
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

STOCHASTIC KNAPSACK PROBLEMS

KOSUCH S / LISSER A

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

11/2008

Rapport de Recherche N° 1505

Noname manuscript No.
(will be inserted by the editor)

Stochastic Knapsack Problems

Stefanie Kosuch · Abdel Lisser

the date of receipt and acceptance should be inserted later

Abstract In this paper we study and solve two different variants of static knapsack

problems with random weights: The stochastic knapsack problem with simple recourse

as well the stochastic knapsack problem with probabilistic constraint. Special regard

is given the corresponding continuous problems and three different problem solving

methods are presented. The resolution of the continuous problems serves to provide

upper bounds in a branch-and-bound framework in order to solve the original problems.

Numerical results on a dataset from the literature as well as a set of randomly generated

instances are given.

Keywords Static stochastic knapsack problems with random weights · simple

recourse · chance constrained · expectation constrained · branch-and-bound algorithm ·
stochastic gradient algorithm · Arrow-Hurwicz · SOCP

1 Introduction

The knapsack problem has been widely studied for the last decades (Kellerer et al.

(2004), Harvey M. Salkin (2006)). The problem consists in choosing a subset of items

that maximizes an objective function w.r.t. a given capacity constraint. More precisely,

we assume each item to have a benefit or benefit per weight unit as well as a specific

weight or resource. Then, our aim is to choose a subset of items in order to maximize

the total benefit w.r.t. a given capacity. There is a wide range of real life applications

of the knapsack problem, amongst all transportation, finance, e.g. the purchase of

commodities or stocks with a limited budged or schedule planning, where different

tasks with different priority or benefit should be fulfilled in a limited time.

The knapsack problem is a combinatorial problem: each item is modeled by a binary

decision variable x ∈ {0, 1} with x = 1 if the item is chosen and 0 otherwise.

Stefanie Kosuch
Université Paris Sud, Laboratoire de Recherche en Informatique, Orsay, France
E-mail: Kosuch@lri.fr

Abdel Lisser
Université Paris Sud, Laboratoire de Recherche en Informatique, Orsay, France
E-mail: Lisser@lri.fr

2 S. KOSUCH and A. LISSER

The knapsack problem is generally linear, i.e. both the objective function and the

constraints are linear. Nevertheless, it is known to be NP-hard (see (Kellerer et al.,

2004)).

In the deterministic case, all parameters (item weights, benefits and capacity) are

known. However, in real life problems it is not uncommon that not all of the values

are determined a priori. These values can be modeled by (continuously or discretely

distributed) random variables which turns the underlying problem in a stochastic opti-

mization problem (for a survey on optimization under uncertainty see (Sahinidis, 2004).

As the deterministic problem, the stochastic knapsack problem is at least NP-hard (see

(Kellerer et al., 2004)).

In this paper, item weights are supposed to be normally distributed random vari-

ables with known mean and variance whilst capacity and benefits remain deterministic.

Readers interested in the case of random returns are referred to Henig (1990), Carraway

et al. (1993) as well as to Morton and Wood (1997). In the latter, the authors solve this

variant of a stochastic knapsack problem using dynamic and integer programming as

well as a Monte Carlo solution procedure. In all three publications, the authors solve so

called stochastic target achievement problems. This means that, instead of maximizing

the expected reward, the objective of the problem is to maximize the probability to

attain a certain target.

We consider two models of stochastic knapsack problems with random weights.

The first is an unconstrained problem, namely the Stochastic Knapsack Problem with

simple recourse, while the second is a constrained stochastic knapsack problem. The

problems are introduced in section 2.

There are very few publications dealing with the (exact or approximated) solution of

one of the problem types addressed in this paper. A handful of publications dealing with

the Stochastic Knapsack Problem with simple recourse are available such as Ağralıand

Geunes (2008), (Claro and de Sousa, 2008), (Cohn and Barnhart, 1998) or (Kleywegt

et al., 2001). In (Cohn and Barnhart, 1998) and (Kleywegt et al., 2001) the authors

also assume the weights to be normal distributed. In the latter, a Sample Average

Approximation (SAA) Method is used to solve the problem approximatively. Our work

is mainly inspired by the work of (Cohn and Barnhart, 1998) who used a branch-

and-bound algorithm to solve the problem exactly. In Ağralıand Geunes (2008) the

authors assume the item weights to follow a Poisson distribution. Like proceeded in

this paper, they solve the continuous relaxation of their problem in order to compute

upper bounds for a branch-and-bound algorithm. The authors of (Claro and de Sousa,

2008) solve the problem in a very different manner. As the problem can be seen as a

multi-objective optimization problem, they solve, inter alia, Conditional Value at Risk

(CVaR) reformulations using a SAA method as well as tabu search related techniques.

General constrained stochastic optimization problems have been widely studied by

A. Prékopa. Most of his results can be found in his book (Prekopa, 1995). However, all

(or at least most) of his work has been concentrated on continuous problems. In (Goel

and Indyk, 1999) the authors present approximation algorithms for three different

combinatorial stochastic problems. One of these problems is a constrained stochastic

knapsack problem with Poisson or exponentially distributed weights and the existence

of a a polynomial approximation scheme for this problem is proved.

In this paper, we give special regard to the solution of the relaxed, i.e. continuous

versions of the treated problems. Most of section 3 is dedicated to the presentation of

three methods to solve these relaxations.

