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Abstract : In this article we study proper valuations v : FE(G) — N* on the
edges of a graph G, such that the sums of the values taken on the edges incident to
each vertex ( the weight of this vertex) are all distinct. We look for the minimum of
max(v) among the possible valuations for some particular classes of graphs.

I. INTRODUCTION.

We consider connected graphs G = (V, E) without loops or multiple edges and
consider valuation on the edges that allow to distinguish the vertices. There are several
variations of this problem we describe below.

Consider a valuation v on the edges of G i.e. a function (coloration) v : E(G) —
N*. We call |v(E)| the size of the valuation. This coloration is (or not) proper.

It induces a valuation (or coloration) on the vertices of G by

- either the sums w(z) = Z v(zy)

yEN(z)

- or the multisets S(z) = {v(zy),y € N(z)}.

Then we add a last restraint

- either two adjacent vertices must have different valuations

- or all the vertices must have different valuations.

This leads to eight possible notions and parameters :

(p/np,1/g,%/Q) that is proper/no proper valuation of the edges in which the ver-
tices are distinguished in a local/global manner with sums/sets and then correspondant
parameters xq 5 (G,p/np,1/g) : minimun of the maximum value in a (p/np, /g, %/Q)-
valuation. Several authors worked on some of these parameters, for instance see [1],
(4], (3], [5]-

In this article, we focus on x% (G, p, g). Call admissible valuation on E any proper
valuation v : E — IN* distinguishing vertices by sums, that is to say such that for

two vertices = # vy, Z v(zz) # Z v(yz). There is no such valuation for the graph

zzeE yzeE
K, so from now on, we assume that |V (G)| =n > 3.
An admissible valuation of size |E| = m always exists : namely, let E =

{e1,e2,--+,em} and f(e;) = 2°. Since, for  # y, the set of edges incident to x is
distinct from the set of edges incident to y, the binary numbers Z 27 and Z 27 are

ree; yee;
distinct. Of course, this valuation is very bad in the sense that its maximum is by far
too large, even if m values are necessary. For instance, if G = K;,, n > 2, any two
edges are adjacent so every admissible valuation is of size m = n, but the values from
1 to n are sufficient for distinguishing vertices by sums.



For v an admissible valuation, and = € V, we call weight of z and note w(z) the
sum w(x) = Z v(e;).
rEe;
The subset {max(v(E)) | v an admissible valuation on E} of N being nonempty
has a minimum, which we denote by x.,(G) for simplicity. For instance, x.,(K1,) = n.
Recall that a proper vertex-distinguishing coloration (in short pvdc) of E of size ¢,
is a surjective application ¢ : EF — {1,---,q} with the following properties :

e for any two adjacent edges e, €', ¢(e) # ¢(e')

e for any two distinct vertices x # y the multisets {¢(e) | z € e} and {p(e) | y € e}
are distinct.

Then we have the following :

Theorem 1 There is an admissible valuation on E of given size, if and only if there
is a pvdc of E of the same size.

PROOF. For a necessary condition, if v : E — N* is an admissible valuation of size ¢,
then any bijection g : v(E) — {1,---, ¢} induces a pvdc ¢ = g o v. Conversely, if ¢
is a pvdc of size g, then v = 2¥ is an admissible valuation of the same size. [ |

The minimum of colors used in a pvdc of E is denoted by x.(G). We immediately
deduce the following :

Corollary 1 For any graph, we have x.(G) < x.,(G) < 261,

These bounds are tight. For instance, x}(K1,) = X,,(K1,) = n and x,(G) =4 =
2X:(G)=1 for the “extended-3-star” G obtained by identifying the first extremities of
three copies of P;.

II. Other bounds.
We give a lower bound for x. (G) in the general case, and other bounds cor regular

graphs.

Theorem 2 If G is a graph of order n, with mazimum (respectively minimum) degree
A (respectively §) then

1 A1 5(6+1)
! > n )
Xw(G)—[ A T T w

PROOF. For any admissible valuation v on E(G), there are n distinct weights on the
vertices, so the minimum weight w and the maximum weight W satisfy the inequality
n—1<W —w. On one hand we have in all cases w > 1+---+6 =§(6+1)/2. On the
other hand, if we have max(v) = x.,(G), then W < (x,,(G) = A+ 1)+ -+ x,,(G) =

2



A2x,(G)—A+1)/2thusn—1< W —w < A(X,,(G) — (A =1)/2—-6§(0 +1)/(24))
implying inequality of the theorem. [ |

This bound is tight : for instance, we shall show that x}, (K, ,—1) = p+1if3 < p < 8.

