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Abstract. Many large scale systems, like grids and structured peer to peer sys-
tems, operate on a constrained topology. Since underlying networks do not expose
the real topology to the applications, an algorithm should build and maintain a vir-
tual topology for the application. This algorithm has to bootstrap the system and
react to the arrival and departures of processes.

In a previous article, we introduced a computing model designed for scalability
in which we gave a self-stabilizing algorithm that builds a spanning tree. At that
time, we provided a proof of stabilisation and performance measurements of a
prototypal implementation. In this work, we present a probabilistic method to
evaluate the theoretical performances of algorithms in this model, and provide a
probabilistic analysis of the convergence time of the algorithm.

Keywords: distributed systems, self-stabilisation, overlay network, time complexity,
probabilistic analysis.

1 Introduction

Large scale systems are made of a large number of machines linked by a network. In the
case of grids or peer to peer systems, the network is generally based on interconnected
local area networks or the infrastructure of Internet service providers. Nodes commu-
nicate with each other using a network protocol, like IP, that routes the packets hop by
hop.

As a result, it is necessary for large scale systems to operate without knowing the
underlying topology. Modern peer to peer systems rely on peer sampling services [9]
that allow each node to know a small number of other nodes, ensuring that the resulting
topology is connected. They can then either operate directly using this service or build
a more constrained topology, like a Chord ring [11].

This model is different from the usual model used to write distributed algorithms.
Classically, each process knows the whole set of its neighbors, updated whenever a node
arrives or leaves the system. It can be used directly to write distributed algorithms that
can operate on large scale systems [8]. The previous works on this subject showed an

* Supported by Région ile de France



algorithm that builds a spanning tree using only a constant number of process identifiers,
with a formal proof of self-stabilization. Its performance was evaluated on a prototype
implementation.

The experiments showed that the convergence time of the algorithm varies signifi-
cantly according to the properties of the oracle. We therefore present our main contribu-
tion: the expected convergence time of the algorithm using Markov chains methods [6,
12]. We distinguish between two oracles with different behaviors: the first one relies on
a uniform distribution of the identifiers and the second one follows a power law.

The rest of the paper is organized as follows. In section 2, we discuss related works.
We present the computational model in section 3, the algorithm in section 4, an adapted
model for the probabilistic study in section 5, and the probabilistic analysis in section 6.
We conclude in section 7.

2 Related Works and Motivation

The performance of overlay networks in large scale systems are typically evaluated
probabilistically. For example, the authors of Chord [11] show that the expected number
of steps for lookups on their skip ring is O(log N), where N is the total number of
processes in the systems. Similar studies were conducted for other overlay networks,
like Pastry [10] or Tapestry [13]. The underlying assumption is that since the system
is very large, the identifiers are well spread by a hash function and the running time is
long, the whole system globally behaves according to the probabilistic model.

We showed [8] that it is possible to build an overlay network — a spanning tree,
in this case — in a large scale system, while keeping in mind the scalability issues,
and provide a formal proof of self-stabilization under a nondeterministic scheduler,
as opposed to a probabilistic proof of convergence. For this purpose, we introduced a
computing model designed for scalability. By avoiding to provide each node with a list
of its neighbors, it allows to write algorithms that focus on local operations and make
use of an oracle when necessary, to ensure a global connectivity.

Since it is proven that the algorithm eventually stabilizes in any execution, the
remaining question is its theoretical performance. We therefore define a probabilistic
model and compute the expected convergence time of the algorithm.

The model distributes the knowledge of the global topology in the whole system. In
peer to peer systems, this is a common assumption that is typically implemented using a
peer sampling service. In this context, each process has a function getPeer() that returns
the identifier of another process. Using this function, the nodes get to know each other.

Until recently, it was typically assumed that peer sampling services draw process
identifiers following a uniform distribution, i.e. each process has the same probability
of being drawn as any other. Recent works on this subject [9] demonstrated that in real-
ity, the main implementations currently in use do not exhibit this behavior. Rather, the
knowledge graph looks like a small world system, and the distribution of the answers of
the function getPeer() looks like a power law. This led us to consider both distributions
in the rest of the article.



3 Model

The algorithm operates in an asynchronous system where each process has local vari-
ables, a set of guarded rules and a lossless FIFO link towards all the other processes.
Processes do not know their neighbors a priori, so p can send a message to ¢ if and only
if the identifier of ¢ is in a local variable of p. The capacity of each channel is bounded
by an unknown constant, and like Afek and Bremler [1], we assume that this issue can
be addressed by buffering a constant number of messages if necessary. The scheduler
is nondeterministic and fair in the sense that any rule whose guard evaluates to true in
an infinite suffix is eventually drawn.