Stochastic Knapsack Problems 3

Two of these methods are stochastic gradient type algorithms. First papers on this

iterative stochastic approximation methods where released in the middle of the last

century (Robbins and Monro (1951), Kieper and Wolfowitz (1952)). Since then, an

extensive amount of theoretical results on the convergence of the stochastic gradi-

ent algorithm and its variants has been published (Polyak (1990), L’Écuyer and Yin

(1998)). The method has found many applications, particularly in machine learning

and control theory. For a survey, see the books by Nevel’son and Has’minskii (1976)

and by Kushner and Yin (2003).

The third problem solving method presented is based on the reformulation of the

stochastic problem as an equivalent deterministic problem, more precisely as a Second

Order Cone Programming problem (see (Boyd et al., 1998)). This special type of convex

optimization problem is most efficiently solved using interior point methods (Boyd and

Vandenberghe, 2004).

The results obtained by studying the relaxed problem are afterwards used to provide

upper bounds in a branch-and-bound algorithm (see section 3.2). The branch-and-bound

algorithm is one of the most common ways to solve deterministic knapsack problems.

One of the first papers in which the author solved the knapsack problem using a branch

and bound algorithm was (Kolesar, 1967). In (Martello and Toth, 1977) the authors

present a method to calculate upper bounds for the 0 − 1 knapsack problem and use

them in their branch-and-bound algorithm. Recent work has been published in (Sun

et al., 2007) where the authors present a branch-and-bound algorithm for the more

general polynomial knapsack problem. An example for a publication that uses the

branch-and-bound algorithm to solve a stochastic version of the knapsack problem is

(Carraway et al., 1993).

The problems studied in this work are all static, i.e. the decision which items to

choose is made before the stochastic parameters come to be known. Most papers on the

stochastic knapsack problem study the dynamic or ”on-line” variant of the problem.

In the case of the dynamic stochastic knapsack problem, the items (e.g. their reward

and/or measures) are supposed to come to be known during the decision process either

directly before or after an item has been chosen. Further decisions are therefor based

on the weight parameters already revealed and the decision previously made. The

problem consists therefor mostly in creating an optimal decision policy. For further

reading see (Lin et al., 2008), (Babaioff et al., 2007), (Kleywegt and Papastavrou,

2001), (Marchetti-Spaccamela and Vercellis, 1995) or (Ross and Tsang, 1989).

Another important field of research concerning the stochastic knapsack problem is

the search for approximation algorithms such as proposed by (Goel and Indyk, 1999)

or Klopfenstein and Nace (2006). In the latter, the authors use robust and dynamic

programming to find feasible solutions for the chance constrained knapsack problem

with random weights. In Dean et al. (2004) the focus lies on the comparison of adaptive

and non-adaptive policies for a stochastic knapsack problem in which the size of each

item is random but is revealed in the moment the item is chosen. In a recent paper

by Lu (2008), the author develops an approximation scheme in a quite different way

using differential equations and fluid and diffusion approximation approaches.

2 Mathematical formulations

We consider a stochastic knapsack problem of the following form: Given a set of n items.

Each item has a weight that is not known in advance, i.e. the decision of which items

4 S. KOSUCH and A. LISSER

to choose has to be made without the exact knowledge of their weights. Therefore,

we handle the weights as random variables and assume that weight χi of item i is

independently normally distributed with mean µi > 0 and standard deviation σi.

Furthermore, each item has a fix reward per weight unit ri > 0. The choice of a

reward per weight unit can be justified by the fact that the value of an item often

depend on its weight which we do not know in advance. We denote by χ, µ, σ and r

the corresponding n-dimensional vectors. The aim is to maximize the expected total

reward E[
∑n
i=1 riχixi]. Our knapsack problem has a fix weight capacity c > 0 but due

to the stochastic nature of the weights the objective to respect this restriction can be

interpreted in different ways.

We consider two variants of stochastic knapsack problems. The second variant is

studied in two equivalent formulations:

1. The Stochastic Knapsack Problem with simple recourse (SRKP)

max
x∈{0,1}n

E[

n∑
i=1

riχixi]− d ·E[[g(x, χ)− c]+] (1)

2. The Constrained Knapsack Problem (CKP)

a) The Chance Constrained Knapsack Problem (CCKP)

max
x∈{0,1}n

E[
n∑
i=1

riχixi] (2)

s.t. P{g(x, χ) ≤ c} ≥ p (3)

a) The Expectation Constrained Knapsack Problem (ECKP)

max
x∈{0,1}n

E[

n∑
i=1

riχixi] (4)

s.t. E[1R+(c− g(x, χ))] ≥ p (5)

where P{A} denotes the probability of an event A, E[·] the expectation, 1R+

denotes the indicator function of the positive real interval, g(x, χ) :=
∑n
i=1 χixi,

[x]+ := max(0, x) = x · 1R+(x) (x ∈ R), d ∈ R+ and p ∈ (0.5, 1] is the prescribed

probability.

We call solution vector every x ∈ Rn such that x = arg maxx∈Xad
J(x, χ) where

J is the objective function of one of the above maximization problems and Xad ⊆ Rn
the admissible set. We refer to the the objective function maximum value of one of

these problems as solution value.

Throughout, we denote by f and F the density and cumulative distribution function

of the standard normal distribution, respectively.

3 Problem solving methods

This section is subdivided into two subsections: In the first subsection we present

three possibilities the solve the relaxed stochastic knapsack problem, one for each

formulation presented in 2. In the second subsection, we use these methods to calculate

upper bounds for a branch-and-bound algorithm in order to solve the corresponding

combinatorial problems.

