
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

KNAPSACK PROBLEM WITH PROBABILITY

CONSTRAINTS

GAIVORONSKI A A / LISSER A / LOPEZ R

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

07/2008

Rapport de Recherche N° 1498

Knapsack problem with probability constraints

Alexei A. Gaivoronski∗, Abdel Lisser†and Rafael Lopez†

July 11, 2008

Abstract

This paper is dedicated to a study of different extensions of the classical knapsack problem

to the case when different elements of the problem formulation are subject to a degree of

uncertainty described by random variables. This brings the knapsack problem into the realm

of stochastic programming. Two different model formulations are proposed, based on the

introduction of probability constraints. The first one is a static quadratic knapsack with a

probability constraint on the capacity of the knapsack. The second one is a two-stage quadratic

knapsack model, with recourse, where we introduce a probability constraint on the capacity of

the knapsack in the second stage. As far as we know, this is the first time such a constraint

has been used in a two-stage model. The solution techniques are based on the semidefinite

relaxations. This allows for solving large instances, for which exact methods cannot be used.

Numerical experiments on a set of randomly generated instances are discussed below.

Introduction

The knapsack problem (KP) is a well-known and well-studied problem in combinatorial optimiza-
tion. Knapsack problems are often used to model industrial situations or financial decisions. They
may also appear as sub-problems of larger or more complex problems. The most famous form of
KP is the single constraint binary version: we are given N items, with a profit pi for the item i, and
a weight wi for the item i, with i = 1, ..., N , and a knapsack capacity c. The problem is to select
a subset of items so that the weight of the subset does not exceed c, and returns a maximal total
profit. In this form, the problem is known to be NP -Hard [GJ79], and has been intensively studied
in the past decades, and we now know several exact and approximate algorithms for this problem.
In particular, it admits a FPTAS [IK75]. For the quadratic knapsack problem, a survey done by
David Pisinger [Pis07] gives detailed information on the problem and a number of results on the
performance of various relaxations and algorithms used to solve or approximate the problem.

In the case of modeling financial decisions, transportation, or production plans, however, this
formulation shows its limitations, since it does not take into account uncertainty on the problem
parameters, such as the prices pi or the weights wj . Similarly, such decisions are not static, and
this model cannot take into account new information available on the prices or the weights. There
have been several studies done on the stochastic knapsack problem in the past years: work has been
done to find heuristics [CB98], approximation algorithms [KP98], [DGV04], [SS06].

∗Department of Industrial Economy and Technology Management, Norwegian University of Science and Technol-

ogy, Trondheim, Norway.
†Laboratoire de Recherche en Informatique, Université de Paris Sud, 91405, Orsay Cedex, France.

1

Stochastic knapsack problems can reach a number of binary variables and constraints of such
magnitude that commercial packages cannot find a solution in a reasonable time or memory space,
requiring the use of linear relaxations to find an upper bound on the problem. While linear relax-
ations were successful for many combinatorial optimization problems, it turns out that knapsack
problems, especially their quadratic formulation, can not be approximated tightly by linearization
based methods. Stronger relaxation methods, namely semidefinite relaxations (called SDP there-
after), have turned out to be particularly interesting for such combinatorial optimization problems
[GW95], [HR98]. See also [Pis07] for a survey on the quadratic knapsack problem.

More precisely, semidefinite programming is a recent development of convex optimization, which
deals with optimization problems over symmetric positive semidefinite matrices with linear cost
function and linear constraints. Groetschel and al. showed that semidefinite optimization problems
can be solved in polynomial time [GLS88].

In this paper we present two variants of stochastic optimization problems: the first one is a
static quadratic knapsack problem with probability constraint. The probability constraint is used
to model the risk we are willing to take when making our decision. We only know some information
about the weights of the items, but we have to take a decision with this limited knowledge at the
risk of breaking the capacity constraint. The second model is the stochastic quadratic knapsack
problem with recourse. In this model, we have a two-stage formulation which models a situation
where we make a decision with limited information, but where a second decision (the recourse) can
be made afterwards, after receiving information about the weight, or prices. This allows to modify
initial decisions. In this model, since at the second step, some information is still unknown, we face
a risk of breaking the capacity constraint when making the decision.

We can view the static stochastic knapsack as a resource allocation problem. A planner has
to choose among various products, various foods for humanitarian relief for instance, and has to
choose among them a subset to fill crates for maximal utility, with the constraint that the crates
can only carry a finite weight of food. However, he does not have all the information to select the
best products since the food has not yet been collected. With this limited information, a decision
can still be made where we accept a certain low risk, or probability, of selecting more products
than can fit in the crate. The case with recourse would then be making a decision with part of the
supplies known, and making changes in the food that will be packed once more information about
the rest of the food has been collected. However, there is a cost to move the food in or out of the
crate at the last moment. Again, since some of the information is not known, we also face a small
risk of planning to try to fit too many products into the crate.

This paper is organized as follows: first, we present the static knapsack problem with probability
constraint wherein we give a presentation of the problem. Then we reformulate this problem under
the form of an SDP problem and detail two different relaxations. We then present the stochastic
knapsack problem with recourse. Finally, numerical experiments are given in a third section.