Let G be a d-regular graph, d > 2, and ¢ any integer> 1. A valuation v on F is
admissible if and only if the valuation v + ¢ is admissible, since all the weights are
increased by dg. Therefore we have :

Proposition 1 If G is reqular and v is an admissible valuation on E with max(v) =
X.p(G), then min(v) = 1.

The following result is almost as obvious :

Proposition 2 If G is a d-regular graph x.,(GOK,) < 2x.,(G) — d + 2.

PROOF. Let v be an admissible valuation on the edges of G with maximum x. (G).
On one copy of G put v + 1 so that the minimum is now 2. Since the difference
between the maximum and the minimum weights is at most d(x.,(G) — d), by setting
v+ (x,,(G) — d +2) on the edges of the second copy og G we obtain distinct weights
greater than those of the first copy. Now we give value 1 to the edges of the perfect
matching corresponding to factor K, of the product and we are done. [ |

We may slightly improve, for d-regular graphs, the lower bound d+ (n — 1)/d given
in the first theorem of this section by the following result, which is significant when d
divides n — 1 :

Theorem 3 Let G be a d-regular graph of order n. Then we have :

! > |d —
62 [d+ "t 2

with € = 1 if the number n(2D +n — 1)/2, where D = d(d + 1)/2, is odd, and e = 0
otherwise.

n—1 26—‘

PROOF. Let v an admissible valuation on E with max(v) = x,,(G) = p, and size
[v(E)| = ¢, say v(E) = {v1,...,v4}. For 1 < i < g, let k; be the number of edges
g

such that v(e) = v;, so we have Zkz = |E| = nd/2. The n weights w(z), x € V are
i=1

distinct numbers at least equal to 1 + -+ 4+ d = D. So the total sum of weights is at

least D+ ---+ (D+n—1)=n(2D +n—1)/2. In this sum, the value v; appears 2k;

times, therefore we obtain, since this sum is even (e being as in the statement of the

Theorem) :

q
2Y kv >e+n(2D+n—1)/2.
i=1



Now, since G is regular, v' = p + 1 — v is another admissible valuation on E and
we have also :

q
2 kv > e+n(2D+n—1)/2.
i=1
Adding these two inequalities, we obtain : 2(p+1)nd/2 > 2e+n(2D +n — 1) which
gives the result. u

This bound is tight : for instance if G is the well-known Petersen graph, one can
easily find an admissible valuation v on its edges with max(v) = 7.

ITI. Results following constructions for x..

The construction given in [2] for a proper vertex-distinguishing coloring of the edges
of K, of size x,(K,) altogether gives an admissible valuation :

Theorem 4 We have :

. o _[n if nis odd
Xu(Kn) = X5 (Kn) = { n+1 if nis even

PROOF. Recall the construction of [2]. For k£ > 2 arrange the vertices of Ky in the
form of a regular (2k — 1)-gon x1,...,%9_1 with one vertex xo in the center. The
radial edge (xorx;) together with the edges perpendicular to it is a perfect matching,
to which we give the valuation 7. At this step, all the vertices have the same weight.

In order to obtain a Ky, 1 delete vertex x;. Since the valuation was proper, the
weights of the other vertices decrease by distinct values, which gives the result for n
odd.

Now, for k£ > 3, delete moreover 5. It is easy to check that the sums (v(x;z1) +
v(z;2))s<i<2k are all distinct. Therefore we obtain an admissible valuation of Koj_o
and the result for n even. [ |

IV. Some results on irregular bipartite complete graphs.

We already saw that for n > 2, xL(K,1) = xi,(Kn1) = n with the set of values
{1,...,n} on the edges. So we concentrate on the graphs K, , with n > p > 2.