Stochastic Knapsack Problems 5

3.1 Calculating upper bounds

3.1.1 The stochastic knapsack problem with simple recourse

In this formulation, the capacity constraint has been included in the objective function

by using the penalty function [·]+ and a penalty factor d > 0. This can be interpreted

as follows: in the case where our choice of items leads to a capacity excess, a penalty

occurs per overweight unit.

In order to simplify references to the included functions, we define

ψ1(x, χ) := E[

n∑
i=1

riχixi] and ψ2(x, χ) := E[[g(x, χ)− c]+]

i.e. our objective function becomes J(x, χ) = ψ1(x, χ)− d · ψ2(x, χ).

We define a new random variable X := g(x, χ) which is normally distributed

with mean µ̂ :=
∑n
i=1 µixi, standard deviation σ̂ :=

√∑n
i=1 σ

2
i x

2
i , density function

ϕ(x) = 1
σ̂ f(x−µ̂σ̂) and cumulative distribution function Φ(x) = F (x−µ̂σ̂). Based on these

definitions, we can rewrite our objective function J in a deterministic way using the

following:

E[[X − c]+] =

∞∫
−∞

[X − c]+ · ϕ(X) dX =

∞∫
c

(X − c) · ϕ(X) dX

=

∞∫
c

X · ϕ(X) dX − c
∞∫
c

ϕ(X) dX

= µ̂

∞∫
c

ϕ(X) dX + σ̂2

∞∫
c

ϕ′(X) dX − c
∞∫
c

ϕ(X) dX

= σ̂2[ϕ(X)]∞c + (µ̂− c) [Φ(X)]∞c = σ̂2ϕ(c) + (µ̂− c) [1− Φ(c)]

= σ̂ · f(
c− µ̂
σ̂

) + (µ̂− c) ·
[
1− F (

c− µ̂
σ̂

)

]
This leads to the deterministic equivalent objective function

Jdet(x) =
∑
i

riµixi − d ·
[
σ̂ · f

(
c− µ̂
σ̂

)
− (c− µ̂) ·

[
1− F

(
c− µ̂
σ̂

)]]
(6)

As xi is defined on the interval [0, 1], SRKP becomes a concave optimization

problem. Due to this concavity and as the objective function handles the capacity

constraint, we can apply a stochastic gradient algorithm (see Algorithm 3.1).

A stochastic gradient algorithm is an algorithm that combines both Monte-Carlo

method and the gradient method often used in optimization theory. Here, the former

is used to approximate the gradient of the expectation function.

6 S. KOSUCH and A. LISSER

Stochastic Gradient Algorithm

– Choose x0 in Xad = [0, 1]n

– At step k + 1, draw χ = (χ1, ..., χn) according to its normal distribution
– Update xk as follows:

xk+1 = xk + εkrk

where rk = ∇j(xk, χ) and (εk)k∈N is a σ-sequence

– For all i = 1, ..., n: If xk+1
i > 1 set xk+1

i = 1 and if xk+1
i < 0 set xk+1

i = 0

Algorithm 3.1

In the case of SRKP , we have j(x, χ) =
∑
i riχixi − d · [g(x, χ) − c]+. Clearly, j

is not differentiable. We now present two of the three methods presented by Andrieu

(2004) to approximate its gradient.

Integration by Parts We rewrite J using the indicator function 1R+ :

∑
j

E[rjχjxj]− d ·E[[
∑
j

χjxj − c]+] =

∑
j

E[rjχjxj]− d ·E[1R+ [
∑
j

χjxj − c] ∗ (
∑
j

χjxj − c)] (7)

The first method to calculate the gradient of an expectation containing an indicator

function presented by Andrieu (2004) is based on integration by parts. Andrieu refers

to a result concerning the indicator function 1X , which in our case of a linear function

g becomes:

Theorem 1 Let J be defined as J(x) := E[1R+(g(x, χ))] where χ ∈ Rn is a random

vector with density ϕ and g : Rn ×Rn → R is a C1-function. We suppose that, ∀χ,

ϕ(χ) 6= 0. Let YR+(·) be the primitive of 1R+(·). Then, using integration by parts, we

get

J(x) = E[YR+(g(x, χ))Mi(x, χ)]

where

Mi(x, χ) =
1

g′χi(x, χ)

∂ ln(g′χi
(x, χ)/ϕ(χ))

∂χi

It follows

J ′(x) = E[1R+(g(x, χ))g′x(x, χ)Mi(x, χ) +YR+(g(x, χ))Mi
′
x(x, χ)] (8)

IF this theorem is the same for the function [·]+ (i.e. with YR+ being a primitive

of [·]+):

For our function J = ψ1 + d · ψ2, this gives us the following expression of the

gradients of ψ1 and ψ2:

Stochastic Knapsack Problems 7

ψ′1(x, χ) =


E[r1χ1]

·
·
·

E[rnχn]



ψ′2(x, χ) = E[[
∑
j

χjxj − c]+ ·Mi(x, χ) ·


χ1

·
·
·
χn

+YR+(
∑
j

χjxj − c)Mi
′
x(x, χ)]

As

∂ϕ(χ)

∂χi
=
∏
j 6=i

ϕ(χj) ·
∂ϕ(χi)

∂χi
=
∏
j 6=i

ϕ(χj) ·
(
− (χi − µi)

σ2
i

ϕ(χi)

)
= − (χi − µi)

σ2
i

ϕ(χ)

we have

Mi(x, χ) =
1

g′χi(x, χ)

∂ ln(g′χi
(x, χ)/ϕ(χ))

∂χi

=
1

g′χi(x, χ)

