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ABSTRACT
We present a novel approach to the design of schemas ap-
propriate for data analysis; we call such schemas “analysis
contexts”. Roughly speaking, an analysis context is a set of
paths with common origin, in which the nodes are attributes
and the edges are functional dependencies. Our main con-
tributions are (a) an algorithm for generating all analysis
contexts embodied in a set of attributes and a set of func-
tional dependencies over the attributes, (b) a functional lan-
guage in which analysis queries can be formulated within a
context, (c) a formal approach to query optimization, and
(d) an algorithm for mapping an analysis context and its as-
sociated functional language to a relational star schema for
the efficient evaluation of analysis queries. Altogether, our
main contribution is the proposal of a schema design method
for analytic processing that parallels (and complements) the
schema design process in transactional databases.

Keywords
Data Analysis, Functional Dependencies, Data Warehouse,
OLAP Query, Star Schema, Schema Design, Schema Trans-
formation

1. INTRODUCTION
In decision-support systems, in order to extract useful in-

formation from the data of an application, it is necessary to
analyse large amounts of detailed transactional data, accu-
mulated over time - typically over a period of several months.
The data is usually stored in a so-called “data warehouse”,
and it is analysed along various dimensions and at various
levels in each dimension [6].
A data warehouse functions just like a usual database, with
the following important differences: (a) the data is not pro-
duction data but the result of integration of production
data coming from various sources, (b) the data is historic
that is data accumulated over time, (c) access to the data
warehouse by analysts is almost exclusively for reading and
not for writing and (d) changes of data happen only at the
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sources, and such changes are propagated periodically to the
data warehouse.
The end users of a data warehouse are mainly analysts and
decision makers, who almost invariably ask for data aggre-
gations such as “total sales by store”, or “average sales by
city and product category”. On-Line Analytic Processing,
or OLAP for short, is the main activity carried out by an-
alysts and decision makers [1, 7]. In fact, the basic require-
ments of data analysts are (a) a data schema that is easy
to understand and (b) a query language in which to express
easily complex data analysis tasks. The so called “dimen-
sional schemas” (such as snow-flake schemas, star schemas
etc.) and the various SQL extensions (such as “grouping
sets”, “rollup”, “cube” etc.) were introduced precisely to sat-
isfy these requirements [6].
In this paper, we present a novel approach to data anal-
ysis based on functional dependencies. Given a set U of
attributes and a set F of functional dependencies, our ap-
proach relies on some basic notions from relational database
theory to define the notion of analysis context (or context,
for short). Roughly speaking, a context is a set of paths
with common origin, and data analysis in our model always
takes place in a context.

In this section we illustrate our approach through examples.
As a first example, consider a database which accumulates
documents over time (eg. a digital library). Each document
is identified by its URI and described by two attributes:
Topic, whose values are keywords describing document con-
tent (eg. drama, poetry, etc.)
Hits, whose values are integers representing number of ac-
cesses to the document.
Thus each document URI in the library is associated with
one keyword (its topic description) and one integer (its num-
ber of hits). Therefore we have two functional dependencies
t : URI → Topic and h : URI → Hits
(we need the labels t and h for later reference).

We can describe this application by a graph, as shown in
Figure 1.(a), where the attributes URI, Topic and Hits are
the nodes and the functional dependencies t and h are the
edges. This graph is a first, rudimentary example of what we
call analysis context. Its origin is the attribute URI which
also happens to be a key (in this example). Roughly speak-
ing, the origin of a context represents the objects of interest,
while all other nodes describe attributes of the objects.
In our approach, we interpret the edges t : URI → Topic
and h : URI → Hits of the context as function signatures,



Figure 1: Example of an application represented by a graph, and a query evaluation.

and their extensions as the (current) instance of the context.
Figure 1.(b) shows an example of (current) instance. This
instance consists of the two functions t and h, and repre-
sents all documents accumulated so far in the library. It
contains 9 document URIs, each associated with its topic
and its number of hits through the functions t and h, resp.
(for simplicity, we represent URIs as integers); for example,
document 3 is associated with “Poetry” as topic and with
200 as number of hits (i.e. t(3)= Poetry and h(3)= 200).

Suppose now that we want to analyse document usage,
say by finding the total number of hits by topic, that is by
evaluating the answer to the following query:

Q1: ”total number of hits by topic.”

In our approach, in order to answer this query we proceed
in three steps as follows:
Grouping: we invert the function t, thus grouping the URIs
by topic;
Measuring: in each group, we apply the function h to each
URI of the group to find the corresponding number of hits;
Aggregation: in each group, we sum up the results of mea-
suring to have the total number of hits for that group (as
shown in Figure 1.(b)).
The final result is shown in Figure 1.(c), and it is a func-
tion from Topic to a new attribute that we call TotalHits.
This function associates each topic with the total number of
hits for that topic. In other words the answer to Q1 is the
following function:

AnsQ1 : Topic → TotalHits

such that AnsQ1(x) is the total number of hits, for each
topic x. For example,

AnsQ1(Drama) = 300 and AnsQ1(Poetry) = 600.

This pattern of grouping a set of objects by inverting a
function defined on them; then measuring a property in each

group by applying a second function also defined on the ob-
jects; and finally aggregating the measures in each group by
applying an operation on the measures, constitutes the basic
pattern of our approach.

It should be clear from the previous example that the spec-
ification of query Q1 requires three parameters, a function
such as t for classifying the URIs by topic, a function such
as h for measuring the number of hits by URI, and an oper-
ation such as “sum” for aggregating the measured numbers
of hits. Therefore Q1 can be specified as a triple:

Q1 =< t, h, sum >.