Each process has a unique identifier in a domain Z that is divided into two subdo-
mains I1T C 7 contains the identifiers of correct process, i.e. those that do not crash,
and the other identifiers belong to crashed processes or to no process at all. However, a
given process cannot know whether some ¢ € 7 is in I/ or not. A total order < on 7 is
available, as on most large scale systems: for example, IP addresses are totally ordered.

To provide the processes with the ability to connect the whole system, each of them
has a local device called an oracle. Each process can query its oracle as part of an
action by calling the function get_peer(). The answer is an identifier in Z. The global
condition on the set of all oracles in the system is that in an execution, if S is the set of
all processes that query their oracles an infinite number of times, then all the processes
in S eventually obtain all the identifiers of S. This device is an adapted version of the
concept of peer sampling service, tailored for the needs of the algorithm.

To make it possible to actually use this system, the processes need to be able to
eventually decide whether a process is live or not. Since Fischer, Lynch and Patterson’s
theorem [5] states that the consensus problem is unsolvable in an asynchronous system
where a crash is possible, we use failure detectors. Each process has one, following
the definition given by Chandra and Toueg [2]. This local device provided a predicate
suspect: 11 — boolean. In this papers, all the detectors are in class ¢P, which means
that after a finite but unknown time, for all processes, Vp, suspect(p) == process p is
crashed.

The algorithm makes use of self-stabilization [3]. This technique, introduced by
Dijkstra [3] and since then adapted to many different contexts [4], allows a system to
recover from any sequence of transient failures. To account for this, the whole system,
comprising the processes and the channels, is initialized arbitrarily. Then, the runs are
failure-free.

4 The Algorithm

This is a simplified version of the algorithm. It is sufficient to understand how the tree
is built. The complete algorithm is given in the previous paper [8].

The goal is to build a spanning tree whose degree is bounded by a constant §. To
make sure that there can be no cycle, the algorithm enforces a global invariant: the
identifier of each process is higher than those its children and lower than that of its
parent.

Each process has local variables, an identifier (mysel f) and a set of guarded rules.



Variables

parent: IT U { L} (L means no value)
children: set of 11

Guarded rules

the spontaneous rule, in practice, is regularly
triggered by the scheduler and mostly takes
care of cleanup and connectivity.

true —
delete any incorrect child: greater than my-

self, cardinal of the child set bigger than §,
suspect child ;
if father = L (i.e. this process is root), pick
a process given by the oracle and send it a
message to try to merge the subtrees.
reception of a merge message
merge message available —
if this process is root and lower than the
sender, it sends back a merge agreement
message and take the sender as its new par-
ent.

reception of a merge agreement message

merge agreement message available —
If possible, take the sender as a child. If
there are already ¢ children, first delete a
child lower than the sender. If all § children
are higher than the sender, pass the merge
agreement down to one of the children.

link maintenance

true —
Send a keepalive message to parent and

children
keepalive message available —

if the sender neither parent nor a child, take
it as my new parent or child, if possible
; else send back a link rupture message.
On reception of such a message, delete the
sender from the children list or the parent
field.

Fig. 1. The Algorithm
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Fig. 2. Model for 6 = 1

S Model for the Probabilistic Study

The above model is well suited for a proof of convergence in all possible cases. How-
ever, for a probabilistic study of the convergence time, we switch to a simpler model.

First, we assume the existence of a mapping from I7 to N* that assigns consecutive
integers to the processes. The process that has the lowest identifier in /1 gets number 1,
the immediately higher process gets 2, and so on. The highest process is numbered N.
This mapping, which is normally not available in a large scale system, is only used for
the presentation of the probabilistic analysis and not by the algorithm. We also assume
that only the identifiers of live processes are drawn; this does not change fundamentally
the results but makes the following explanations easier to understand.

Then, we switch to a new scheduler that uses a coarse-grained notion of rounds.
Rounds are the time unit in the rest of this paper.

Definition 1 (Round). A round is a minimal sequence of consecutive events during
which the following happens:

1. each process executes its spontaneous guarded rule at least once ;



2. all messages sent as part of (1) are received and the corresponding guarded rules
are executed ;

3. all message sent as part of (2) are received and the corresponding guarded rules
are executed. This applies recursively to the duplicated merge agreement messages.

The existing proof of self-stabilisation allows us to switch to this definition since it
implies that the number of actions in a round is necessarily finite.

We define the start of round 1 as the first action in an execution and, recursively, the
start of round © > 1 as the first action following the last action of round v — 1.

6 An Upper Bound on the Convergence Time

We divide the discussion according to the value of §, the bound on the degree of the
spanning tree we are building. Nevertheless, we follow the same guiding thread for the
different cases. The idea, as proposed by Gouda [7], is to define a metric over the set
of configurations. Indeed, usually, in order to prove that a randomized self-stabilizing
algorithm 4 reaches a set £ of legal configurations in finite time with probability 1
starting from an arbitrary initial configuration, one exhibits a potential function that
measures the distance of any configuration to £, such that this potential function de-
creases with non-zero probability at each step of A. In each subsection, we define an
appropriate metric (potential function) according to J, the bound on the degree. Once
the metric reaches its minimum, the system has converged.