ϕ(χ)

g′χi(x, χ)

g′′χi
(x, χ)ϕ(χ)− g′χi

(x, χ)ϕ′χi
(χ)

ϕ2(χ)

=
ϕ′χi

(χ)

g′χi(x, χ) · ϕ(χ)
=

(χi − µi)
σ2
i

1

xi

Mi
′
x(x, χ) =

ϕ′χi
(χ)

ϕ(χ)

g′′χix(x, χ)

(g′χi(x, χ))2
= − (χi − µi)

σ2
i

1

x2
i

· νi

where we define νi ∈ Rn such that νii = 1 and νij = 0 if j 6= i. So we have

J ′(x) =


E[r1χ1]

·
·
·

E[rnχn]

− d ·E
 (χi − µi)

xi · σ2
i

([
∑
j

χjxj − c]+χ−
YR+(

∑
j χjxj − c)
xi

νi)


As in our case YR+ can be chosen as

YR+(x) =


0 if x ≤ 0

x2

2
else

we have

YR+(
∑
j

χjxj − c) =


0 if

∑
j

χjxj ≤ c

(
∑
j χjxj − c)

2

2
else

(9)

8 S. KOSUCH and A. LISSER

Approximation by convolution (see also (Andrieu et al., 2007)) The basic idea of this

method, which we call ”approximation by convolution (method)”, is to approximate

the indicator function 1R+ by its convolution with a function ht(x) := 1
t h
(
x
t

)
that

approximates the function of Dirac when the parameter t goes to zero. The convolution

of two functions is defined as follows:

(ρ ∗ h)(x) :=

∞∫
−∞

ρ(y)h(x− y) dy

Using a pair, continuous and non-negative function h with
∞∫
−∞

h(x) dx = 1 having

his maximum in 0, we get the following approximation of a locally integrable real valued

function ρ:

ρt(x) := (ρ ∗ ht)(x) =
1

t

∞∫
−∞

ρ(y)h
(y − x

t

)
dy

In the case of ρ = 1R+ , we have:

ρt(x) =
1

t

∞∫
0

h
(y − x

t

)
dy =

1

t

∞∫
0

h
(x− y

t

)
dy

and so

(ρt)
′(x) =

1

t2

∞∫
0

h′
(x− y

t

)
dy = −1

t
h
(x
t

)

Based on this, we get an approximation ∇(jt)x of the gradient of the function j

which is

∇(jt)x(x, χ) = ∇(ψ1)x(x, χ)− d ·
(
−1

t
· h
(
g(x, χ)

t

)
· χ · g(x, χ) + 1R+(g(x, χ)) · χ

)

For h, various functions may be chosen. In (Andrieu et al., 2007) the authors present

some possible choices for h. For each of these functions, they compute a reference value

for the mean square error of the obtained approximated gradient. It turns out that,

among the presented functions, h := 3
4 (1−x2)11(x) (where 11 is the indicator function

for the interval] − 1, 1[) is the best choice concerning this value. This leads us to the

following estimation of the gradient of j:

∇(jt)x(x, χ) = rχ+d·

(
3

4t

(
1−

(
g(x, χ)

t

)2
)
11

(
g(x, χ)

t

)
· χ · g(x, χ)− 1R+(g(x, χ)) · χ

)

Stochastic Knapsack Problems 9

3.1.2 The constrained knapsack problem

As presented in section 2, we consider two constrained knapsack problems, one with a

chance and one an expectation constraint. As

P{g(x, χ) ≤ c} = E[1R+(c− g(x, χ))]

these two considered variants of the stochastic knapsack problem are in fact equiv-

alent.

The chance constrained knapsack problem

Generally, the chance constraint (3) does not define a convex set which makes the

resolution even of continuous chance constrained problems difficult.

It has been shown by Prekopa (1995) that the set defined by constraint (3) is convex

if χ has a log-concave density and g is quasi-convex. The first property can easily be

proved for normal distributions and as our function g is linear, it is also (quasi-)convex.

This means that the chance constraint (3) defines a convex set in the special case of a

chance constrained knapsack problem with normally distributed weights.

We solve the continuous CCKP by reformulating it as an equivalent, determinis-

tic Second-order-cone-programming (SOCP) problem (Boyd et al., 1998). An SOCP

problem is an optimization problem of the following form:

max
x∈Xad

vT x (10)

s.t. ‖Ax+ b‖ ≤ cT x+ d (11)

where A ∈ Rn×Rn, x, v, b, c ∈ Rn and d ∈ R. In the following, we call a constraint

of the form (11) an SOCP-constraint.

Let Σ be the matrix of covariances of the probability vector χ. As we assume

p > 0.5, we get the following equivalence (see e.g. (Boyd et al., 1998))

P{
∑
i

χixi ≤ c)} ≥ p ⇐⇒
∑
i

χixi + F−1(p)‖Σ1/2x‖ ≤ c

Notice that Σ is a diagonal matrix as the weights are independently distributed.

Therefore, its square root Σ
1
2 is also diagonal having the standard deviations of the

random variables χi as diagonal nonzero components.

Based on this, the relaxed chance constrained knapsack problem becomes

max
x∈[0,1]n

E[
∑
i

riχixi]

s.t.
∑
i

µixi + δ‖Σ1/2x‖ ≤ c
⇔

max
x∈[0,1]n

E[
∑
i

riχixj]

s.t. ‖Σ1/2x‖ ≤ −1

δ

∑
i

µixi +
c

δ

where δ := F−1(p) > 0.