1 Static quadratic knapsack problem with probability con-

straint

In this section, we present the static knapsack problem with a probability constraint. We formulate
the uncertainty over the weights wi with random variables, and we consider a probability (1−α) of
satisfying the constraints, where α is the risk measurement. We then present the SDP relaxation,
and the two relaxations we used to solve our problem.

2

1.1 Problem formulation

The objective is to maximize the value of the items contained in the knapsack. Objects pairs
are assigned a value cij , reflecting the synergy obtained by taking two complementary items. For
example, a hiker may carry canned food, but it has little use if he does not carry a tool e.g. can
opener. Objects may have their own value cii, for example a bottle of water in itself is valuable
to a hiker, without the need for extra flavoring or tools. To show that an item is taken, we use a
binary variable xi set to 1 if item i is taken, 0 otherwise. The knapsack, however, does not have
an unlimited capacity, and we use the constraint that the sum of the weights wi for all items taken
is lower than the capacity of the bag. In our case, there is uncertainty on the weight of the items.
Instead of requiring the weight of the items to be lower than the capacity, we want the probability
of the validity of the constraint to be greater than a certain percentage (1 − α).

The quadratic knapsack problem with probability constraints can then be formulated as follows:

max
x

N
∑

i=1

N
∑

j=1

cijxixj (1)

P

{

N
∑

i=1

wixi ≤ d

}

≥ 1 − α (2)

where xi, i = 1 : n are binary variables and wi, i = 1 : n are random variables with joint probability
distribution H . Let us consider the case where H is concentrated in the finite number of points
wk =

(

wk1 , ..., w
k
n

)

, k = 1 : K with probabilities pk such that

K
∑

k=1

pk = 1, pk ≥ 0

Then the problem (1)-(2) can be reformulated as follows:

max
x,Λ

N
∑

i=1

N
∑

j=1

cijxixj (3)

N
∑

i=1

wki xi ≤ d, k ∈ Λ (4)

∑

k∈Λ

pk ≥ 1 − α (5)

Constraint (5) means that we have to choose a subset Λ of scenarios such that the sum of the
probabilities of this subset is greater than (1 − α). For this subset, the capacity constraints will
be active and valid, whereas for the scenarios not in this subset, the capacity constraint is not
activated.

This problem can be reformulated as binary optimization problem by introducing the auxiliary
binary variable yk for each observation k = 1 : K as follows:

yk =

{

0 if k ∈ Λ
1 otherwise

3

This yields the following problem:

max
x,y

N
∑

i=1

N
∑

j=1

cijxixj (6)

N
∑

i=1

wki xi ≤ d+Myk, k = 1, . . . ,K (7)

K
∑

k=1

pkyk ≤ α (8)

where M is an arbitrary number such that

M ≥ max
k

N
∑

i=1

wki − d

This problem is a quadratic optimization problem with binary variables. The quadratic knapsack
problem is NP-hard, and so is its stochastic formulation. In this case, we seek upper bounds using
strong relaxations, namely SDP relaxations.

In the following we detail SDP relaxations we use for our experiments: first we present the
notations we use as well as the LP relaxation. Then, we sketch a first SDP relaxation. We also
present a second, tighter SDP relaxation we used.

1.2 Linear relaxation

Continuous relaxation of (6)-(8) can be derived using standard linear relaxation introduced by
Fortet in [For59]:

max
x,y

N
∑

i=1

N
∑

j=1

cijXij

N
∑

i=1

wki xi ≤ d+Myk, k = 1, . . . ,K

K
∑

k=1

pkyk ≤ α

M ≥ max
k

N
∑

i=1

wki − d

Xij ≤ xi, i < j = 1, . . . , N

Xij ≤ xj , i < j = 1, . . . , N

Xij ≥ xi + xj − 1, i < j = 1, . . . , N

0 ≤ Xij ≤ 1, i, j = 1, . . . , N

0 ≤ xi ≤ 1, i = 1, . . . , N

4

where Xij = xixj . During the numerical experiments, we omitted constraints Xij ≥ xi+xj −1,
since all of our cij are strictly positive and we have a maximization problem, these constraints
would necessarily be verified.

This linear relaxation will be used in our numerical experiments as a basis for comparison when
an exact solution cannot be found. While it is a fast way to have an upper bound, it also is a
generally very weak bound. In order to obtain tighter bounds, we use an alternative relaxation
based on semidefinite programming.

1.3 SDP relaxations

Our quadratic knapsack problem with a probability constraint uses an important number of binary
variables which makes solving large problems using exact methods impractical. Two issues can come
up; in particular, the CPU time necessary to solve large instances may be too long. For example,
one needs a decision made quickly, while the exact result could take days or longer (months, or even
years) to be computed. The second issue is that methods like branch and bound rely on search
trees and search nodes that need to be stored in memory. In certain cases, data may reach the
limit the system can handle, and therefore cannot be computed. When we cannot compute exact
solutions, we calculate an upper bound of the optimum using relaxations. Semidefinite programming
is interesting here because it requires memory and time polynomial with the input [GLS88]. This
makes it a suitable tool, which is reinforced by the fact that it gives good bounds for quadratic
binary problems [HR98], and for the quadratic knapsack problem [Pis07].