Notice however that t and h have the origin of the context as
their common domain of definition, and that this condition
is indispensable in order to compute the answer. Moreover,
notice that the operation“sum” is an operation which is pos-
sible to apply over the range of h (i.e. over the integers), and
that this condition is also indispensable in order to compute
the answer.

In view of the previous discussion, in our approach, we
define an analytic query over a context to be a triple Q =<
c, m, op >, where c and m are edges of the context having
the origin as their common domain of definition, and op is
an operation which is possible to apply over the range of m.
We refer to the function c as the classifier or the grouping
function of Q and to the function m as the measure.

It is interesting to note that, following the above definition,
one can interchange the roles of c and m to obtain a different
analytic query (provided of course that the operation in the
resulting query is possible to apply over the range of the new
measure). For example, one can interchange the roles of t
and h in query Q1 to obtain the query Q′1 =< h, t, sum >.
However, this query is not well formed since the operation



Figure 2: Adding Author and Nationality.

“sum” cannot be applied over the range of t (i.e. over Topic,
as topics can’t be summed). If one changes the operation
from“sum” to“count” then one obtains a well formed query,
namely

Q′′1 =< h, t, count >

asking for the number of topics by number of hits.
Continuing with our example, suppose now that, in addi-
tion to topic description and number of hits, each document
is also associated with an author. Then we obtain a new
context as shown in Figure 2.(a), where we added the edge
a : URI → Author. We can now formulate the following
query, asking for the total number of hits per author:

Q2 =< a, h, sum >.

The answer will be a function from authors to integers:

AnsQ2 : Author → TotHits

such that AnsQ2(x) is the total number of hits, for each
author x.
Now, however, it makes sense to also ask the following query:

Q3: “total number of hits by topic-author pair”.

This time the grouping of URIs will be done according to
a function derived from t and a, which associates each URI
with a topic-author pair. This function is called the pairing
of t and a, it is denoted by t∧a, and it is defined as follows:
t ∧ a : URI → Topic × Author such that (t ∧ a)(x) =<
t(x), a(x) >.
During evaluation of Q3, the pairing t∧a will group together
all URIs having the same topic and the same author, and
the answer will associate each topic-author pair with a total
number of hits. In other words, compared to Q1, the only
change is that the function t of Q1 is now replaced by the
function t∧a; other than that, the evaluation of Q3 proceeds
in exactly the same way as for Q1. Therefore, Q3 is specified
as follows:

Q3 =< t ∧ a, h, sum >.

And its answer will be a function from topic-author pairs
to integers:

AnsQ3 : Topic×Author → TotHits

such that AnsQ3((x, y)) is the total number of hits, for each
topic-author pair (x, y).

As another example, suppose that we also add the national-
ity of each author. Then we obtain a new context as shown in
Figure 2.(b). We can now ask the following analytic query:

Q4: “total number of hits by author’s nationality”.

This time, during evaluation, the grouping of URIs will
be done according to a function derived from a and n us-
ing functional composition. The composition of a and n,
denoted n ◦ a, associates each URI with the corresponding
author’s nationality. During evaluation of Q4, the function
n ◦ a will group together all URIs having the same author
nationality, and the answer will associate each author na-
tionality with a total number of hits. In other words, com-
pared to query Q1, the only change is that the function t of
Q1 is now replaced by the function n ◦ a; other than that,
the evaluation of Q4 proceeds in exactly the same way as for
Q1. Therefore Q4 is specified as follows:

Q4 =< n ◦ a, h, sum >.

And its answer will be a function from Nationality to
TotHits:

AnsQ4 : Nationality → TotHits

such that AnsQ4(x) is the total number of hits, for each na-
tionality x.

As a final example, we can ask the following analytic query
over the context of Figure 2.(b):

Q5: “total number of hits by topic-nationality pair”.

Again, all we have to do in order to evaluate this query is
to replace the function t of Q1 by the function c ∧ (n ◦ a).
Therefore Q5 is specified as follows:

Q5 =< c ∧ (n ◦ a), h, sum >.

And its answer will be a function from topic-nationality
pairs to integers:

AnsQ5 : TopicNationality → TotHits

such that AnsQ5((x, y)) is the total number of hits, for each
topic-nationality pair (x, y).

Notice that, in all the above examples of queries (Q1 to
Q5), we can also restrict any of the functions involved to
some desirable subset of its domain of definition, to form
new analytic queries. In fact, the set of all operations on
functions that we shall use to derive new functions from old
constitutes what we shall call the functional algebra of a
context. These operations are quite elementary: composi-
tion, pairing, restriction and projection. Yet, as we shall
see, they allow us to associate each context with a powerful
language of analytic queries.



In our examples so far we dealt with only one context. Be-
fore ending this introductory section, let’s see an example in
which we have several contexts sharing nodes. First, let us
give a more precise definition of context. A context is the
set of all paths starting at a specified node (this node being
called the origin of the context).

Consider now the application described in Figure 3.(a) in
the form of a graph of functional dependencies, in which we
have students registered in schools (each student being reg-
istered in one and only one school), and donators making
one or more donations to one or more schools (the remain-
ing attributes are self-explanatory).
In this application, we have several contexts with nodes in
common. For example, the StudentId context (i.e. the con-
text with StudentID as its origin) and the DonationId
context have School, City and State as common nodes.
These two contexts are shown in Figures 3.(b) and 3.(c).
The StudentId context would be selected if one wanted to
analyze data pertaining to students, while the DonationId
context would be selected if one wanted to analyze data
pertaining to donations. Another example of context is the
School context; this context would be selected if one wanted
to analyze data pertaining to schools.
In general, it is up to the user to select a context suitable
for a specific application.