The constraint 0 ≤ xi ≤ 1 (i = 1, ..., n) of the corresponding relaxed problem can

also be rewritten as an SOCP constraint:

0 ≤ xi ≤ 1⇔ ‖Aix‖ ≤ xi ∧ ‖Aix‖ ≤ 1

10 S. KOSUCH and A. LISSER

where Ai ∈ R1×n, Ai[1, k] = 0 ∀k 6= i and Ai[1, i] = 1.

Then, the SOCP problem becomes:

max
x∈Rn

vT x (12)

s.t. ‖Σ1/2x‖ ≤ −1

δ
· µ · x+

c

δ
(13)

‖Aix‖ ≤ νix , (14)

‖Aix‖ ≤ 1 , (15)

where v := (r1µ1, . . . , rnµn) and νi ∈ Rn such that νik = 1 if k = i and νik = 0

otherwise.

This problem does not have any strictly feasible solution vector, as constraint (14)

is always tight. This becomes problematic if we want to solve this problem using the

SOCP program by Boyd, Lobo, Vandenberghe ((Boyd et al., 1995)) as this software

can only solve strictly feasible problems. To get a strictly feasible solution, we perform

a small perturbation on the right hand side of (14) by adding ε to νix such that

0 < ε << 1.

In order to solve (12)-(15) using the SOCP program by Boyd et al., we determine

its dual problem and study if the latter is strictly feasible:

min
w1∈R,

w2,w3,z1,z2,z3∈Rn

− c
δ
· w1 −

n∑
i=1

w3
i

s.t.
(
Σ1/2

)T
z1 +

n∑
i=1

ATi (z2i + z3i)− 1

δ
· µ · w1 +

n∑
i=1

νiw2
i = v

‖z1‖ ≤ w1

‖zki ‖ ≤ w
k
i , k = 2, 3, i = 1, . . . , n

To find a strictly feasible solution vector for the dual problem, we reformulate it as

follows:

min
w1∈R,

w2,w3,z1,z2,z3∈Rn

− c
δ
· w1 −

n∑
i=1

w3
i

s.t. σi · z1i + z2i + z3i −
µi
δ
· w1 + w2

i = riµi , i = 1, ..., n√√√√ n∑
i=1

(z1i)2 ≤ w1

|zki | ≤ w
k
i , k = 2, 3, i = 1, . . . , n

At this point we first use the fact that the random weights are independently

distributed. If we choose z1 = zki = 0 (k = 1, 2 , i = 1, . . . , n) and arbitrary w3
i > 0

(i = 1, . . . , n), it is easy to find strictly feasible w1, w2
i (i = 1, . . . , n).

Stochastic Knapsack Problems 11

The expectation constrained knapsack problem

In general, the expectation constrained knapsack problem can be formulated as fol-

lows:

max
x∈{0,1}n

E[

n∑
i=1

riχixi] (16)

s.t. E[Θ(x, χ)] ≤ α (17)

where α ∈ R and Θ : Rn × Rn → R is a function such that 17 represents the

capacity constraint.

If constraint 17 is convex and Θ is differentiable, ECKP can be solved by a stochas-

tic Arrow-Hurwicz algorithm (see Algorithm 3.2). The stochastic Arrow Hurwicz algo-

rithm is a stochastic gradient algorithm for solving constrained stochastic optimization

problems by using Lagrangian multipliers.

Stochastic Arrow-Hurwicz Algorithm

1. Choose x0 ∈ Xad and λ0 ∈ [0,∞) as well as two α-sequences (εk)k∈N and (ρk)k∈N
2. Given xk and λk, we draw χk+1 following its normal distribution, we calculate rk =
∇j(xk, χk+1), θk = ∇Θ(xk, χk+1) and we update xk+1 and λk+1 as follows:

xk+1 = xk + εk(rk + (θk)Tλk)

λk+1 = λk + ρkΘ(xk+1, χk+1)

3. For all i = 1, ..., n: If xk+1
i > 1 set xk+1

i = 1 and if xk+1
i < 0 set xk+1

i = 0

4. For all i = 1, ..., n: If λk+1
i < 0 set λk+1

i = 0

Algorithm 3.2

As the set defined by the expectation constraint 5 is the same as the set defined

by the chance constraint (3), it is also convex. With the approximation by convolution

method showed in section 3.1.1 we can approximate the gradient of the constraint

function E[1R+(c−
∑
i χixi)]. This allows to solve the particular ECKP 4 using the

stochastic Arrow-Hurwicz algorithm.

3.2 Calculating lower bounds

To calculate lower bounds of the objective function and the solution value, we use a

branch-and-bound algorithm based on an algorithm by Cohn and Barnhart (1998). In

3.2.1 we explain and justify the ranking of the items using dominance relationships.

Then, we present the algorithm and its variants for solving a CKP .

3.2.1 Ranking the items

In order to define the binary tree used in the branch-and-bound algorithm, we rank

our items. Therefor, we introduce dominance relationships and the item are ranked

12 S. KOSUCH and A. LISSER

according to the number of items they dominate and, in the case where several items

dominate the same number of items, by their value of
r2i
σi

.

The dominance relationships are also used to prune subtrees during the algorithm

in order to decrease the number of considered nodes and evaluated branches: whenever

an item is rejected, we also reject all those items that are dominated by the rejected

one.

SRKP : To introduce dominance relationships in the case of SRKP , we consider the

variations of the (deterministic equivalent) objective function (6) Jdet.

Clearly, the increase of one of the rewards per weight unit rj increases the objective

function if and only if xj > 0.

