
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

IMPLEMENTATION OF AN ORACLE ON TOP OF

A PEER SAMPLING SERVICE

PERES O

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

01/2008

Rapport de Recherche N° 1489

Implementation of an oracle
on top of a peer sampling service

Olivier Peres

February 12, 2008

Abstract

Peer to peer systems are large scale distributed systems in which each
node has the same role as any other node. Due to their size, these systems
distribute the global knowledge of the whole list of peers onto the system
such that no one node has the list of all the other nodes. A peer sampling
service links the nodes together, forming a connected topology.

To write distributed algorithms for peer to peer systems, one can rely on
an oracle, which abstracts out the peer sampling service. We introduce a
method to implement this oracle on top of a peer sampling service using a
random walk.

1 Introduction

Distributed algorithms work on systems made of several processes linked by a
communication network. It is usually assumed that each process knows the list of
its neighbours, i.e. all the processes with which it can communicate. This list is
updated whenever a process arrives or leaves the system.

This hypothesis, however, is too strong in a large scale peer to peer system.
Such systems include thousands of processes, which makes the cost of maintain-
ing neighbour lists too high. Instead, peer to peer systems rely on peer sampling
services [3]. Each process can access the service to learn new process identifiers.
An underlying protocol maintains a connected topology throughout the execution
by inserting arriving processes and deleting departing processes.

In order to write algorithms for large scale systems, one needs a model [2]. In
this model, each process has a theoretical device called oracle that abstracts out
the peer sampling service. This allows the programmer to rely directly on a device
that exhibits desirable properties without having to know how it is implemented.

The implementation of an oracle on top of a peer sampling service remains to
be addressed. In this paper, we present a solution based on a Markov chain. We
show that our implementation has the properties that an oracle needs and discuss
both the theoretical and the practical aspects.

1

The rest of the paper is structured as follows. We discuss related works in
section 2, we formally define our implementation and present its theoretical as-
pects in section 3, we discuss practical considerations in section 4 and conclude in
section 5.

2 Related works

Jelasity, Guerraoui, Kermarrec and van Steen formalised the concept of a peer sam-
pling service. According to their definition, such a service provides its user with
a function getPeer that returns a process identifier. They proposed a framework to
implement and evaluate peer sampling service, arguing that all of them maintain
a topology by a gossip-based protocol. The list of identifiers available on a given
node is its view. An implementation of a peer sampling service has three main
characteristics: peer selection is its policy concerning the choice of a neighbour
with whom to exchange information, view propagation determine who sends in-
formation to whom once a peer is selected, and view selection is a view truncature
function. According to the authors’ experimentations, the resulting services do not
build a random graph based on uniform randomness, but a small-world network
following a power law degree distribution.

The theoretical model [2] based on peer sampling services provides an oracle
that abstracts out this concept. The oracle, when queried, provides a process iden-
tifier. There is no guarantee on any one identifier, for example it could belong to a
stopped (crashed) process. However, the collection of all the oracles in the system
verifies a global condition : in an execution, if S is the set of processes that query
their oracle infinitely often, then any s ∈ S eventually obtains all the processes of
S. This gives a theoretical basis in which one can write algorithms that can run on
large scale system.

Gkantsidis, Mihail and Saberi [1] studied the effectiveness of random walks on
peer to peer systems. This paper uses some of their results, e.g. the time needed to
reach the stationary distribution and the cover time.

3 Theoretical discussion

3.1 The algorithm

It is basically a random walk on the graph induced by the peer sampling service.
Below is the formal version.

When first queried, the oracle Op of process p sends a Request(p) message
to itself. Whenever a process q receives Request(p), it calls getPeer to obtain a
process r among its neighbours in the view provided by the peer sampling service.
Then, q sends Result(r) to p.

When p receives Result(r), it returns r as its answer. The next time p queries
its oracle, p sends Request(p) to r and the random walk resumes where it ended.

2

3.2 Properties

This protocol uses almost no memory. In a system comprising n processes, it only
uses two messages of size O(log n) per request, since each of them only carries a
process identifier.

This implementation of an oracle is probabilitic. This makes sense in a large
scale system because a (non)deterministic approach would not be scalable. For
example, to enumerate all the possible paths in the graph, each node would need
one word per process in the system, which is exactly what we want to avoid.

The behaviour of this algorithm can be deduced from the article of Gkantsidis,
Mihail and Saberi [1]. Consider a realistic peer to peer system. Assuming nodes
are numbered from 1 to n, all the edges are bidirectional, there are E edges and δi
is the degree of node i, the stationary distribution of the random walk is ~π such that
for all i ∈ J1, nK, πi = δi

2E .
In the context of self-stabilisation, the first steps needed to reach ~π can be seen

as a convergence time. An upper bound on this time is τ = log π−1
min

1−λ2
, where λ2 is

the second eigenvalue of the transition matrix. In realistic systems, −1 < λ2 � 1.
Another relevant metric is the cover time, i.e. the number of steps Cn needed

for the random walk to visit all the nodes at least once. It is O(τ
−1
min logn
1−λ2

).
In real systems, πmin = Ω(1

n) and λ2 does not change much over time. Thus,
the convergence time is O(log n) and the cover time is O(n log n).

Remark 1. The fact that the cover time is bounded means that this implementation
eventually verifies the global condition on the oracle with probability 1.

4 Practical aspects

In a real system, the time between a query to an oracle and its answer is very long
since several messages need to be sent around the system. A query to an oracle
is an internal operation, so its running time should be negligible. Also, all the
processes are treated equally. In practice, only some of them are of interest for the
user algorithm. As a result, the answers of the oracle will often be irrelevant.

4.1 Running time of a query

To make queries faster, we propose a caching mechanism. Each process has a
buffer that holds m results. The Request message takes an integer parameter k,
the number of steps that the random walk should take. Each step returns a result
to the initiator, the last one (taken with k = 1) returns an EndResult from which
the random walk is to be restarted when new identifiers are needed. When a new
result arrives, it replaces the least recently used result. Each process can thus keep
its cache filled, provided m is chosen appropriately.

3

4.2 Making the results more relevant

Typically, for a given user algorithm, a given process is able to determine whether
its own identifier should be returned as an answer. In the revised algorithm, each
process p returns its own identifier as a result with probability αp ∈]0, 1[, so the
random walk skips p with probability 1−αp. On a regular basis, each process calls
a function candidate, provided by the oracle, that takes a boolean argument. If this
argument is true, the oracle increases αp and if it is false, it lowers αp.

If a process itself does not know whether it is a good candidate, other process
may help in obtaining this information. Whenever a process gets p as an answer
from its oracle, it may vote, again with a boolean argument, to inform the oracle
that this result was, or was not, useful. The oracle of p can then adjust its probabil-
ity accordingly.

This new algorithm is in the same complexity class as the basic algorithm, but
we expect that the constants involved should be lower.

5 Conclusion and future works

We present an implementation of a theoretical oracle on top of a peer sampling
service, as found in modern peer to peer systems. This allows to run algorithms
designed for scalability in real systems.

We intend to make experimental measurements on real systems to evaluate the
performance of this implementation. In particular, it will be interesting to deter-
mine what a good value of α would be.

References

[1] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer net-
works. In 23rd Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM 2004), volume 1, pages 120–130, 2004.

[2] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. A model for
large scale self-stabilization. In 21st IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2007.

[3] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer
sampling service: experimental evaluation of unstructured gossip-based im-
plementations. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, pages 79–98, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

4

	RR1489entete.pdf
	RR1489rapp.pdf