As a final remark, we mention that the origin of a context
is not necessarily a key.
Indeed, in our examples of Figure 3, neither of the attributes
StudentId or DonationId is a key. The only key in this ap-
plication is the pair < StudentId, DonationId >, which can
not be used as origin for a context, as it does not appear ex-
plicitly in the graph of Figure 3.

The rest of the paper is organized as follows. In section
2 we give the formal definition of context and present an
algorithm for generating all contexts embodied in a set of
attributes and a set of functional dependencies over the at-
tributes. In section 3 we show how a context can be asso-
ciated with a functional language in which analytic queries
can be formulated. In section 4, we present an approach to
query optimization based on the lattice of partitions of the
context’s origin. In section 5 we present an algorithm for
mapping a context and its associated functional language
to a relational star schema for the efficient evaluation of
analytic queries. In section 6 we discuss implementation
issues and describe a prototype (currently under develop-
ment) which allows users to (a) formulate analytic queries
by “clicking” on the graphical presentation of a context, and
(b) visualize the answer in various forms and further exploit
it. Finally, in section 7, we offer some concluding remarks
and discuss perspectives of this work.

2. THE FORMAL DEFINITION OF CON-
TEXT

The formal definition of context uses a few well known
concepts from the relational model that we recall next (see
[6] for more details).
Let U be a set of attributes and F a set of functional depen-
dencies over U . Without loss of generality, in all our defini-
tions, we assume that the set F is reduced. This means that

F has the following properties: (a) it contains no trivial de-
pendencies, (b) it is non redundant, that is no dependency
in F can be derived from other dependencies in F and (c)
for each dependency X → Y in F , Y is a single attribute
and there is no strict subset X ′ of X such that the depen-
dency X ′ → Y can be derived from other dependencies in
F . It follows that among the attribute sets appearing in
F , only those that appear on the left hand side of a depen-
dency can have more than one attribute. Finally, we note
that any given set G of functional dependencies can always
be reduced to an equivalent set F having the above prop-
erties. Such a set F is called a reduction of G, and there
might be two or more different reductions for a given G.

Based on the attribute sets and dependencies of F , we
define now a graph, that we shall call the dependency graph,
denoted Graph(F ):

1. Nodes:

(a) Each attribute set appearing in F is a node of
Graph(F ).

(b) For each attribute set X appearing in F with
more than one attribute, say X = {A1, A2, ..., Ak},
the following are nodes of Graph(F ): A1, A2, ..., Ak.

2. Edges:

(a) Each functional dependency X → Y in F is an
edge of Graph(F ).

(b) For each attribute set X appearing in F with
more than one attribute, say X = {A1, A2, ..., Ak},
the following are edges of Graph(F ): X → A1, X →
A2, ..., X → Ak.

As an example consider the following pair (U, F ):

U = {A, B, C, D, F, E, G, H, K},
F = {AB → C, A → D, B → E, BC → A, D → A, C →
F, F → G, A → E, D → E, HK → D, HK → F}

Figure 4.(a) shows the corresponding dependency graph,
Graph(F ). We note that the graph Graph(F ) can be a
cyclic and/or disconnected graph.
Our definition of context relies on what we call the“quotient
graph” of F , a graph defined based on Graph(F ) and using
the notion of “closure” of an attribute set.
We recall from relational database theory [6] that (a) the
closure of an attribute set X, with respect to a set F of
functional dependencies, denoted Cl(X, F ), is the set of all
attributes that one can derive using Armstrong’s inference
rules for functional dependencies, and (b) that there is a
linear time algorithm for computing closures, known as the
closure algorithm (linear in the size of F , where the size of
each functional dependency is the number of attributes in-
volved [6]).
Using closures, we can define a binary relation “≤” over at-
tribute sets as follows: for all attribute sets X, Y define:
X ≤ Y if and only if Cl(X, F ) ⊇ Cl(Y, F ). Clearly, the re-
lation “≤” is reflexive and transitive but not anti-symmetric
(hence “≤” is a partial pre-ordering over attribute sets).
Now, using “≤” we can define an equivalence relation over
attribute sets as follows: for all attribute sets X, Y define:
X ≡ Y if and only if Cl(X, F ) = Cl(X, F ). Indeed, the
relation “≡” is reflexive, symmetric and transitive, hence an



Figure 3: An example illustrating a choice of analysis context.

equivalence relation. Using functional dependencies, equiv-
alence can be also characterized as follows: X ≡ Y if both
dependencies, X → Y and Y → X are implied by F using
Armstrong’s inference rules [6].
In what follows, given an attribute set X, we shall denote its
equivalence class by XF , or simply by X if F is understood.

Equivalence between attribute sets is an interesting con-
cept, in the sense that equivalent attribute sets are just dif-
ferent descriptions of some underlying objects. For example,
consider the attributes Product(P ), PriceInDollars(PD)
and PriceInY en(PY ) along with the following dependen-
cies: P → PD, P → PY , PD → PY , PY → PD. Then the
attributes PD and PY are equivalent, and this means that
we can use the one or the other interchangeably, depending
on the needs of the specific application (Dollars in the US
and Yen in Japan).

We are now ready to define the basic notion of quotient
graph of F , on which is based the formal definition of con-
text. Actually the nodes of the quotient graph are the equiv-
alence classes of the nodes of Graph(F ), and the edges of
the quotient graph are the pre-orderings between the equiv-
alence classes.
Definition 1 - Quotient Graph
Let U be a set of attributes and F a (reduced) set of func-
tional dependencies over U . The quotient graph of F , de-
noted F, is a graph defined as follows:

• Nodes: For each node X of Graph(F ), X is a node of
F.