To study the variations when changing the value of σ̂, we calculate the derivative

of Jdet with respect to σ̂:

∂Jdet
∂σ̂

(x) = −d · f
(
c− µ̂
σ̂

)
As f is strictly positive, this shows that whenever an item is replaced by another

one having the same mean and reward per weight unit but smaller variance, the value

of the objective function increases. Based on this study, Cohn and Barnhart (1998)

introduced two types of dominance relationships: We say that item i dominates item

k if one of the following holds:

1. µi = µk, ri ≥ rk, σi ≤ σk
2. µi ≤ µk, σi ≤ σk, ri · µi ≥ rk · µk

CKP : In the case of CCKP and ECKP , it is more complicated to introduce domi-

nance relationships as in the case of SRKP . This is due to the fact that modifying σ̂

cannot be interpreted as easily as in the former case. The only, very special case where

one can say that item i dominates item k is the following:

1. µi = µk, σi = σk, ri >= rk

Most of the time, the items are simply ranked by their value of ri. This ranking

gave the best results in the numerical tests (compared e.g. with the ranking used for

SRKP or a random ranking) but can surely be improved.

3.2.2 The branch-and-bound algorithm

Branch-and-bound algorithm 3.3 is based on the branch and bound algorithm by Cohn

and Barnhart (1998). We just added step 4.

The algorithm has been constructed for SRKP . In order to use this algorithm to

solve CCKP or ECKP , we modify step 2 in order to respect the chance or the expec-

tation constraint: instead of testing if the next item increases the objective function

(which is the case for each item at every time), we check whether the chance or the

expectation constraint is still satisfied when adding the next item. For example, in

the case of CCKP , we calculate Φ(c) i.e. the cumulative distribution function of the

probability variable X = g(x, χ). Then, depending on whether the obtained value is

greater or equal than the prescribed probability, we accept or reject the item.

Stochastic Knapsack Problems 13

Branch-and-Bound Algorithm

1. Rank the items as described in section 3.2.1. This ranking defines the binary tree with the
highest ranked item at the root.

2. Plunge the tree as follows: Beginning at the root of the tree, add the current item if
and only if the objective function increases. Assign the maximum value of the objective
function found to the variable INF. This variable stores the current lower bound of the
objective function. Add the found branch to the list of branches. Set the associated upper
bound SUP to infinity.

3. If there is no branch left on our list of branches, go to step 7.
Else take the branch of our list of branches having the maximum objective function value.
Go to step 4.

4. If the associated upper bound SUP is greater than the current lower bound INF, go to
step 5.
Else delete the branch from the list. Go to step 3.

5. If there is no accepted item left in the selected branch that does not already have a plunged
or rejected subtree, delete the branch from the list. Go back to step 3.
Else, following our ranking, choose the first accepted item that does not already have a
plunged or rejected subtree. Calculate an upper bound SUP for the subtree defined by
rejecting this item. Go to step 6.

6. If SUP ≤ INF, reject this subtree, go to step 5.
Else plunge the subtree as described in 2 and add the found branch together with the
value SUP to the list of branches. If the value of the objective function of this branch is
greater than INF, update INF.
Go to step 3.

7. The current value INF is the optimal solution of problem (1).

Algorithm 3.3

In step 5 the calculation of upper bounds for subtrees is realized by fixing the value

of items that are higher in the tree at 1 or 0 and solving the continuous problem having

the xi of the remaining items as decision variables. In the case of SRKP as well as

ECKP and the corresponding stochastic gradient algorithms this is easily done: at

every iteration we just leave out the recalculation of the fixed xi. In the case of the

SOCP reformulation of CCKP , we solve the SOCP subproblem with respect to the

index set I of the items that have not already been fixed; see subsection 3.1.2).

4 Numerical results

In this section we present our numerical results concerning the algorithms presented

above. The first part contains the results of the algorithms for solving the continu-

ous knapsack problems, namely the stochastic gradient method, the stochastic Arrow-

Hurwicz algorithm as well as the algorithm by Boyd et al. to solve the SOCP refor-

mulation. The first two algorithms are implemented in C language. The third one is an

open source interior point algorithm whose source code can be obtained as C- as well

as MATLAB-code. We use the C-code. In the second part of the section, the results

for the branch-and-bound algorithm are presented. It has also been implemented in

C-language. All tests were carried out on an Intel PC with 1GB RAM.

We test our methods on the same dataset as in (Cohn and Barnhart, 1998) as

well as a sample of randomly created instances for each of the chosen dimensions. The

Cohn-instance is presented in Table 1. The last column states the value of the ratio

r2i /σi used for the ranking of the items. The penalty factor used is 5. For the random

14 S. KOSUCH and A. LISSER

Object reward per
weight unit ri

mean of the
weight µi

variance
σ2
i

r2i
σi

1 2 212 47 0.583
2 2 203 21 0.873
3 3 246 42 1.389
4 2 223 21 0.873
5 2 230 15 1.033
6 1 233 10 0.316
7 2 235 11 1.206
8 2 222 33 0.696
9 1 210 36 0.167
10 2 299 42 0.617
11 2 256 25 0.800
12 3 250 19 2.065
13 1 194 24 0.204
14 3 207 22 1.919
15 1 182 14 0.267

Table 1: Values of the Cohn-instance

dataset, the weight means are generated from a normal distribution with mean 225

and standard deviation 25, the variances from a uniform distribution on the interval

[5, 50] and the rewards per weight unit have equal probability to be 1, 2 or 3. In the

case of SRKP , the penalty factor is always 5 and for CCKP and ECKP we choose

a prescribed probability of p = 0.6. For each dimension we created 50 instances. Table

2, 3 and 4 show the average values over these 50 instances.