In two separate subsections, we consider first an oracle that uses a uniform distribu-
tion, then an oracle that follows a power law.

6.1 Uniform distribution

In this section, we assume that the oracle may choose each identifier with probability
1/N.

Case § = 1 Since § = 1, each node may have only one son. Therefore, the main idea
is that only one tree is a solution to the problem. It is in fact a chain of processes, ranked
from the highest identifier to the lowest. We define that a process is at its right place
iff 1) the root of its tree is M ax and 2) its parent is the smallest higher process and its
child is either L or the highest lower process. Once a process is at his right place, it will
never change position. We define the following metric: ¢ =(Number of processes that
are not at their right place).

Let us study the worst scenario: during each round, only one process joins the final
tree, so that the number of processes at their wrong place decreases by one at each
round. We model the problem as shown in figure 2, where a state represents the number
of processes that are not at their right place.

During each round, the process with the highest identifier that is not in the final tree
queries the oracle and has a non-zero probability to join the final tree. For example, let
us assume there are k processes at the wrong place. Therefore we know that there are
already IV — k processes in the tree. When Fp, the process with the highest identifier



(a) 6 = 1, N = 10, Number of processes (b) 6 = 1, N = 10, Number of processes
at their right place= 3. Insertion of a sub- at their right place= 4. After the inser-
tree. tion: the metric has decreased.

Fig. 3. Two Examples

among the N — k — 1 processes not in the final tree, executes the algorithm, if the oracle
answers one of the N — k process with a higher identifier, then Py joins the final tree.
Otherwise, nothing happens. Therefore, it is enough that the oracle chooses one of the
N — k process with a higher identifier for the metric to decrease. Such an event has
probability (N — k)/N to occur.

An example is shown on figure 3(a). We see that u = 10-Number of processes at
their right place = 10-3 = 7. Then process 7 sends a message to process 9. This means
that after having queried its oracle, the answer was 9. According to the algorithm, the
maximal degree of the tree being reached, process 9 looks at the identifier of his son.
Its child has an identifier higher than 7. Therefore the new process does not replace its
son; instead, the information is passed down to process 8. This one has a child with a
lower identifier than 7, so a replacement is done. The result is shown on figure 3(b),
where 1 = 10 — 4 = 6.

To compute the expected time for p to reach its minimum, we introduce the follow-
ing stochastic process: Vk € N, X, = Number of processes not at their right place at
time k.

Proposition 1. (X,,),cy is a Markov Chain.

Proof sketch: It is easy to see that the number of processes correctly placed on the
tree at time ¢ 4 1 only depends on how many of them were at their right place at time ¢.

Remark 1. This ensures that the algorithm converges with probability 1.



Fig. 5. Example for § = N

Definition 2. The expected time for the chain to reach state k, knowing its initial posi-
tion was 1, is: Vk,1 € [0,...,N], T} = E[2\ X, = k knowing X, = I].

Using these definitions, we obtain the following induction formula: Té““ =1+
Nokbphk + ETE+! which leads to (Tg+! — TF) = . After summing from 0 to

N — 1 (we notice that T = 0), we have: T3¥ = Nziigl T ~Niotoo N log (N).

Case &6 = NN This is the second marginal case. We need to define a different metric:
= (N — Identifier of the smallest root). The tree is built as soon as there is only one
root, i.e. when the identifier of the smallest root is N, thus when y = N — N = 0.
Again, we study the worst-case scenario, i.e. at each round only the smallest root joins
the final tree. This is illustrated in figure 4, where a state represents the identifier of the
smallest root. Assume k is the smallest root: when k queries the oracle, it is enough that
it answers one of the N — k higher identifiers for the metric to decrease. This justifies
the probability transitions that appear on the figure.

We introduce the following stochastic process to compute the expected time for p
to reach 0: Vk € N, X, = the identifier of the smallest root at time k.

Proposition 2. (X,,),cn is a Markov Chain.

The proof is similar to that made in the case § = 1.
The computation of the convergence time is similar to what we did in the case § = 1.
Using the previous definition: V& € [0, ..., N] Tk = E [#\ X, = N knowing X, = k],

we obtain: T = 1+ XT3+ + £TX which leads to (T — Th') = 2.
Therefore, the expected convergence timeis 79 = N SV " <=~y o0 Nlog (N).

On the example given in figure 5, we see that the process with the smallest identifier
has a non-zero probability to join the tree.



Fig. 6. Insertion of the subtree rooted in 7 into the main tree

Case 2 < § < N — 1 We now turn to the main case, thatis 2 < § < N — 1. We
define the following metric: ;+ = (Number of roots,identifier of the smallest root).