• Edges: For any pair of nodes X and Y in F, there is an
edge from X to Y if and only if Cl(X, F ) ⊇ Cl(Y, F ).

In the previous example, we have the following equiva-
lences:

A ≡ D and AB ≡ BC

This is easy to verify, by computing closures:

AB+ = U, A+ = ADE, B+ = BE, BC+ = U,
D+ = ADE, C+ = CF , H+ = ADFGEHK.

Figure 4.(b) shows the corresponding quotient graph.
It is not difficult to see that the construction of the quo-
tient graph requires n computations of closure, where n is
the number of attribute sets appearing in Graph(F ). In-
deed, once the n closures have been computed, all nodes of
Graph(F ), having the same closure, form one node of F.
Moreover, there is an edge from node X to node Y in F, if
and only if the (common) closure of the attribute sets in X
is a superset of the (common) closure of the attribute sets
in Y; this follows from the well known property of the rela-
tional model: F implies the dependency X → Y if and only
if the closure of X is a superset of the closure of Y .
Therefore the complexity of computing the quotient graph
(measured in number of closure computations) is linear to
the number of attribute sets appearing in Graph(F ).

We note that, although the graph F might be cyclic, the
quotient graph of F has no cycles (i.e. it is acyclic). Roughly
speaking, this is due to the fact that all cycles that appear
in Graph(F ) are “hidden” within the nodes of the quotient
graph. We also note that, as the quotient graph is acyclic,
it has at least one root.

Our formal definition of context is based on the notion of
“context class” that we define now.



Figure 4: Example of Graph(F) and corresponding Quotient Graph.

Definition 2 - Context Class
Let U be a set of attributes, F a (reduced) set of functional
dependencies over U , and F the quotient graph of F . A
context class of F is the set of all paths starting at a given
node O of F. The node O is called the origin of the context
class.
For example, in the quotient graph of Figure 4.(b), consider
the node O = {AB, BC}. The context class with origin O
is shown in Figure 5.(a)

Our definition of context relies on that of context class.
Roughly speaking, given a context class, a context is defined
by selecting an attribute set in each of the nodes of the con-
text class and keeping the edges of the context class.

Definition 3 - Context
Let U be a set of attributes, F a (reduced) set of functional
dependencies over U , F the quotient graph of F . Let Cxt
be a context class in F with origin O.
A context in Cxt is an acyclic graph Cxt defined as follows:

• Nodes of Cxt: In each node N of Cxt, select an at-
tribute set N ∈ N; the attribute set O selected from
O is called the origin of Cxt.

• Edges of Cxt: For any pair of nodes X and Y of Cxt,
there is an edge X → Y , if and only if there is an edge
X → Y in F.

Figure 5.(b) shows a context defined from the context class
of Figure 5.(a), by selecting the attribute set BC from the
origin of the context class, and the attribute A from the
node {A, D} of the context class (note that the origin and
the node {A, D} are the only nodes of the context class
where a choice is possible).

We note that, in a context, each node X other than the
origin O is a single attribute (because F is reduced), and as
such it is associated to a set of values, or domain, denoted
dom(X). However, the origin O may contain two or more
attributes, say O = {A1, A2, ..., An}; nevertheless, we shall
consider that O is also associated with a domain, namely

dom(O) = dom(A1)× dom(A2)× ...× dom(An).
In the following section, we define a query language for per-
forming data analysis once a context is selected. How such
a selection is made is a topic that lies outside the scope of
the present paper.

3. THE QUERY LANGUAGE OF A CONTEXT
As we mentioned in the introduction, we view a context

as a set of function signatures and a context instance as a
set of (finite) extensions, one for each function signature. In
this section, we keep with this view and we define a language
in which analytic queries can be formulated over the context
and evaluated over the context instance. We shall illustrate
the concepts introduced by the following example that we
shall use as our running example for the rest of the paper.

Running example
A big catering company delivers various products to retail
stores over the whole country. The following data appears
on the delivery invoice:

• the invoice number

• the date of delivery

• the store identifier

and for each type of product:

• the product reference (e.g. ”Coca Light”)

• and the number of units delivered of that product (e.g.
Coca Light: 1600 cans)

These data are recorded in the database of the catering
company, and accumulated over long periods of time with
the purpose of analyzing them in order to improve the com-
pany’s delivery service. More specifically, the analyses per-
formed are:

• by date, by month and by year



Figure 5: A Context class and a Context.

• by store, by city and by region

• by supplier and by product category

• by combinations thereof, such as by date and store, or
by month and region etc.

We assume that there is at most one delivery per day,
so the following dependency holds: Date, Store, Prod →
Number. Therefore the triple {Date, store, Prod} is a key.
We also assume that a supplier might supply products in
two or more categories and that a product category might
be supplied by two or more suppliers.
The context concerning this application is shown in Figure
6, where O stands for the triple {Date, Store, Prod}. We
shall use this context in order to introduce the basic con-
cepts of the query language.

In our explanations we shall use the notation f : X → Y
to denote an edge with label f , source X and target Y ;
similarly, we shall talk of the source and the target of a
path.

3.1 Functional database
Given a context S, a database over S is a function δ that

associates :

• each node N of S with a finite subset δ(N) of dom(N),
and

• each arrow f : X → Y of S with a total function
δ(f) : δ(X) → δ(Y ).