The idea of creating the random instances as described come from (Cohn and Barn-

hart, 1998) as the authors generated their instance in the same manner. We observed

that by doing so, we get very small duality gaps (see Table 4). We thereupon variated

the parameters d (d = 5, 20, 80) and c (c/n = 50, 133, 200) as well as the chosen distri-

butions (for example a uniform distribution on [100, 350] or [200, 250] to generate the

weight means) but obtained the same small gaps of at most 2%.

In the case of SRKP , our stochastic gradient algorithm and the branch-and-bound

algorithm involving it are compared with the method of Cohn and Barnhart. In their

paper, they only present the results for one unique dataset of dimension 15. We therefor

apply a variant of their method to our test instances: Cohn and Barnhart used three

different heuristics to calculate upper bounds for the branch-and-bound algorithm (see

(Cohn and Barnhart, 1998) for details). Following a policy, they decided which heuristic

to use. Unfortunately, this policy has not been explained in detail in the paper. The

results presented in our paper are therefor obtained by the following variant of their

method: In the case of the continuous SRKP we calculate all three upper bounds and

choose the smallest as reference. During the branch-and-bound algorithm, whenever

the first of the three heuristics gives an upper bound which is higher than the current

lower bound, we calculate an upper bound using the second method. If this upper

bound once more gives a value SUP > INF , we also calculate the third upper bound.

This method is possibly more time consuming than the method of Cohn and Barnhart,

but the number of considered nodes is equal or even smaller.

Stochastic Knapsack Problems 15

4.1 The continuous stochastic knapsack problem

An example for the convergence of the stochastic gradient method involving approx-

imation by convolution is shown in Figure 4.1. The stopping criterion is a maximum

number of 2000 iterations. As shown in the figure and confirmed by numerical tests,

the best result found does not change very much (less than 1%) after iteration 500.

Based on this observation, we use in the following a stopping criterion for the stochastic

gradient algorithm of 500 iterations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4650

4655

4660

4665

4670

4675

Number of iterations of the stochastic gradient algorithm

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Fig. 4.1: Results for the stochastic gradient algorithm solving the continuous SRKP

An example for the convergence of the stochastic Arrow-Hurwicz algorithm involv-

ing approximation by convolution is presented in Figure 4.2. We solve ECKP with

a maximum of 8000 iterations. The first graph shows the variations of the value of

the objective function whilst the second figure presents the variations of the Lagrange

multiplier λ. As in the case of the stochastic gradient algorithm, we fix a maximum

number of 500 iterations for all further tests.

In Table 2 and Table 3 we compare for one thing the found optima of the continuous

problems, or, more precisely, the calculated upper bounds for the combinatorial prob-

lem. For another, we compare the CPU time (in milliseconds) needed to compute them.

C./B. stands for Cohn/Barnhart, i.e. for the (unique) Cohn-instance of dimension 15.

Table 2 gives the results for SRKP . We observe that especially for small dimensions

it takes much less time to compute all three upper bounds proposed by Cohn and

Barnhart than to solve the continuous relaxation by a stochastic gradient algorithm.

16 S. KOSUCH and A. LISSER

0 1000 2000 3000 4000 5000 6000 7000 8000
4660

4670

4680

4690

4700

4710

4720

4730

Iterations

S
o
lu

ti
o
n
 v

a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

Iterations

L
a
g
ra

n
g
e
 f
a
c
to

r

Fig. 4.2: Results for the Arrow-Hurwicz algorithm solving the continuous ECKP

Stochastic gradient &
Approx. by convolution

Cohn/Barnhart

n Optimum CPU-time (msec) Upper Bound CPU-time (msec)

C./B. 4676.208 4 4759.000 < 1

15 4934.583 4 5146.927 < 1
20 6690.744 6 6936.017 < 1
30 10279.908 9 10529.541 < 1
50 16954.343 12 17224.803 < 1
75 25519.688 16 25811.775 < 1

100 33846.095 22 34131.754 < 1
150 50607.008 31 50932.104 < 1
250 85098.136 52 85459.649 1
500 170110.459 104 170503.708 3

1000 340922.966 240 340822.740 5
5000 1703811.095 1110 1704935.949 107

20000 6813327.586 4940 6815663.089 1759

Table 2: The numerical results for the continuous SRKP

But, while the CPU time of the stochastic gradient algorithm increases proportional

to the dimension, this is not the case for the Cohn and Barnhart upper bounds.

Table 3 gives the results for CKP . As expected, the SOCP algorithm solves the

continuous CKP more accurate than the Arrow-Hurwicz algorithm, i.e. it finds a

greater optimum. Concerning the CPU time, the SOCP algorithm needs as much

time as the Arrow-Hurwicz algorithm to solve the continuous problems of very small

Stochastic Knapsack Problems 17

Arrow-Hurwicz &
Approx. by convolution

SOCP

n Optimum CPU-time (msec) Optimum CPU-time (msec)

C./B. 4696.097 3 4696.413 4

15 4954.546 4 4954.704 4
20 6713.081 5 6713.987 6
30 10308.640 7 10310.45 18
50 16992.450 11 16993.514 65
75 25568.059 17 25569.379 213

100 33902.283 22 33903.672 503
150 50676.686 32 50678.312 1802
250 85187.249 52 ** **
500 170239.531 107 ** **

1000 340529.019 216 ** **
5000 1704560.250 1100 ** **

20000 6814158.873 4317 ** **

** exceeding of the available memory space

Table 3: The numerical results for the continuous CCKP/ECKP

dimension (n = 15, 20). However, for higher dimensional problems the Arrow-Hurwicz

algorithm is much faster than the SOCP method. The SOCP algorithm is also very

memory space consuming: for dimensions higher than n = 180 the memory space of

the computer used is not sufficient to solve the continuous problem using the SOCP

program by Boyd et al..