We shall denote by z; the vertices of one class (if n # p, the larger one) and by x;
those of the other one. Following the process which leads to x%(K,,) = n+ 1, we may
put, for 1 <i <n+1and 0 < j < non each edge z;x5,; (or zz},; , , ifi+j>n+1)
of a K, 41041 the value v;11 in such a way that the set {v; | 1 < i < n + 1} equals
{1,...,n+ 1}, then erase one vertex z; of the first class, and n + 1 — p vertices of the
other class. Unfortunately, this does not give distinct weights in general. However we
have :

Theorem 5 If p is relatively prime to n+ 1, and 2 < p < n — 3, then x,,(K,,) =



PROOF. For any integer k, let k = 1+ ((k — 1) mod (n + 1)) that is to say, the unique
integer in the range [1,n + 1] such that k — k is divisible by n + 1. Let g =n+ 1 — p,
so ¢ is relatively prime to n+ 1. Put a=n/2ifniseven,a = (n—1)/2if n =4k +3
and a = (n — 3)/2 if n = 4k 4+ 1. In every case a is relatively prime to n + 1.

With the above notations, let v; = 1 4 (¢ — 1)a. Since a is relatively prime to n+1,
the sets {v; | 1 <i<n-+1}and {j|1<j<n+1} are equal, so the weights on the
edges of the K, 11041 are allequal to W =1+---4+ (n+1) = (n+1)(n+2)/2. Now
we erase the vertex z; in the first class, and vertices z;,p+1 < i < n + 1 in the other
class.

Therefore the weights of the vertices z},1 < 7 < p decrease respectively by the
values v;, all distinct and all no greater than n + 1 and the remaining weights w; are
therefore all distinct. On the other hand, the weights of the x; decrease since ¢ > 4 at
least by 1 —a+ 1+ (1 +a) =n+ 4 and the remaining weights w; are all distinct from
thew. For 1 <i<n+1,lets;=(01+(G—1)a)+(1+ia)+ -+ 1+ (G+q—2)a)
and 3; = v; + -+ v, sofor 1 <i<j<n+1, 55— — (5 — §) is divisible
by n + 1, whereas s; —s; = (j — ¢)ga is not, since ga is relatively prime to n + 1.
Thus the §; are all distinct. Now the weights w; are n distinct elements in the set
{W —35;|1<i<n+1}, so we obtain an admissible valuation on the edges of K, ,.
|

With other choices of the values v;, we obtain the following
Theorem 6 For anyn >4, x.,(Knn—2) = Xs(Kpn-2) =n+1.

PROOEF. As above, let W = 1+---+(n+1) and {v; |1 <i <n+1} ={1,...,n+1}. For
any choice of the values v;, by erasing vertices zpn41,2;_,, 2, and z;,, the remaining
weights for the other z are all distinct and not smaller than W — (n +1) ; those of the
vertices z;, 1 < i < n—1 are the elements of the set {W —(v; = v;11+vis2) |1 < i< n-—1
and that of the vertex z, is W — (v,41 + v1 + v2). In order to obtain an admissible
valuation, it is sufficient that the n sums v; + v;11 + V40,1 <1 <n— 1,0, + Vpy1 + 11
are distinct and all greater than n + 1. We give in any case a choice satisfying these
properties, letting the checking to the reader.

e Ifn=3k—2 for1 <i<k,vy 9g=14,v35 1 =t+kandforl1 <i<k-—1vs =
1+ 2k.

o Ifn=3k—1,for1 <i<k,vy;_o=1—142k,v3;_1 =1, forl <i<k—1,v3 =i+k
and v, = 3k.

L4 Ifn=3k, for 1 Sis]{I,’U3i_2:i,?)3i_1:Z'+k,U3i:7;+2k and ’Un_|_1:n+1.
|

And with some slight modifications, we also obtain the following result :

Theorem 7 If p satisfies 2 < p <n— (V8n +25—15)/2, then x,,(Knp) = Xs(Knp) =
n+ 1.



PROOF. We only need to give a proof when gcd(n+1,p) = dis at least 2 and p > 3. First
begin with valuations v; = 7 on the edges of a K, 11 41, and weight W = (n+1)(n+2)/2
for all its vertices. Then erase vertex x; of the first class and vertices z;, p+1 < i < n+1
of the other one. The remaining weights of the second class are W — 1,1 <4 < p, all
distinct. Those of the first class are the elements of the two sets Wy = {w; =i+ --- +
(i+p—1)|2 <i<n—p+2},and Wy = {w; = j+---+(n+1)+1+-- -+ (j+p—n—-2) =
j+-+0G+pr=-1)—(G+p—n—=2)(n+1) | n—p+3 <j <n+1}. The elements of
each W, are obviously distinct, but it may occur that some w; in W; is equal to some
w; in W, which actually is the case. Now add 1 to the valuations v(:v,-x;,) for2<i<p
and substract p to the valuation v(z,412;,) (the result is 1). By this modification, the
weights of the second class become W —i,1 <i < (p—1) and W — (p+ 1). those of
W, remain unchanged except for the lesser one wy replaced by wy —p (so these weights
remain distinct) and each weight of W, is increased by 1, and they remain distinct.
Let define d' by :

e d =difdis odd or if d = 2 and p divisible by 4.
e d' = d/2 otherwise.