In order to simplify notation, we shall omit the symbol δ
and we shall use the expression ”function f : X → Y ” to
mean ”function δ(f) : δ(X) → δ(Y )”.
We note that the fact that all functions in the database are
total imposes the following constraint:

referential constraint : for every pair of functions of the form
f : X → Y and g : Y → Z we must have range(f) ⊆ def(g).

Roughly speaking, the schema is seen as a set of function
signatures and the database stores their extensions.

Several remarks are in order here. First, in order to simplify
the presentation, we adopt the following abuse of notation:
we use an arrow label such as f to denote both the arrow f
and the function δ(f) assigned to f by δ. Similarly, we use
an attribute label such as X to denote both the attribute
X and the finite set δ(X) assigned to X by δ. This should
create no confusion, as more often than not the context will
resolve ambiguity.
Second, the definition of a database requires that all func-
tions assigned by the database δ to the arrows of S be total
functions. This restriction could be relaxed, by endowing
each attribute domain with a bottom element ⊥ (meaning
“undefined”) and requiring that for any function f : X → Y
we have (a) f(⊥) = ⊥, that is “bottom can only map to
bottom”, and (b) if x 6∈ def(f) then f(x) = ⊥. Under these
assumptions, the functions can again be considered as total
functions. However, the resulting theory would be more in-
volved and would certainly obscure some of the important
points that we would like to bring forward concerning ana-
lytic queries.

3.2 The Functional Algebra
In order to combine the function extensions in the database

of a context, we need a set of operations on functions that
we call the functional algebra. This algebra is similar to the
one considered in the functional model of databases [3] and
comprises four operations. Each operation takes as input
one or two functions and returns a new function as a result:

Composition : takes as input two functions, f and g,
such that range(f) ⊆ def(g), and returns a function g ◦ f :
def(f) → range(g) defined by

g ◦ f(x) = g(f(x)), for all x ∈ def(f).

Pairing : takes as input two functions, f and g, such that
def(f) = def(g), and returns a function f ∧ g : def(f) →
range(f)× range(g) defined by

f ∧ g(x) = 〈f(x), g(x)〉, for all x ∈ def(f).

Projection : it’s the usual operation on the cartesian prod-
uct of sets.



Figure 6: The context S of the running example.

Restriction : takes as input a function f : X → Y and
a set E ⊆ def(f), and returns a function f/E : E → Y
defined by

f/E(x) = f(x), for all x ∈ E.

The following proposition states an important property of
the functional algebra.

Proposition 1
For every pair of functions f : X → Y and g : X → Z, we
have

f = πY ◦ (f ∧ g) and g = πZ ◦ (f ∧ g).

Nota : πY () and πZ() are the projection functions over
Y × Z, defined by: πY (y, z) = y and πZ(y, z) = z, for all
pairs (y, z) ∈ Y × Z.

Path expressions
Given a context S, a path expression over S is a well formed
expression whose operands are arrows from S and whose
operations are those of the functional algebra. Every path
expression e is associated with a source and a target, de-
fined recursively, based on the notions of source and target
of the arrows in S. For instance, in our running example,
if e1 = g2 ◦ g1 then source(e1) = Store and target(e1) =
Region; similarly, if e2 = (g1 ◦ g) ∧ f then source(e2) = O
and target(e2) = City × Date (for a formal definition of a
path expression see [8]).

Given a path expression e and a database δ over S, the
evaluation of e with respect to δ is done in two steps, as
follows:

1. replace each arrow f appearing in e by the function
δ(f) that the database δ associates with f

2. perform the operations of the functional algebra as in-
dicated in e.

Note that the result of the evaluation is always a func-
tion; therefore we have a closure property as in the case of
the relational algebra.

A particular kind of path expression will be of interest,
namely the one that corresponds to the empty projection
function. To understand the nature of this projection, recall
that, given a Cartesian product of k sets, say A1 × ...×Ak,
there are as many projection functions as there are subsets of
the set A1, ..., Ak. The projection function that corresponds
to the empty set is the one that we call the empty projec-
tion function, hence we denote it by π∅. Clearly, following
the definition of a projection function, the function π∅ is a
constant function as it associates every tuple of A1× ...×Ak

with the empty tuple; we shall denote the empty tuple by
λ. Therefore, π∅(t) = {λ}, for all t ∈ A1 × ... × Ak (as-
sume A1 × ... × Ak is non-empty). In view of our previous
discussion, we introduce a particular path expression, the
empty path expression, which will always be associated with
the empty projection function, in any database δ. We de-
note the empty path expression by εX , where X denotes the
source of the empty path expression (its target being always
interpreted as {λ}). The empty path expression with source
O will be simply denoted by ε.

3.3 OLAP query
Given a context S, an OLAP query over S is a triple

Q =< c, m, op >, where

- c and m are path expressions over S such that source(c) =
source(m) and
- op is an operation among those authorized over the target
of m.



For example, in the schema S of our running example (Fig-
ure 6), the following is an OLAP query :

Q = (g ∧ (h2 ◦ h), n, sum)

In this query we have :
- c = g ∧ (h2 ◦ h), m = n and op = sum
- source(g ∧ (h2 ◦ h)) = source(n) = O,
sum is an authorized operation over the target of n (which
is N , with dom(N) = Int).

Given an OLAP query Q =< c, m, op >, we call c the classi-
fier, m the measure and op the operation (or the aggregator)
of Q. Moreover, we call the target of c the classification level
(or the grouping level), and the target of m the measure-
ment level. Note that the classification level, or the mea-
surement level, might be composed of other simpler levels.
This is the case in our previous example where target(c) =
Store×Supplier; the classification level is Store×Supplier
and it is composed of Store and Supplier.