For the sake of simplicity for SDP relaxations, problem (6)-(8) can be rewritten as:

max
z
ztĈz (9)

m
∑

i=1

gki zi ≤ d, k = 1, . . . ,K (10)

m
∑

k=1

qkzk ≤ α (11)

where

• m = N +K,

• Ĉ is a m×m matrix, with each column ri defined by rti = (ci1, . . . , cin, 0, . . . , 0),

• z is a m−vector defined by zt = (x1, . . . , xN , y1, . . . , yK),

• gk is a m−vector defined by gtk = (wk1 , . . . , w
k
N , 0, . . . ,M, . . . , 0). Constant M is located at

index N + k,

• q is a m−vector defined by qt = (0, . . . , 0, p1, . . . , pK).

Using the notation above, we can easily build a SDP relaxation of (6)-(8): let X be the matrix
[

zzT z

zT 1

]

. We will use a modified matrix C defined as C =

[

Ĉ 0
0 0

]

. Let Wk and P be the

appropriate matrices constructed from gk and q. The SDP relaxation can then be written as:

5

(SDP1)

Min Trace(C •X)
s.c

T race(Wk •X) ≤ d k = 1, . . . ,K
Trace(P •X) ≤ α

diag(X) = z

X � 0

(12)

However, this relaxation is known to be weak Rendl and Helmberg show in [HRW00] that it is the
case for the quadratic knapsack problem, and Rendl and Sotirov found the same results in [RS03]
for the quadratic assignment problem. A tightening of the constraints is required in order to achieve
better results. A tighter relaxation is required to avoid having binary variables being too far from
either 0 or 1, which causes this formulation to give poor bounds.

In order to tighten the relaxation presented above, we add valid inequalities to the problem that
limit the space of solutions. One method to generate valid inequalities is to multiply a constraint by
the binary variables it contains. The resulting inequalities can be added to the problem and will help
tighten the relaxation. Sherali and Adams proposed in [SA90]and [SA94] such a relaxation scheme,
giving better results. In fact, it is possible to build a hierarchy of relaxations (see [SA90], [SA94]
and [Lau03] for more details) leading to the integer polytope. However, building each relaxation
when the number of constraints and variables increases becomes expensive, so we chose to restrict
ourselves to the first relaxation in the hierarchy, RLT-1. In our case, we can multiply constraints
(10) by xi and (1 − xi) for all i = 1, . . . , N respectively and constraints (11) by yj and (1 − yj) for
all j = 1, . . . ,K. These constraints will be referred to as Sherali-Adams constraints hereafter.We
also added the quadric polytope constraints Xij ≤ zi and Xij ≤ zj (see [Pad89] and [HPRW95] for
more details) to further strengthen the relaxation.

We obtain the following SDP relaxation:

(SDP2)

Min Trace(C •X)
s.c

T race(W̌ki •X) ≤ 0 k = 1, . . . ,K, i = 1, . . . , N

Trace(W̆ki •X) ≤ d k = 1, . . . ,K, i = 1, . . . , N

Trace(W̃kj •X) ≤ 0 k = 1, . . . ,K, j = 1, . . . ,K

Trace(˜̃
Wkj •X) ≤ d k = 1, . . . ,K, j = 1, . . . ,K

Trace(Q̌j •X) ≤ 0 j = 1, . . . ,K

Trace(Q̆j •X) ≤ α j = 1, . . . ,K

Trace(Q̃i •X) ≤ 0 i = 1, . . . , N

Trace(˜̃
Qi •X) ≤ α i = 1, . . . , N

Trace(Tij •X) ≤ 0 (i, j) = [1, N]2, (i, j) = [N + 1, N +K]2

Trace(T̂ij •X) ≤ 0 (i, j) = [1, N]2, (i, j) = [N + 1, N +K]2

diag(X) = z

X � 0

(13)

Where W̌ki, W̆ki, W̃kj ,
˜̃
Wkj , Q̌j , Q̆j , Q̃i and ˜̃

Qi are the matrices constructed from gk and q modeling

the sherali-Adams constraints mentioned above. Tij and T̂ij are the matrices modeling the quadric
polytope constraints mentioned above.

This relaxation gives tighter results but comes at the cost of an increased number of constraints.
In fact, for each capacity constraint in the original problem we have 2N times as many constraints.

6

Similarly, instead of having one probability constraint, we have K times as many. Since we also
use quadric polytope constraints, we add a polynomial number (in N and K) of constraints to the
problem.

We now present the second KP extension: the stochastic quadratic knapsack problem with
recourse. In the static knapsack problem with a probability constraint, the decision is made once at
the beginning and cannot be corrected after observing the realization of the random variables. In
the model with recourse, we have a two-stage process, where one decision is made after obtaining
(partial) information about the realization of the random variables, and a second decision after to
correct it if necessary.

