exists a vertex u ∈ Y ∩ V (Gk+1)
such that v1u ∈ E. Let a ∈ Y ∩ V (Gk+1) and a 6= u. Since Gk+1
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is 2-hamiltonian biconnected, Gk+1 − {v1, a} is hamiltonian bi-
connected, so there exists a v2u-path of order 2n − 2k − 4 in
Gk+1−{v1, a}. We can extend this path to a cycle of length 2n−2k
using edges v2y

′, y′x, xy, yv1, v1u, a contradiction with the as-
sumption that C2n−2k 6⊂ G.

Step 2. m < n

First order the vertices of Y = {y1, . . . , yn} so that dG(y1) ≤ . . . ≤ dG(yn).
Put Y ′ := {y1, . . . , yn−m}.

We shall consider two cases depending on the degree of the vertex yn−m.

Case 1. dG(yn−m) ≥ m− k

Then G − Y ′ is a balanced bipartite graph on 2m vertices such that
||G − Y ′|| ≥ m(m− k) > f(m,m, k) since m > k + 1. From what has
already been proved in Step 1, we conclude that G − Y ′ ⊃ C2p for all
2 ≤ p ≤ m− k, which completes the proof in this case.

Case 2. dG(yn−m) ≤ m− k − 1

Now we have

(1) ||G− Y ′|| ≥ f(m,n, k)− (n−m)(m− k − 1) = f(m,m, k),

which again implies G− Y ′ ⊃ C2p for all 2 ≤ p ≤ m− k − 1, and also
G− Y ′ ⊃ C2m−2k unless ||G− Y ′|| = f(m,m, k) and G− Y ′ ∈ Gm,m,k.
Therefore it remains to consider the situation when X = A∪B, where
A = {v : dG−Y ′(v) = m}, B = {v : dG−Y ′(v) = 1}, |B| = k + 1. Then
every vertex of Y ′ has degree in G equal m− k− 1 since inequality (1)
is, in fact, an equality.
Suppose now that no cycle of length 2m − 2k is contained in G. Con-
sequently, no vertex of Y ′ can be joined with both a vertex of A and a
vertex of B, for otherwise we could simply construct a cycle C2m−2k in
G. Hence the assumption: dG(yi) = m−k−1 for all 1 ≤ i ≤ n−m, im-
plies (for m > 2k + 2) that every vertex of Y ′ is joined with all vertices
of A. It follows that G ∈ Gm,n,k, which completes the proof.
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3 Conjecture

We expect that the condition on the order of G in Theorem 2.1 may be
relaxed. We formulate the following conjecture.

Conjecture 1. Let G = (X, Y ; E) be a bipartite graph with |X| = m ≤
n = |Y |, where m ≥ 2k + 2, k ∈ N. If ||G|| > n(m− k − 1) + k + 1, then G
contains cycles of all even lengths up to 2m− 2k.

Notice that the assumption m ≥ 2k + 2 of the conjecture is weakest
possible, as shown by the following example.

Example 1. Let G1 = (X, Y ; E) be a bipartite graph, with vertex classes of
the form X = Q ∪R, Y = S ∪ T , where |Q| = |T | = m− k − 1, |R| = k + 1,
|S| = n−m+k+1, m ≤ n. Fix a vertex y0 in T , and let NG1(v) = S∪{y0} for
all v ∈ Q, and NG1(w) = T for all w ∈ R. Then ‖G1‖ > n(m−k− 1)+k +1
for k + 3 ≤ m ≤ 2k + 1, yet G1 contains no cycle of length greater than
2m− 2k − 2. Hence the necessity of the assumption m ≥ 2k + 2.

There are some results which suggest that this conjecture may be true.
It is true for k = 0 (Theorem 1.4). We will show that it is true also for

k = 1 but we will need the following result (stronger than Theorem 1.3).

Theorem 3.1. Let G = (X,Y ; E) be a balanced bipartite graph of order 2n.
If ||G|| ≥ n2 − n + 1, then G is bipancyclic or G ∈ Gn,n,0.

The proof of Theorem 3.1 is the same as that of Theorem 2.1 in the case
k = 0 in Step 1.

Now we are ready to prove Conjecture 1 for k = 1.
Analysis similar to that in Step 2 of the proof of Theorem 2.1 shows that
Conjecture 1 is true in general case (m ≤ n) if only it is true for balanced
bipartite graphs (m = n). Therefore it remains only to consider the situation
when m = n..
Suppose that there exists 2 ≤ p ≤ n− 1 such that G does not contain any
cycle of length 2p. Then, by Theorem 2.2, there are two vertices x ∈ X and
y ∈ Y such that dG(x)+dG(y) ≤ n. Hence ||G−{x, y}|| ≥ n2 − 2n + 3− n =
(n−1)2− (n−1)+1. By Theorem 3.1, G−{x, y} ∈ Gn−1,n−1,0, and therefore
contains cycles of all even lengths up to 2n− 4. ||G−{x, y}|| = n2− 3n + 3,
so dG(x) + dG(y) = n and x and y are nonadjacent. But the assumption
C2n−2 6⊂ G implies that dG(x) ≤ 1 and dG(y) ≤ n− 2, a contradiction.
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In 1985, Jackson [7] found the number of edges of a bipartite graph
G needed to ensure the existence of a cycle of length at least p in G.
Conjecture 1, if true, would be a significant strengthening of the following
theorem.

Theorem 3.2 (Jackson [7]). Let G = (X,Y ; E) be a bipartite graph
with |X| = m ≤ n = |Y |, where m ≥ 2k + 2, k ∈ N. If ||G|| ≥
n(m− k − 1) + k + 2, then there exists p ≥ m− k such that C2p ⊂ G.

There is another result which suggest that Conjecture 1 may be true.
Gyárfás, Rousseau and Schelp solved an analogous problem for paths in
bipartite graphs. They characterized all extremal graphs for this problem,
which are similar to those of the family Gm,n,k.

Theorem 3.3 (Gyárfás, Rousseau and Schelp [6]). Let G = (X, Y ; E)
be a bipartite graph with |X| = m ≤ n = |Y |, where m > 2k + 2, k ∈ N. If
||G|| ≥ n(m− k − 1), then either P2m−2k ⊂ G or ||G|| = n(m − k − 1) and
G is the exceptional graph for which X = A ∪B, A = {x ∈ X : dG(x) = n},
B = {x ∈ X : dG(x) = 0}, |B| = k + 1.

Acknowledgments. The author wishes to express his thanks to Irmina
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