3.4 Evaluation of an OLAP query
Given an OLAP query Q =< c, m, op > and a database

δ over S, the answer to Q with respect to δ is a function
ansQ,δ : range(c) → target(op) computed in two steps, as
follows:

1. Evaluate the path expressions c and m with respect to
δ.
{This step returns two functions that we also denote as
c and m. Let’s call X the common domain of definition
of the functions c and m, that is X = source(c) =
source(m) ; and let {y1, ..., yn} be the set of values of
c, that is Y = range(c) = {y1, ..., yn}}

2. For each value y ∈ range(c) do
begin

(a) Grouping
compute the inverse c−1(y)
{let c−1(y) = {x1, ..., xr}}

(b) Measurement
for each x ∈ c−1(y) do compute m(x)
{this step returns a tuple
t(y) =< m(x1), ..., m(xr) >}

(c) Aggregation
apply the operation op to the tuple t(y)
{call the result Res(y), that is Res(y) = op(t(y))}

(d) Answer
define ansQ,δ, (y) = Res(y)

end

We note that the variable Res used in the evaluation algo-
rithm (step 2.(c)) does not appear as a node of the context;
it is actually an auxiliary variable defined by the user in or-
der to receive the results of the computation. Moreover, as
δ is understood (it’s always the current database), we shall
drop δ from the notation of the answer, and we shall use the
symbol ansQ or ans(Q).

A particular form of OLAP query is the following, where
ε denotes the empty expression :

Q =< ε, m, op >

During its evaluation, step 1 of the evaluation algorithm re-
turns a constant function with λ as its only value; step 2.(a)
(grouping) returns just one group c−1(λ) = {X}; step 2.(b)
(measurement) returns the images under m of all elements
of X; step 2.(c) (aggregation) applies the operation on all
images to obtain a single result Res(λ); and step 2.(d) (an-
swer) associates every element of X to Res(λ). Therefore,
the answer ansQ,δ, is itself a constant function.
As an example, the query

Q =< ε, n, Sum >

will return the total number of items delivered (i.e. the total
number of items present in the database).

When the target of the classifier c is a Cartesian prod-
uct, say A1×, ...,×Ak, then the representation of the answer
ansQ,δ : range(c) → target(op) by cross tabulation is usu-
ally called a “data cube” [1, 7].

A final but important remark is that our approach treats
the classifier and the measure of an OLAP query in a sym-
metric manner. Indeed, as the classifier and the measure of
an OLAP query Q =< c, m, op > both are path expressions,
if we interchange them we obtain a different but valid OLAP
query, possibly after changing the operation op. For exam-
ple, consider the query Q =< g, n, sum >, which asks for the
total number of items delivered by store. If we interchange
g and n, and use “count” instead of “sum”, then we obtain
the query Q =< n, g, count >, which asks for the number of
stores by number of units delivered (i.e. given a number of
items, how many stores had this number of items delivered
to them). Note that, in the query Q, we used “count” as
an operation, since this is the only operation allowed on the
target of the measure g (which is a set of store references).

3.5 Optimization Issues
As we have seen in the previous section, the partition of

O resulting from the grouping step, plays a crucial role in
determining the answer. Given a query Q = (u, v, op), the
partition induced by the function u on the set of objects O
is called the support of Q and it is denoted as sQ. Query
optimization consists in using the answer of an already eval-
uated query in order to evaluate the answer of a new query
without passing over the data again. In our model we use
the lattice of partitions of the set O as the formal tool to
achieve such optimization.

Definition 8 - The Lattice of Partitions
Let p, p′ be two partitions of O. We say that p is finer than
p′, denoted p ≤ p′, if for each group G in p there is a group
G′ in p′ such that G ⊆ G′.

One can show that ≤ is a partial order over the set of all par-
titions of O (i.e. a reflexive, transitive and anti-symmetric
binary relation over partitions). Under this ordering, the set
of all partitions of O becomes a lattice in which the parti-
tion {O} is the top (the coarsest partition) and the partition
{{o}/o ∈ O} is the bottom (the finest partition).

To see how this lattice can be used to achieve optimiza-
tion, consider a query Q = (u, v, op) which has already been
evaluated. As we have explained earlier, if y1, .., yk are the



values in the range of u, then the support of Q is the follow-
ing partition of O:

sQ = {u−1(yi)/i = 1, .., k}
Based on the support, the answer to Q is expressed as fol-
lows:

ansQ(yi) = op(v(u−1(yi))), i = 1, .., k.

Now, suppose that a new query Q′= (u′, v′, op′) comes
in and we want to evaluate its answer. We claim that if
sQ ≤ sQ′ then the answer to Q′ can be expressed in terms
of the support of Q. This is based on a simple fact, which
follows immediately from the definition of the partition or-
dering:

Fact : if sQ ≤ sQ′ then each group G′ in sQ′ is the union
of groups from sQ.
As a result, if G′= G1 ∪ . . . ∪Gj then
op′(v′(G′)) = op′(v′(G1 ∪ . . .∪Gj)) = op′ (v′ (G1) , . . . , (v′

(Gj)).
As the support of Q has already been computed (and is

available), we can apply v′ and then op′ “off-line” (i.e. with-
out passing over the data again). Moreover, if v= v′ then
we can reuse the measurements of Q as well.
That is, if v= v′ then we have:

op′ (v′ (G1), . . . , (v′ (Gj))= op′ (v (G1) , . . . , (v (Gj))

Finally, if in addition op= op′ then we can reuse even the
summarizations of Q, provided that the following property
holds:

op(v(G1), . . . , v(Gj))= op(op(v(G1)), . . . , op(v(Gj))

One can show that this property holds for most of the usual
operations, namely “sum”, “count”, “max”, and “min”, but
not for “avg”. For example,

sum(2, 4, 6, 7) = sum(sum(2, 4), (sum(6, 7)),
while avg(2, 4, 6, 7) 6= avg(avg(2, 4), avg(6, 7)).