2 Stochastic quadratic knapsack problem with recourse

In this section we extend models developed in the previous section to the case when the deci-
sion problem extends to two time periods (two stages). The initial decision is made during the
first period before knowing the realizations of the random variables. Then these realizations are
(partially) revealed and the second stage decision is made which corrects the first stage decision,
taking into account this information. This modeling scheme is known as stochastic program with

recourse. Moreover, we introduce probability constraints in the second stage. To the best of our
knowledge, this formulation has not been studied in the literature. We start by formulating the
general quadratic stochastic program with recourse with probability constraint in the second stage.
A generic quadratic stochastic problem with recourse can be modeled as follows:

max
x

xTCx+ EωQ(x, ω) (14)

Rx ≤ s (15)

where (15) models generic linear constraints, with R ∈ R
m,n and s ∈ R

m. The second stage value
is given by the solution of the problem:

Q(x, ω) = max
u

uTD(ω)u (16)

P {W (ω, ψ)u+ T (ω, ψ)x ≤ h(ω, ψ)|ω} ≥ 1 − α (17)

In this model, the uncertainty is described by the two probability vectors ω and ψ with a given
joint probability distribution. When the initial decision is made, neither ω nor ψ are known. After
this decision, part of the information is revealed. This corresponds to the realization of random
vector ω. The second stage decision can then be taken, with knowledge of ω and of the first stage
decision x, but without the knowledge of the realization of random vector ψ. This corresponds to
the probability constraint (17), which gives the conditional probability of being satisfied given the
value of vector ω. Unlike in the classical formulation, we have a random vector ψ present in the
second stage decision.

2.1 First stage decision

We now need to adapt this generic model to our knapsack problem. Like in the static case, we
assume we have n items, and each item is characterized by its value cii, and weight wi, i = 1 : n.
Each item pair is characterized in the same manner by its value cij , see section 1.1 for more details

7

about item pairs values. The objective is to maximize the value of the items contained in the
knapsack, with the constraint that it has a limited capacity d. The selection of an item during the
first stage is defined by a binary decision variable xi which takes value 1 if the item i is included
in the selection and 0 otherwise. The formulation of this first stage decision of the problem is the
following:

max
x

N
∑

i=1

N
∑

j=1

cijxixj + EωQ(x, ω) (18)

N
∑

i=1

wixi ≤ d (19)

The constraint (19) describes the knapsack capacity constraint. Equation (18) consists of two parts:
the value of the knapsack during the first period, and the expected value of the same knapsack during
the second period. This expected value depends on the items selected in the first period (the vector
x), and the realization of the random vector ω.

2.2 Second stage decision

After the first stage decision is made, the values of items may change, as well as their weight. During
the second period, the item i has the value bii(ω) and the weight vi(ω, ψ). Each item pair (i, j) has
the value bij(ω). Similarly to the first period, there’s a constraint on the capacity of the knapsack,
which is subject to change too. We note the new capacity h(ω, ψ). Similarly to the static case, we
want the probability for this constraint to be valid to be greater than (1 − α). The realization of
vector ω is known before making the second stage decision, whereas only the distribution of ψ is
known, conditioned on ω.

The second stage decision allows to change the initial decision in order to correct mistakes
which appear after extra information is known. There are two possibilities: first, an item which
was selected during the first period can be removed. In this case, we describe this decision with a
binary variable u−i set to 1 to indicate that item i was removed from the knapsack, 0 otherwise.
Likewise, an item that was previously rejected can be selected. In this case, we use a binary variable
ui, set to 1 if we select the item i in the second period, 0 otherwise. Note that if item i was selected
during the first period, then if it is not removed during the second, it is considered selected again
(i.e. ui = 1) in the second period. When an item i is removed, it causes a cost, which not only
includes deducting its value, but may also contain additional penalties, such as time or manipulation
costs necessary to reorganize the knapsack. This allows us to formulate the second stage decision
as follows:

Q(x, ω) = max
u,u−

N
∑

i=1

N
∑

j=1

bij(ω)uiuj −

N
∑

i=1

N
∑

j=1

b−ij(ω)u−i u
−

j (20)

ui ≥ xi − u−i , i = 1 : n (21)

u−i ≤ xi, i = 1 : n (22)

P

{

N
∑

i=1

vi(ω, ψ)ui ≤ h(ω, ψ)|ω

}

≥ 1 − α (23)

8

Equation (20) is our objective: we want to maximize the value of the knapsack to which we must
deduce the cost of removing items previously selected. The two constaints (21) and (22) link the
first stage and second stage decisions: the first one means that if an item i was selected during the
first period and not deselected, then it is necessarily considered selected during the second period.
Conversely, the constraint (22) means that only an item that was selected during the first phase
can be deselected. Constraint (23) represents the probability (1 − α) of the capacity constraint to
be valid.

2.3 Additional features

Our formulation (18)-(23) is general enough to allow the modeling of additional characteristics
which do not appear explicitly in the problem description. The three main features are:

1. Different composition of the allowable set of items during the first and the second stage. Since
the weights of the items and the capacity of the knapsack may change (based on ω) between
the two periods, it allows us to model cases where some items may not be allowed during
either period. For example, to represent the case where an item i is not allowed during the
second period, we can set vi(ω, ψ) > h(ω, ψ). Using our introductory example of a decision
maker selecting food for humanitarian relief, it would be the case when the manufacturer of
the food sends a recall for his product which was found unfit for consumption. Similarly, an
item could be absent during the first period and only available during the second period, in
which case it would either have ci = 0 or wi > d.