Note that we have d’ > 2 except for the case when d = 2 and p not divisible by 4,
where d’ = 1. Since each sum i+---+(i+p—1) = p(2i+p—1)/2 is divisible by p if p is
odd, and by p/2 but not by p if p is odd, each weight of W; U Wj, before modification
is divisible by d' when d’' < 2 (respectively is odd when d' = 1) and after modification,
this property is preserved for the weights of W, but not for the weights of W, therefore
these modified weights are all distinct. Now, condition p < n — (vV8n +25 — 5)/2
insures that they are distinct from the remaining weights of the other class, since they
are at most equal to (n —p+2)+---+ (n+1) = p(2n — p+ 3)/2 and the equation
p(2n —p+3) =2(W — (p+1)) (that is to say p* — (2n+ 5)p+ (n® +3n) = 0) in p has
two roots, namely p; =n — (V8n +25—5)/2and pp =n+ (V8n+25—-5)/2>n. A

CONJECTURE. For 2 < p < n — 2 we always have x,, (K, ,) =n+ 1.

On the contrary, whereas for any n > 3, x4(K,,—1) =n+ 1, we have
Theorem 8 If3<n <8, X\, (Knn1)=n+1, but forn>9, x\,(Kpn-1) >n+2.

PROOF. We can put the values of a valuation on the edges of a K, , as coefficients of
a (n,p) — matrizV, namely v ;) = v(z;z;). The valuation is admissible if and only
if the coefficients in each line or column of V' are all distinct and the n + p sums of
coefficients of a line or column are all distinct. For 3 < n < 8 the following matrices

give an admissible valuation with maximum value n 4 1 for the edges of K, ,,_; :



1 83 6 4 2)
123 4\ (1325 T\ g7 5 3
12 5 2 6 7 1 3
1 3 2 3 1 5 3518 6 4
2 3 4 316 2 4
2 1 3 45 6 432175
31 2 421 35
3 4 L5 3 4163, - 54 c||54728%6
5642/ \ 4 5 0 9)|06 24317
76 5 4 3 8)
1289643\
2 59 8 7 6 4
391785 2
4321975
543 2 1 8 6
6 1 43 2 97
76 5 4 3 1 8
8 76 5 4 3 9

Now if there exist an admissible valuation with maximum value n+1 on the edges of
a K, ,,_1 the sums of the lines of the associate (n,n — 1)-matrix are n distinct elements
of the set S = {w,...,w+2(n—1)} where w = 1+---+(n—1) and those of the columns
are n—1 distinct elements of the set G = {w+n, ..., w+2n}, the sum o of the n weights
taken in S being equal to the sum ¥ of the n —1 weights taken in G. Note that we have
G\S = {w+(2n—1),w+2n} and that SNG is of cardinality n—1. Let k the number of
elements of this set occuring in the sum . If £ were 0, the elements occuring in o would
all be in the set S\ G and we would have o < X, a contradiction. So £k =1 or k = 2. For
k=1wehaveX > (n—1)w+(2n—1)+(n—2)(3n—3)/2 = (n—1)w+3n?/2—5n/2+2
and 0 < nw+ (2n —2) + (n —1)n/2 = (n — )w + n® + n — 2. Equality ¥ = o implies
3n%/2 —5n/2+2<n*+n—2son <5

For k =2 weobtain ¥ > (n—1)w+4n -1+ (n—-3)(3n —4)/2 = (n — H)w +
3n°/2—5n/2+5and o < nw—+4n -5+ (n—2)(n+1)/2 = (n — 1w +n®+3n — 6
and equality between the sums implies 3n?/2 — 5n/2 45 <n®+3n—6son < 8.

The following matrix actually gives an admissible valuation on the edges of Kyg
with maximum value 11.