However, all the above results hold only if we know that
sQ ≤ s′Q (see Fact above), so the question is: given two
queries, Q and Q′, can we decide whether sQ ≤ s′Q?
To answer this question, we observe first that the classifier
u of an OLAP query is essentially the pairing of a number
of compositions along path expressions. Therefore it is suf-
ficient to answer the above question for two separate cases:
when the classifier is a composition and when the classifier
is a pairing. The following proposition provides the answers.

Proposition 2 - Comparing Classifiers

• ÄGrouping by Composition
Let Q = (u, v, op) and Q′ = (u′, v′, op′) be two OLAP
queries such u = p and u′ = q′ ◦ p, where p and q′ are
path expressions. Then sQ ≤ sQ′ .

• ÄGrouping by Pairing
Let Q = (u, v, op) and Q′ = (u′, v′, op′) be two OLAP
queries such u = p ∧ q and u′ = p, where p and q are
path expressions. Then sQ ≤ sQ′ .

In our running example, if Q = (g, q, sum) and Q′= (g1 ◦
g, q, sum), then sQ ≤ sQ′ , therefore the answer of Q′ can be
computed from that of Q. Similarly, if Q = (g ∧ h, q, sum)

and Q′= (g, q, sum), then again sQ ≤ sQ′ , and the answer
of Q′ can be computed from that of Q.
The proof of the above proposition follows from properties
of function inverses, as stated in the following proposition.

Proposition 3 - Properties of Inverses
composition:
Let f : X → Y and g : Y → Z be two functions. Then for
all z ∈ range(g ◦ f) we have:

(g ◦ f)−1(z) = ∪{f−1(y)/y ∈ g−1(z))
that is, a z-group under g ◦ f is the union of all y-groups

under f , where y ranges over the z-group under g

pairing:
Let f : X → Y and g : X → Z be two functions. Then for
all (y, z) ∈ range(f ∧ g) we have:

(f ∧ g)−1((y, z)) = f−1(y) ∩ g−1(z)

Lack of space does not allow further details on optimiza-
tion.

4. MAPPING TO THE RELATIONAL MODEL
The context model that we presented in the previous sec-

tion can certainly be used as is to model an application in or-
der to perform data analysis. Moreover, a context database
can be implemented using some suitable open source DBMS
technology. For example, MonetDB [2, 4, 5] seems to fit
quite well for this purpose as its basic structure is the binary
table. However, given that the vast majority of transactional
databases and data warehouses today are based on the rela-
tional model, it is important to have a method of mapping
the context model to the relational model. In this section
we present such a method, comprising three mappings as
follows :

• Mapping of a context to a relational star schema

• Mapping of a path expression to a relational expression

• Mapping of an OLAP query to an SQL query

Mapping a context to a relational star schema
Given a functional schema S, there are several ways to map
it into a relational schema rel(S). The simplest way is to
represent each arrow of S by a binary table, and define the
set of all binary tables to be the schema rel(S). However, the
evaluation of OLAP queries will then require the frequent
use of joins. A more efficient mapping is the one that pro-
duces a so called star schema, whose tables and constraints
are defined as follows :

Tables :

• Define a table FT containing the origin of S and all
its immediate successors as its attributes. Call these
immediate successors the base attributes, and call the
table FT the fact table.

• For each base attribute B, if there is at least one suc-
cessor of B, define a table BT containing B and all its
descendants as attributes. Call this table the B-table.

Constraints :



1. In each of the tables defined above, any arrow of S
connecting two of its attributes becomes a functional
dependency of that table (hence it might be that some
tables are not in BCNF).

2. There is a foreign key dependency from the fact table
to every other table BT : πB(TF ) ⊆ πB(BT ).

Example :
The star schema for our running example is the following
(underlined attributes form the key of each table) :

FT (Date, Store, Product, Num)
DateT (Date, Month), with πDate(FT ) ⊆ πDate(DateT )
StoreT (Store, City, Region), with πStore(FT ) ⊆ πStore(StoreT )
ProductT (Product, Category, Supplier), with πProduct(FT ) ⊆
πProduct(ProductT )

Note that the table StoreT is not in Boyce-Codd Normal
Form, and that the table DateT is not necessary to store
(as the month can be determined from the date).

Mapping a path expression to a relational expres-
sion
The following algorithm maps a path expression e over S to
a relational expression rel(e) over the star schema rel(S):

if the target of e contains only base attributes
then rel(e) = πtarget(e)(FT )
else rel(e) = πtarget(e)(FT ./ T1 ./ ... ./ Tk),
where T1, ..., Tk are all the tables each of which contains at
least one non base attribute appearing in the target of e.

Example:
The path expressions :

e1 = g ∧ (h2 ◦ h) and e2 = n

map to the following relational expressions :

rel(e1) = πStore,Sup(FT ./ ProductT )
rel(e2) = πNum(FT ).

Mapping an OLAP query to an SQL query
To map an OLAP query Q =< c, m, op > to a relational
query rel(Q) it is sufficient to replace the path expressions
c and m by rel(c) and rel(m), to obtain

rel(Q) =< rel(c), rel(m), op >.