2. Dependence of the item values on random variables. For example, the first stage values may
depend on ω, cij = cij(ω) and the second stage values and removal costs may depend also on
ψ, bij(ω) = bij(ω, ψ), b−ij(ω) = b−ij(ω, ψ). In this case, we consider the average of the objective
function, and Equation (18) is reformulated into:

max
x

Eω

N
∑

i=1

N
∑

j=1

cij(ω)xixj +Q(x, ω)

 (24)

and (20) is reformulated into

Q(x, ω) = max
u,u−

Eψ

N
∑

i=1

N
∑

j=1

bij(ω, ψ)uiuj −

N
∑

i=1

N
∑

j=1

b−ij(ω, ψ)u−i u
−

j |ω

 (25)

Denoting now

c̄ij = Eωcij(ω), b̄ij(ω) = Eψ (bij(ω, ψ) |ω) , b̄−ij(ω) = Eψ

(

b−ij(ω, ψ) |ω
)

and by replacing cij with c̄ij in (18) and bij(ω), b−ij(ω) by b̄ij(ω), b̄−ij(ω) in (20) we recover the
original formulation (18)-(23).

3. Probabilistic knapsack constraint on the first stage. This case is similar to the static knapsack
formulation. If the first stage weights depend on the random vector ω (wi = wi(ω)), then
constraint (19) is rewritten as follows:

P

{

N
∑

i=1

wi(ω)xi ≤ d

}

≥ 1 − α (26)

9

As we showed, formulation (18)-(23) of the stochastic knapsack problem with recourse is quite
general and covers many specific cases. We will now work with this problem and reformulate it
in order to be able to use resolution techniques like those used in section 1. The first step of the
reformulation is to rewrite the problem into deterministic equivalents. After this, we will be able
to use semidefinite relaxations to the deterministic equivalents.

2.4 Deterministic rewriting of the problem

In order to rewrite the stochastic quadratic knapsack with recourse into a deterministic form, we
need to consider the case when the joint distribution of the random vectors ω and ψ is concentrated
in the finite number of points. We assume that the random vector ω is concentrated in the finite
number of points ωk, k = 1 : K with probabilities pk. We will refer to these points as scenarios. In
this case the problem (18)-(23) can be rewritten as follows:

max
x

N
∑

i=1

N
∑

j=1

cijxixj +

K
∑

k=1

pkQ(x, k) (27)

N
∑

i=1

wixi ≤ d (28)

with

Q(x, k) = max
u,u−

N
∑

i=1

N
∑

j=1

bijkuiuj −

N
∑

i=1

N
∑

j=1

b−ijku
−

i u
−

j (29)

ui ≥ xi − u−i , i = 1 : n (30)

u−i ≤ xi, i = 1 : n (31)

P

{

N
∑

i=1

vik(ψ)ui ≤ hk(ψ) | ω = ωk

}

≥ 1 − α (32)

where

Q(x, ωk) = Q(x, k), bij(ωk) = bijk, b
−

ij(ωk) = b−ijk, vi(ωk, ψ) = vik(ψ), h(ωk, ψ) = hk(ψ).

Substituting (29) into (27) and collecting constraints for each scenario we obtain an equivalent
problem to (27)-(32):

max
x,uik,u

−

ik

N
∑

i=1

N
∑

j=1

cijxixj +

K
∑

k=1

pk

N
∑

i=1

N
∑

j=1

bijkuikujk −

N
∑

i=1

N
∑

j=1

b−ijku
−

iku
−

jk

 (33)

N
∑

i=1

wixi ≤ d (34)

uik ≥ xi − u−ik, i = 1 : n, k = 1 : K (35)

u−ik ≤ xi, i = 1 : n, k = 1 : K (36)

10

P

{

N
∑

i=1

vik(ψ)uik ≤ hk(ψ) | ω = ωk

}

≥ 1 − α, k = 1 : K (37)

Probability constraints (37) are reformulated as probability constraint (2) was for the static stochas-
tic knapsack problem. Suppose that the random vector ψ is concentrated in the finite number of
points ψkr, k = 1 : k, r = 1 : R with probabilities pkr .

R
∑

r=1

pkr = 1, pkr ≥ 0, k = 1 : K

Then the problem (33)-(37) is equivalent to:

max
x,uik,u

−

ik
,Λk

N
∑

i=1

N
∑

j=1

cijxixj +

K
∑

k=1

pk

N
∑

i=1

N
∑

j=1

bijkuikujk −

N
∑

i=1

N
∑

j=1

b−ijku
−

iku
−

jk

N
∑

i=1

wixi ≤ d

uik ≥ xi − u−i , i = 1 : n, k = 1 : K

u−ik ≤ xi, i = 1 : n, k = 1 : K

N
∑

i=1

vikruik ≤ hkr, r ∈ Λk, k = 1 : K

∑

r∈Λk

pkr ≥ 1 − α, k = 1 : K

where vikr = vik(ψkr), hkr = hk(ψkr) and Λk is some subset of {1, ..., R}. Finally, this can be
reformulated as binary optimization problem by introducing auxiliary binary variable ykr for each
observation r = 1 : R and for each scenario k = 1 : K as follows:

ykr =

{

0 if r ∈ Λk
1 otherwise

This yields the following deterministic equivalent problem:

max
x,u,u−,y

N
∑

i=1

N
∑

j=1

cijxixj +

K
∑

k=1

pk

N
∑

i=1

N
∑

j=1

bijkuikujk −

N
∑

i=1

N
∑

j=1

b−ijku
−

iku
−

jk

 (38)