(45 6 7 8 9 10 1)

5 11 9 8 10 2 1 6
6 10 7 9 1 8 11 4
7 03 8 6 11 1 2 10
§ 9 10 1 2 7 4 3
9 2 1 10 4 11 3 5
10 4 11 2 3 6 5 9
11 1 4 5 7 3 6 2

\3 s 5 11 9 10 7 1)

CONJECTURE. For n > 9 we have x.,(Kpn-1) = n+ 2.



V. The regular bipartite complete graphs.

Theorem 9 Forn < 2, x.,(Knn) = Xs(Knpn) =n+ 2.

PROOF. Let v any valuation on the edges of a K, , whose values are in the set
E, = {1,---n +2}. As above, we set the values v;; = v(z;7;) as coefficients of
an (n,n)—matrix V. Then v is an admissible valuation if and only if the n lines L;
and the n columns V; are 2n subsets (necessarily distinct) of cardinality n of E with
the following properties :

e For any k € E the sets {i | kK € L;} and {j | £ € C;} have the same cardinality.

e The 2n sums of the coeflicients of each line and each column are distinct.

Since the graph is regular, this is equivalent to the fact that the 2n complementary
subsets L; = L; and C} = Cf are 2n subsets of E of cardinality 2 satisfying the same
properties.

Thus we can solve the problem in two steps : first give 2n subsets of cardinality 2
in E having the required properties, then construct an (n,n)-matrix V' such that the
sets L; (respectively Cj}) are the sets of “missing numbers” in the lines (respectively
the columns) of V. This is done in the following for n > 5 since the following matrices
are easily seen as solutions for respectively n = 2,3 and 4 :

1 2 3 4
4 2 g?; 2 3 1 5
3 1 45 1 5 6 4 1
6 4 5 2

FIRST STEP. If n is even, take as sets L} the n/2 sets {1,1} with2+n/2<i<n+1
together with the n/2 sets {j,n+2} with 2 < j < 1+4+n/2. Assets C} the n/2 sets {1,i}
with 2 < ¢ < 1+n/2 together with the n/2 subsets {j,n+2} with24+n/2 < j <n+1.

If nis odd, for the L} take the sets {1,4}, (n+3)/2 < ¢ < n and the sets {j,n+2},2 <
Jj < (n—1)/2 together with the sets {(n + 1)/2,(n + 3)/2} and {n + 1,n + 2}. For
the C; take the sets {1,7},2 <4 < (n+1)/2 and the sets {j,n+2},(n+3)/2<j <n
together with the set {(n +3)/2,n + 1}.

In every case, the required properties are easy to check.

SECOND STEP. First define, for k elements (a;)1<;<k, a matrix C (a4, ..., ax) by V(i, ) €
{1,..., k}2,0(i,j) = aj—77 Where 5 is the unique integer in {1,...,k} such that s — 5 is
divisible by k.

We divide our construction into three cases.

FIRST CASE : n oDD. Let n = 2k + 1. Put Ay = Ay = C(1,...,k+ 1) and
B =B, =C(k+2,...,2k+2). In A replace, for 1 <¢ < k41, ap, (whose value is
1) by n+ 2, call A; this new matrix. In B, interchange the lines 1 and k, we obtain a
new matrix Bj ; in this matrix, replace bj 1,1y by 1 and by ;1) by n+2, name B, the



By A,
Now erasing line £ + 1 and column 2k + 1 of this matrix gives as result a matrix V'
associated to an admissible valuation for the edges of a K, ,,.
For instance, if n = 7, the result is the following matrix

resultant matrix. Build with these matrices a (2k+2, 2k +2)-matrix V' = (41 B ) .

/92 345 6 8
4923857
3492786
7856 1 2 4
§ 56 7413
56 7 13 4 2
\6 7 89 2 3 1)

SECOND CASE : n=4k+2. Put A=C(1,...,2k+1),B=C(2k+2,...,4k +2).
For 2 <4 < 2k + 1, exchange a(; 2r+3—s) and b or43—4) in order to obtain two new
matrices A" and B’. Make two copies A}, A, of A" and two copies B}, B; of B'. In A}
replace, for 1 <1 < 2k + 1, a'(i,i) (whose value is 1) by n + 2, we obtain a matrix A.
In Bj, replace for 1 <i<kand k+2<i<2k+1, b'(i,2k+2_i) by n 4+ 1, we obtain the
matrix B;. In B replace bl(1,1) and, f0~r 2<i<2k+1, b’(i72k+37i) by n+ 1, we obtain a
A B
B, A,

matrix BQ. Now the matrix V = < ) is associated to an admissible valuation

on the edges of a K, ,,.
For instance, for n = 10 the result is the following matrix