The query rel(Q) is then evaluated using a “group by” in-
struction. This is possible if one observes that the “group
by” instruction of SQL simply computes inverses of a special
kind of functions, namely projections.

Example :

Q =< g ∧ (h2 ◦ h), n, sum >

maps to

rel(Q) =< πStore,Sup(FT ./ ProductT ),
πNum(FT ), sum >,

and rel(Q) is evaluated as follows:

select Store, Sup, sum(Num) as TotNum

from join(FT, ProductT )
group by (Store, Sup)

The previous SQL instruction computes the inverse of the
projection function πStore,Sup thus creating a partition of
the table join(FT, ProductT ) into sub-tables; then in each
sub-table T , it applies the function n to each tuple of the
sub-table to find the corresponding number; and finally sums
up the numbers found to return the total number for each
sub-table.

As a final remark, in multidimensional database parlance,
the determining base attributes (such as Date, Store, Prod-
uct in our running example) are called“dimensions”, or “cat-
egorical attributes”, while the determined base attributes
(such as Number in our running example) are called “mea-
sures”, “numerical attributes”, or even“summary attributes”
[1, 7]. However, there is no formal way of deciding which
attributes should be dimensions and which should be mea-
sures. This choice is left as a database design decision.

5. A USER-FRIENDLY INTERFACE
An interface is currently under implementation whose gross

architecture is shown in Figure 7. The interface performs
two main tasks. First, it allows the designer to input a pair
(U, F ), visualize a quotient graph, select a context and get
as output a star schema, under which is stored the data to
be analyzed. This task is performed using the algorithm
presented in the previous section. Once the star schema is
defined data can be entered either through the interface or
directly under the star schema. Second, it allows the analyst
to formulate OLAP queries against the star schema using as
an interface the context schema from which the star schema
was defined.

The interface presents the context schema to the user in
one of two forms: either as a graph with clickable nodes or
as an indented list of clickable items. To formulate a query
Q =< c, m, op >, the user simply clicks on nodes of the
schema (or items of the indented list) and selects an op-
eration from a popup menu. Once the query Q is defined
through clicks, the interface passes it to the query mapper
which maps Q to an SQL query and passes it over to the
relational engine (see Figure 7). Finally, the relational en-
gine processes the SQL query and passes the answer to the
interface. More precisely, during formulation of the query
Q =< c, m, op >, the path expressions c, m, and the oper-
ation op are defined in a sequence of three modes, as follows:

Classifier mode

The user defines a path by clicking on one or more nodes
of the schema until a single path from the origin can be de-
termined. If the schema is a tree, then a single click is suf-
ficient to specify a path, otherwise two or more clicks might
be necessary in order to specify a single path from the origin.
This process is repeated as many times as there are paths
that the user wishes to define. Upon exit from this mode,
the interface defines c by composing along each path defined
by the user, then pairing all compositions. For example, in
Figure 6, as the schema is a tree, it is sufficient to click on
a single node to define a path from the origin. Thus if the
user clicks first on Region and then on Supplier, the system
will generate the path expression c = (g2 ◦ g1 ◦ g)∧ (h2 ◦ h).



Figure 7: User-friendly interface prototype.

When the user indicates the end of classifier mode, the in-
terface switches to the measurement mode.

Measurement mode

The measure m is defined in exactly the same way as c
is defined. The difference here is that, upon exit from this
mode, the interface “infers” the operations applicable on the
target of m and puts them in a popup menu. For example,
assume in Figure 6 the user specifies n as measure. Since
the domain of Number is the set of integers, the system
will put in the popup menu all operations that are allowed
on integers (sum, max, min, avg, count, etc.). When the
user indicates the end of measurement mode, the interface
switches to the aggregation mode.

Aggregation mode

The interface presents to the user the popup menu cre-
ated during the measurement mode. The user then selects
one operation op by clicking on its name in the popup menu.
Upon exit from this mode, the interface defines the query
Q =< c, m, op > and passes it to the mapper (which maps
it to an SQL query and passes it to the relational engine for
evaluation). After evaluation, the relational engine passes
the answer to the interface for exploration by the user.

In its current form, the interface returns the answer to an
OLAP query using the tools available at the relational en-
gine, namely, the answer is returned either in tabular form
or in one of the available visualization modes (under the
control of the user).

Regarding loading of data, this is also done through the
interface: by clicking on an arrow of the schema, the user
can enter a set of pairs conforming to the definition of that
arrow; a check of “functionality” is performed and a mes-
sage is returned to the user (“error”, if the functionality of
the arrow is violated, and “accepted” otherwise). The data
entered is periodically propagated to the data warehouse.

6. CONCLUDING REMARKS
We have presented an approach to data analysis based on

functional dependencies. Given a set U of attributes and a
set F of functional dependencies, our approach relies on a
few basic notions of relational database theory to define the
notion of analysis context. Our main contributions are (a)
an algorithm for generating all analysis contexts embodied
in the pair (U, F ), (b) a functional language in which analy-
sis queries can be formulated within a context, (c) a formal
approach to query optimization, and (d) an algorithm for

mapping a context and its associated functional language
to a relational star schema; the mapping is fully automatic
and forms the basis for an interface currently under devel-
opment that allows the designer to enter a pair (U, F ), visu-
alize the quotient graph, select a context and get as output
a star schema. We note that the input pair (U, F ) might
be the result of semantic reconciliation between attributes
and between dependencies coming from two or more differ-
ent (transactional) databases.
Future work aims at the implementation of our model based
on some open source solution. In this respect, we are cur-
rently studying the possibility of using MonetDB [2, 4, 5],
which is an open source database system for high perfor-
mance applications in several areas, including data analysis.
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