N
∑

i=1

wixi ≤ d (39)

uik ≥ xi − u−i , i = 1 : n, k = 1 : K (40)

u−ik ≤ xi, i = 1 : n, k = 1 : K (41)

11

N
∑

i=1

vikruik ≤ hkr +Mykr, r = 1 : R, k = 1 : K (42)

R
∑

r=1

pkrykr ≤ α, k = 1 : K (43)

where Mk is an arbitrary number such that

Mk ≥ max
r

N
∑

i=1

vikr − hkr

This problem is also a quadratic binary problem, and cannot be solved exactly for large instances
due to time and memory issues. Therefore, we are interested in good upper bounds we can find,
and again, we can use the SDP relaxations for this. Similarly to the static quadratic knapsack
problem, semidefinite relaxations SDP1 and SDP2 can be applied to problem (38)-(43), as well as
the LP relaxation we use as a basis for comparison.

3 Numerical Results

We performed numerical experiments using randomly generated data for the two formulations. We
used various sizes of instances, in terms of number of items N , number of scenarios K, and, in the
case of the knapsack with recourse, number of observations R. The experiments were carried out
on Intel Xeon 5130 quad-core computers. The data sets (prices and scenarios for the weights, and,
in the case with recourse, the prices and weights for the various observations in each scenario) were
randomly generated using Matlab. Problems were solved using Cplex for exact (MIP) results and
for the linear relaxation, and with CSDP for the two semidefinite relaxations.

3.1 Results for the static quadratic knapsack problem with probability

constraint

Below, we present the results of the experiments we performed for the static quadratic knapsack
problem. We used a number of items N ranging from N = 20 to N = 60, and a number of scenarios
K ranging from K = 10 to K = 50. LP refers to the linear programming relaxation of Problem
(9)-(11), SDP1 is the simple SDP relaxation (12), and SDP2 is the relaxation (13).

Table 1 gives the sizes of the instances tested. The first column gives the number of items N . The
number of scenarios K is given in the second column. For the LP relaxation, we give the number of
constraints and the number of variables. For the SDP1 and SDP2 relaxations, we give the number
of constraints and the size of the matrix X . For example, for N = 20 and K = 10, the size of the
matrix X is 31×31 for the SDP1 and SDP2 relaxations. The LP relaxation has (K+1+N(N−1))

constraints and (K +N
(N+1)

2) variables. The SDP1 relaxation has (2K +N + 2) constraints and
the matrix X has a size S = (N +K + 1). The SDP2 relaxation has (5K + 2 +K2 + 4KN +N2)
constraints and the matrix X has a size S = (N +K + 1). In the LP relaxations, the number of
variables and constraints increases polynomially with N . SDP1 relaxation is a direct rewriting of
the original problem and therefore has a similar size. On the other hand, the SDP2 relaxation is
penalized by the number of quadric polytope constraints and the Sherali-Adams constraints: the

12

total number is polynomial with N and K. We see on Table 1 that SDP1 relaxation starts with
more constraints than the LP relaxation, due to the diagonal constraint diag(X) = z, but does not
grow as quickly since SDP1 does not use the linearization inequalities that the LP relaxation uses.
On the other hand, SDP2 does use such inequalities combined to the Sherali-Adams constraints,
which explains the number of constraints when the size of the problem increases.

LP SDP1 SDP2
N K #constr #var #constr #var #constr #var
20 10 391 220 42 [31] 1352 [31]

20 401 230 62 [41] 2502 [41]
50 431 260 122 [71] 7152 [71]

40 10 1571 830 62 [51] 3352 [51]
20 1581 840 82 [61] 5302 [61]
50 1611 870 142 [91] 12352 [91]

50 10 2461 1285 72 [61] 4652 [61]
20 2471 1295 92 [71] 7002 [71]
50 2501 1325 152 [101] 15252 [101]

60 10 3551 1840 82 [71] 6152 [71]
20 3561 1850 102 [81] 8902 [81]
50 3591 1880 162 [111] 18352 [111]

Table 1: LP and SDP test sizes

Table 2 presents the results for each instance. We first give the number of items N and the
number of scenarios K. The third column (MIP) gives the value of the optimum for small and
medium size instances. For each relaxation, we then give the upper bound found by the relaxation,
and, whenever available, the gap between the optimum and this bound. When the optimum is not
known, we give the improvement rate of the SDP2 relaxation compared to the LP relaxation. We
can see on Table 2 that LP relaxation is generally poor and serves as reference when an exact solution
could not be found. We observe that the quality of the relaxations improves when N grows, and
worsens when K grows. This is very similar to the results on the non stochastic knapsack problem
shown by D’Atri in [DR80] concerning the reduction in gap when the number of items grows with
randomly generated data.