/122 3 4 5 6 7 8 9 11
5 12 2 3 9 10 6 7 11 4
4 5 12 7 3 9 10 6 2 8
3 4 10 12 2 8 11 5 6 7
2 8 4 5 12 11 3 9 10 6
11 7 8 9 10 1 2 3 4 5
0 6 7 8 11 5 1 2 3 9
9 10 6 11 8 4 5 1 7 3
8 9 11 6 7 3 4 10 1 2

\7 11 9 10 6 2 8 4 5 1)

THIRD CASE : n = 4k. Put B = C(2k + 1,...,4k). Construct matrix A by
interchanging in C(1,...,2k), for i = k and i = 2k the coefficients c(;1y and c g+1).-
Exchange between A and B for 2 <4 < k, a(apq2-i) With b opyo—4, for k+1 <0 <
2k — 1, a(igk+1-4) With b ors1-4), and at last aggor 1) With bogor 1), we obtain two
matrices A’ and B’ of which we make two copies A, A, and B, B,. In A!, replace
for1 << Qk,a'(i’i) (whose value is 1) by n + 2 name this matrix A. In B} replace
respectively, for 1 < i <k, bf; 911y and for k+1 <4 < 2k — 1, b9y by n+1,
we obtain B;. In Bj replace respectively for 2 < i < k, bj; g4y 4, for k+1 <
i < 2k =1, bopp1_iy and by gy by n + 1 in order to obtain B,. Now matrix

V= ( g i,l ) gives a solution for K, .
2 2



For instance, if n = 8 we obtain :

(10 2 3 4 5 6 7 9)
2 10 4 7 8 5 9 3
3 8 10 2 9 45 6
y_|4 3 8 106725
9 6 7 8 1 2 3 4
8 5 6 9 2 1 47
7 9 5 6 3 8 1 2
\6 7 9 5 4 3 8 1)

VI. Exact values for the cycles.

It is not always a valuation of minimum size x’,(G) which gives the minimum Y/, (G).
For instance, an admissible valuation of G = Csg of size x.(G) = 9 induces as weights
all the combinations v; 4+ v;,7 # j, and these sums must be all distinct, implying
max(v) > 20, whereas we show in this section that x.,(G) = 20.

Theorem 10 o x (C,) = (n+4)/2, if n is even
e \\,(Ch)=(n+5)/2=2k+3ifn=4k+1
o \,(Ch)=(n+3)/2=2k+3ifn=4k+3

PROOF. The cycle C,, of order n is a 2-regular graph, giving D =3 and 2D +n—-1 =
n + 5, the number n(n + 5)/2 is odd if and only if n = 4k + 1 or 4k + 2. Theorem
deux gives x!,(G) > 2+ (n — 1)/2 + €¢/n, whence X! (G) > (n +4)/2 if n is even,
Xo(G) > (n+3)/2if n = 4k + 3 and X.,(G) > (n +5)/2 if n = 4k + 1 since in this
case € = 1.

In every case we exhibit an admissible valuation with equality holding for the max-
imum. Let eq,...,e, be the clockwise sequence of the edges. We give the sequence

(v) = (v(e1), -, v(en)).

e Forn =3, (v) =(1,2,3)
e Forn=14, (v) =(1,3,4,2)
e Forn =5, (v) =(1,2,3,4,5)

e Forn =26, (v) =(1,3,2,4,5,2)

o Forn=4k+3,k>1, (v) = (2k+3,1,2,(2k+ 3,2 +1,1,2 + 2)1<i<)

o Forn =4k k>2, (v) = ((2k+1,2i,1,2 + 1)1cick1, 2k + 1,2k + 2, 2k, 1)
o Forn=4k+1,k>2, (v) = ((2k +2,24,1,2i + 1)1<i<k, 2k + 3)

o Forn=4k+2,k>2, (v) =(2k+2,1,2,(2k+ 2,20+ 1,1,2i + 2)1<;<k—1, 2k +
2,2k + 1,2k + 3)
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For instance, the clockwise sequence of the values on the edges of Cig is
(10,1,2,10,3,1,4,10,5,1,6,10,7,1,8,10,9,11) which gives an admissible valuation
with maximum 11 = (n +4)/2. [ |

VII. Exact values for the paths.

The results are very similar to those for the cycles. Call as usual, P,,n > 3 the
path on n vertices V = {z1,...,z,} with edges ¢; = (z;,z;11), for 1 <i<n—1.