The minimum of this metric is (1,N). When it is reached, there is exactly one root,
namely Mazx, and convergence is achieved. This metric cannot increase since it is not
possible in the algorithm to drop two children simultaneously. We now show why it
decreases. The idea is that during each round, either the first component decreases,
or the second one does. If the number of roots decreases then, obviously, the metric
decreases. Otherwise, a root tried to join a tree and took the place of another process.
According to the algorithm, a process can only replace a child p with a process ¢ s.t.
q > p. This indicates that the new root necessarily has a smaller identifier than that of
the former root. The second component of the metric decreases.

Figure 6 shows the possible cases for the insertion of a subtree into the main tree.

We can now compute the expected time before this metric reaches its minimum.
The worst case goes as follows: the first component stays constant until the second
one reaches its minimum, then the number of roots (the first component of the metric)
decreases by 1 and the second reaches its "new”” maximum, and so on.

Therefore, in order to compute the worst-case convergence time, we need evaluate
the time needed for the second component of the metric to reach its minimum, i.e. the
time after which no process smaller than the smallest root can become root. In order to
study the convergence time, we split the calculations into two phases.

When we studied the case where § = N, we showed that any process k£ becomes
the smallest root in the system in at most (N — k) log (N — k) rounds. Thus, since at
most IV processes will ]\go through this number of rounds, the total convergence time is
equivalent to: N + >, (N — k) log (N — k) ~ .o N2 log (N).

Proof sketch: The idea is to use the equivalence between sum and integral:

S (N = E)log (N — k) ~nvaoo [ @ log ada.
N

0 fON xdx, which is enough to lead to the

We obtain: fON zlogz = [2?log ]
result.



6.2 A more realistic distribution

In a state-of-the-art large scale system, the global knowledge of the whole set of process
identifiers is distributed among all the processes. The usual device that connects the
processes to the rest of the system is a peer sampling service. It provides each process
with a small set of live process identifiers and ensures that the global knowledge graph
is connected.

Recent works in this field [9] has shown that the resulting graph does not follow a
uniform distribution, as was previously assumed, but rather a power law. Informally, a
realistic oracle based on such a service should give each process p a very high probabil-
ity of obtaining the identifiers of a small set of processes, which can be seen as “close”
to p, and a very low, but non-zero, probability of obtaining any other process.

In this section, the answers of the oracle are distributed as follows: k € [1, L%j [ and
« €]0, 1] are given. If process i queries the oracle, it returns process j with probability
pij such that p;; = o/2k if |i — j| < k mod(N), (1 — «)/(N — 2k) otherwise.

The main idea is to give « a large value (close to 1) to introduce a bias in favor of
the nearby processes.

In order to complete the complexity study, we must now compute the convergence
time of the protocol assuming that the oracle follows this distribution. To simplify the
calculations, we assume without loss of generality that & is 1.

Case 6 = 1 We use the same metric as for the uniform distribution: x =(Number of
processes that are not in their right place). This measure converges toward 0. We now
compute the convergence time.

We define 3, = ¢ + 2E-2 (1 — a).

Using the same technique as in the previous calculations, we obtain that Té“'l =
L+ B TE + (1 — Bp)Tett. So: Tett — T = [le By summation over k, we obtain
TN ~ NinZte,

0 2—a

We observe that convergence is achieved faster. Moreover, once a process asks the
oracle for a new value, it has a greater chance to obtain exactly the right one (i.e. the
immediately higher identifier), which decreases the number of delays in the algorithm.

Case 6 = N Again, we reuse the same metric: ;. =(/N-Identifier of the smallest root)
in order to compute the convergence time.
The scenario is exactly the same as in the previous section. The convergence time
2+a

towards N for pis: Ty ~ N In5ES, which is once again better than the convergence

time in the uniform distribution case.

Case 2 < § < N — 1 This case is more complex, but we take again the same metric:
© =(Number of roots, Identifier of the smallest root).
As usual, the second component of the metric first decreases to its minimum, then
the first one decreases.
24« k=N

In the same way, the convergence time is equivalent to in 5> >, ~ " (N — k) which

2+«

is equivalent to N2 In 5+,



Here again, the convergence time is slightly better. This improvement in the con-
vergence time is an encouraging result from a practical point of view. Indeed, it was
widely believed that a uniform distribution was good in this context while in fact, the
power law that can be observed on real systems yields better results.

7 Conclusion

We studied the theoretical convergence time of a self-stabilizing spanning tree algo-
rithm for large scale systems from a probabilistic point of view. We first showed how
it behaves in under the standard hypothesis that a process could learn the identity of its
peers following a uniform distribution. Then, we switched to the more realistic hypoth-
esis that the underlying topology is a small world network in which peers are discovered
following a power law, where convergence is achieved faster.
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