The SDP1 relaxation performs poorly – slightly worse than the LP relaxation. We only see a
significant improvement in terms of gap reduction after adding the quadric polytope and Sherali-
Adams constraints to obtain relaxation SDP2. On larger data sets (N ≥ 40,K ≥ 20), we reached
the limit for Cplex to solve programs, and only relaxations could be solved, and we see that the
SDP2 still brought a consequent improvement over the LP bound.

3.2 Results for the stochastic quadratic knapsack problem with recourse

We also performed tests for the model with recourse. In this model, the LP relaxation has (1+KR+
K+N2−N+2KN2) constraints and (KR+KN+N(N+1

2)+KN2) variables. The SDP1 relaxation
has (3 + 4KN + 2KR+ 3K +N) constraints with the diagonal block structure S1 = (N + 1), S2 =
(KR+ 1), and Si+2 = (N + 1), i = 1...2K, where S1...S2∗K+2 is the size of each submatrix on the
diagonal of X . Finally, the SDP2 relaxation has (3+2KN+3KR+3K+2N+N2+K2R2+2KN2)

13

N K MIP LP GAP SDP1 GAP SDP2 GAP
20 10 4686 6915.11 47.57 7098 51.47 5602.75 19.56

20 4384 6805.29 55.23 6895.47 57.29 5470.58 24.79
50 3069 6470.66 110.84 6508.42 112.07 4381.96 42.78

40 10 18921 26703.23 41.13 27086.65 43.16 20901.39 10.47
20 † 28318.38 - 28572.1 - 22101.84 22‡
50 † 26297.62 - 26409.51 - 18889 28‡

50 10 34163 44497.27 30.25 45265.38 32.5 37615.69 10.11
20 † 45412.71 - 45722.95 - 36768.51 19‡
50 † 44557.85 - 44804.64 - 34189.01 23‡

60 10 † 69644.82 - 70369.88 - 59742.14 14‡
20 † 65009.36 - 65395.68 - 51467.86 21‡
50 † 62888.8 - 63142.06 - 46822.91 26‡

†: No solution given by CPLEX ‡: SDP2 improvement rate of LP bounds

Table 2: LP and SDP results

constraints, and the structure (and size) of X is the same as in the SDP1 relaxation. LP relaxation
has a number of constraints and variables polynomial in N , while both SDP1 relaxation and the
original problem sizes are comparable, i.e. linear with N . SDP2 relaxation is heavily penalized by
the quadric polytope constraints and has a number of constraints polynomial with N , K and R.
this is illustrated in table 3. In the model with no recourse, with N = 40 and K = 50 this leads
to an SDP2 relaxation with 12,352 constraints, whereas a problem with recourse with N = 10,
K = 20 and R = 5 has an SDP2 relaxation with 14,883 constraints. The largest set tested has an
SDP2 relaxation with 27,603 constraints, which requires more memory than CSDP can allocate on
a 32bit platform.

LP SDP1 SDP2
N K R #constr #var #constr #var #constr #var
5 5 5 301 190 173 [[6] [26] 10*[6]] 1053 [[6] [26] 10*[6]]

10 5 581 365 338 [[6] [51] 20*[6]] 3318 [[6] [51] 20*[6]]
20 5 1141 715 668 [[6] [101] 40*[6]] 11598 [[6] [101] 40*[6]]

10 5 5 1121 630 278 [[11] [26] 10*[11]] 1938 [[11] [26] 10*[11]]
10 5 2151 1205 543 [[11] [51] 20*[11]] 5003 [[11] [51] 20*[11]]
20 5 4211 2355 1073 [[11] [101] 40*[11]] 14883 [[11] [101] 40*[11]]

20 5 5 4411 2335 488 [[21] [26] 10*[21]] 5358 [[21] [26] 10*[21]]
10 5 8441 4460 953 [[21] [51] 20*[21]] 11523 [[21] [51] 20*[21]]
20 5 16501 8710 1883 [[21] [101] 40*[21]] 27603 [[21] [101] 40*[21]]

Table 3: LP and SDP test sizes

Table 3 is similar to Table 1. The first three columns are the number of items N , the number
of scenarios K, and the number of observations R, respectively. For each relaxation, we give the
number of constraints and number of variables for the LP relaxation or the structure of the matrix

14

X for SDP1 and SDP2. For example, [[5] [26] 10*[5]] means the matrix X has a first block diagonal
matrix of size 5×5, then a block diagonal matrix of size 26×26, and 10 consecutive block diagonal
matrices of size 5 × 5 representing different variables. Table 4 presents the results in the following
form: the first three columns are the same as Table 3, then, when its calculation is possible, we
give the optimal value of the problem in the column MIP. The column block after gives the results
for the LP relaxation: first the bound found, and when the optimum is known, the gap between
the bound and the optimum. The two other column blocks give the bound found by each SDP
relaxation, and the gap to the optimum whenever it can be calculated. For the SDP2 relaxation,
when the optimum is not known, we give the improvement rate between the SDP2 bound and the
LP bound.