Lemma 1l e x;(P,) > (n+2)/2 if n is even

P,)
P,

> (n+3)/2 ifn=4k+1
) > (n+1)/2 if n =4k + 3,k > 2
5

o Xl
® Xyl

* X, (P)

v

PROOF. Let v be an admissible valuation on E with max(v) = x.,(P,) = p. Close
the path into a cycle by adding an edge ey = (zy, 1) and extend the valuation into a
valuation ¥ on E'U {ey} by setting ¥y = ¥(ey) = 0. This extension is not an admissible
valuation, since we admit the value zero, but o 4 1 is. Therefore X/, (P,)+1 > x.,(Cn)
which gives according to Theorem trois, the required inequality in the general case.
As regards the special case n = 7, take an admissible valuation v with max(v) =
X, (P7) = p. The seven weights are distinct numbers, all at least 1. If the value v; of v

is attributed to k; edges, we have 2 Zkivi > n(n+1)/2 = 28 and Z k; = 6. With
the above notation, since 75 = 0, we have also 2 Z k;v; > 28, now Z k; =7 Butv =

p+1—7 is an admissible valuation of C7, thus 2 Z kv, > n(n+5)/2 = 42. Adding these

two inequalities gives 2 X 7 x (p+1) > 70 thus p > 4. We can have equality only if the
second inequality is an equality, which implies that the seven weights (on the vertices
of C7) are in fact the numbers from 1 to 7. But the only possible decompositions of six
among them forp=4are: 1 =04+1,2=0+2,3=1+2,4=1+43,6=244,7=3+4
whereas for 5 there are two possible decompositons. If we choose 5 = 1+4 (respectively
5 =2+ 3), then the value 2 (resp. 1) would appear three times, a contradiction since
there must be an even occurence of each value in the set of weights. [ |

Theorem 11 Inequalities of the previous lemma are equalities.

PROOF. As for the cycles we exhibit sequences (v) giving the values taken by an
admissible valuation on the sequence (e,...,e, 1) with maximum value respectively
equal to (n +2)/2, (n+ 3)/2,5 when n is respectively even, equal to 4k + 3 or to 7.

e Forn =3, (v)

(1,2)

(1,3,2)

e Forn =4, (v)

e Forn=>5, (v) =(1,3,4,2)

11



Forn =6, (v) =(1,2,4,3,2)

Forn=17, (v)=(1,2,3,1,5,2)

For n =4k, k > 2, (v) = (2, (2k + 1,2 — 1,1, 20)9<ick, 2k + 1,1)

Forn=4k+1,k>2, (v) = (2,(2k +2,2i — 1,1, 20)o<ick, 2k + 2,2k + 1,1)

Forn=4k+2,k>2, (v) = (2,1,3, (2k +2,2i,1,2i + 1)acick, 2k +2,1).

It remains the case n = 4k+3,k > 2. With 1 and 2, the sums 1+ for 2 <1 < 2k+2
and (2k +2) 4+ 14,2 <1 < 2k + 1 gives all the numbers from 1 to 4k + 3. If we replace
1+ (k+2)by2+(k+1)and 1+ (2k+2) by (k+ 1) + (k + 2) we obtain a set of
weights in which each value appears an even number of times. Consider the graph G
with set of vertices {1,...,2k + 2} and edges (1,%)2<i<kt+1uk+3<i<or+1, (2,k + 1), (K +
1,k +2),(2k +2,4)2<i<ok+1. This is a simple connected graph in which all vertices but
1 and 2 have even degree, the degrees of 1 and 2 being respectively 2k — 1 and 3. This
graph has therefore an euclidean path joining 1 to 2. The sequence of numbers in this
path gives a sequence of values for an admissible valuation of P, 3. For instance, if
n = 11 we may find the sequence (1,5,6,4,3,6,2,3,1,2). [ |
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