Compared to the model with no recourse, the LP and SDP1 relaxations perform better, with
a gap lower than 71.14%, and, as can be seen on table 4, there is still a gain from going to the
SDP2 relaxation. Like previously, increasing N seems to positively affect the relaxations at large,
but seems to also lower the gain between LP and SDP2. In this model, we see again that SDP1
and SDP2 allow us to solve larger instances than Cplex can. When sizes are so large that CSDP
cannot be used, it is then necessary to use different resolution methods for SDP, such as the spectral
bundle method of Helmberg and Rendl [HR00].

N K R MIP LP GAP SDP1 GAP SDP2 GAP
5 5 5 907.50 1198.4 32.06 1217.25 34.13 1181.66 30.21

10 5 988.89 1293.98 30.85 1320.39 33.52 1284.37 29.88
20 5 † 1126.49 - 1143.64 - 1111.49 1.33‡

10 5 5 4002.04 4718.47 17.9 4796.03 19.84 4695.87 17.34
10 5 † 4681.27 - 4752.48 - 4620.39 1.3‡
20 5 † 4598.08 - 4668.99 - 4584.04 0.31‡

20 5 5 † 18801.41 - 19077.7 - 18791.08 0.05‡
10 5 † 18501.64 - 18754.41 - 18341.11 0.87‡
20 5 † 18252.31 - 18459.01 - ⋆ ⋆

†: No solution given by CPLEX ‡: SDP2 improvement rate of LP bounds ⋆: No solution given by CSDP

Table 4: LP and SDP results

Conclusion

In this paper, we presented two problems and their formulation: static quadratic knapsack problem
with a probability constraint and stochastic quadratic knapsack problem with recourse. For both
problems, we applied semidefinite relaxations in order to obtain an upper bound of the optimum.
We performed numerical experiments in which we solved large instances of the static quadratic
knapsack problem with probability constraint and large instances of the stochastic quadratic knap-
sack problem with recourse. We showed that the tighter SDP relaxation always improves the quality
of the bound compared to the simple SDP relaxation or the LP relaxation. In particular in the
static case, the SDP2 bound is 14% to 26% better than the LP one. We also showed that SDP
methods can be used to find a bound on instances which cannot be solved using CPLEX due to
the memory and required time.

15

The stochastic quadratic knapsack problem with recourse shows the limits of interior point
methods in solving such large scale problems. One way to overcome this limitation is to work
with a different solving method, such as the spectral bundle method developed by Helmberg and
Rendl [HR00]. This should allow the exploration of both larger problems, and the use of additional
constraints to further tighten the relaxations.

References

[CB98] Amy Mainville Cohn and Cynthia Barnhart. The stochastic knapsack problem with
random weights: A heuristic approach to robust transportation planning. In Proceedings

from TRISTAN III, San Juan, Puerto Rico, 1998.

[DGV04] Brian C. Dean, Michel X. Goemans, and Jan Vondrak. Approximating the stochas-
tic knapsack problem: The benefit of adaptivity. In FOCS ’04: Proceedings of the

45th Annual IEEE Symposium on Foundations of Computer Science, pages 208–217,
Washington, DC, USA, 2004. IEEE Computer Society.

[DR80] G. D’Atri and A. Di Rende. probabilistic analysis of knapsack-type problems. Methods

of Operations Research, 40:279–282, 1980.

[For59] R. Fortet. L’algèbre de Boole et ses applications en recherche opérationelle. 1959.

[GJ79] M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Freeman and
Company, New York, 1979.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms and

Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[HPRW95] C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz. Combining semidefinite and
polyhedral relaxations for integer programs. In IPCO, pages 124–134, 1995.

[HR98] C. Helmberg and F. Rendl. Solving quadratic (0,1)- problems by semidefinite programs
and cutting planes. Mathematical Programming, 82:291–315, 1998.

[HR00] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10(3):673–696, 2000.

[HRW00] C. Helmberg, F. Rendl, and R. Weismantel. A semidefinite programming approach to
the quadratic knapsack problem. Journal of Combinatorial Optimization, 4(2):197–215,
2000.

[IK75] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975.

16

[KP98] Anton J. Kleywegt and Jason D. Papastavrou. The dynamic and stochastic knapsack
problem. Oper. Res., 46(1):17–35, 1998.

[Lau03] Monique Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre
relaxations for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

[Pad89] M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives.
Math. Program., 45(1):139–172, 1989.

[Pis07] David Pisinger. The quadratic knapsack problem-a survey. Discrete Appl. Math.,
155(5):623–648, 2007.

[RS03] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using the bundle
method. Technical report, University of Klagenfurt, Universitaetsstrasse 65-67, Austria,
2003.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM J.

Discrete Math., 3(3):411–430, 1990.

[SA94] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations and convex hull
characterizations for mixed-integer zero-one programming problems. Discrete Applied

Mathematics, 52(1):83–106, 1994.

[SS06] David B. Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear
programming and its application to stochastic integer programs. J. ACM, 53(6):978–
1012, 2006.

17

	RR1498entete.pdf
	RR1498rapp.pdf