4.2 The combinatorial stochastic knapsack problem

The numerical results for the combinatorial problem are shown in Table 4. Notice that

the CPU time needed by the branch-and-bound algorithm (columns 6 and 11) is given

in seconds. Columns 5 and 10 contain the number of considered nodes, i.e. the number

of times an upper bound is calculated during the branch-and-bound algorithm.

The upper table of Table 4 contains the results for SRKP . We observe that when

using the Cohn and Barnhart upper bounds during the branch-and-bound algorithm

much less nodes have to be considered. This can be explained by the higher upper

bounds and therefor a smaller number of rejected subtrees. For small dimensions

(n = 15, 20, 30) this is counterbalanced by the small CPU times needed to calculate

one upper bound. In the case of higher dimensional problems, the branch-and-bound

algorithm involving a stochastic gradient algorithm becomes more competitive due to

the tighter upper bounds and the resulting smaller number of considered nodes.

Studying the lower table, we observe that when using the Arrow-Hurwicz algorithm

a smaller number of nodes has to be considered to solve CKP than with the SOCP

program. This is not, as in the case of SRKP , due to a better choice of the upper

bounds as in both algorithms the upper bounds are supposed to be the solution of the

relaxed problem. Nevertheless, we get smaller values when calculating them using the

Arrow-Hurwicz algorithm. This is based on the fact that the Arrow-Hurwicz algorithm

involving approximation by convolution only computes approximate solutions of the

18 S. KOSUCH and A. LISSER

S
to

c
h
a
stic

g
r
a
d
ie

n
t

&
A

p
p
r
o
x
im

a
tio

n
b
y

c
o
n
v
o
lu

tio
n

C
o
h
n
/
B

a
r
n
h
a
r
t

n
U

p
p
e
r

B
o
u
n
d

C
P

U
-tim

e
(m

se
c
)

c
o
n
tin

u
o
u
s

O
p
tim

u
m

c
o
n
sid

e
r
e
d

n
o
d
e
s

C
P

U
-tim

e
(se

c
)

B
-a

n
d
-B

U
p
p
e
r

B
o
u
n
d

C
P

U
-tim

e
(m

se
c
)

c
o
n
tin

u
o
u
s

O
p
tim

u
m

c
o
n
sid

e
r
e
d

n
o
d
e
s

C
P

U
-tim

e
(se

c
)

B
-a

n
d
-B

C
./

B
.

4
6
7
6
.2

0
8

4
4
6
1
8

1
0
0

0
.3

4
2

4
7
5
9
.0

0
0

<
1

4
6
1
8

1
4
4

0
.0

0
0

1
5

4
9
3
4
.5

8
3

4
4
8
9
0

4
1

0
.1

3
9

5
1
4
6
.9

2
7

<
1

4
8
9
0

6
5

0
.0

0
2

2
0

6
6
9
0
.7

4
4

6
6
6
5
1

8
0

0
.3

4
8

6
9
3
6
.0

1
7

<
1

6
6
5
1

2
8
0

0
.0

0
3

3
0

1
0
2
7
9
.9

0
8

9
1
0
2
6
5

4
5
5

2
.8

0
8

1
0
5
2
9
.5

4
1

<
1

1
0
2
6
5

2
5
2
5

0
.0

3
7

5
0

1
6
9
5
4
.3

4
3

1
2

1
6
9
5
1

1
3
1
7
3

1
3
1
.1

7
1

1
7
2
2
4
.8

0
3

<
1

1
6
9
5
1

3
6
4
9
6
0

7
7
9
.3

2
5

7
5

2
5
5
1
9
.6

8
8

1
6

2
5
5
1
4

6
3
9
7
2

9
3
4
.5

5
0

2
5
8
1
1
.7

7
5

<
1

*
*

*
1
0
0

3
3
8
4
6
.0

9
5

2
2

*
*

*
3
4
1
3
1
.7

5
4

<
1

*
*

*

*
C

P
U

-tim
e

ex
ceed

s
1
hA

r
r
o
w

-H
u
r
w

ic
z

&
A

p
p
r
o
x
im

a
tio

n
b
y

c
o
n
v
o
lu

tio
n

S
O

C
P

n
U

p
p
e
r

B
o
u
n
d

C
P

U
-tim

e
(m

se
c
)

c
o
n
tin

u
o
u
s

O
p
tim

u
m

c
o
n
sid

e
r
e
d

n
o
d
e
s

C
P

U
-tim

e
(se

c
)

B
-a

n
d
-B

U
p
p
e
r

B
o
u
n
d

C
P

U
-tim

e
(m

se
c
)

c
o
n
tin

u
o
u
s

O
p
tim

u
m

c
o
n
sid

e
r
e
d

n
o
d
e
s

C
P

U
-tim

e
(se

c
)

B
-a

n
d
-B

C
./

B
.

4
6
9
6
.0

9
7

3
4
5
9
5

1
2
2

0
.4

6
9

4
6
9
6
.4

1
3

4
4
5
9
5

1
2
2

0
.4

0
6

1
5

4
9
5
4
.5

4
6

4
4
8
4
0

3
4

0
.1

1
6

4
9
5
4
.7

0
4

4
4
8
4
0

3
4

0
.0

8
2

2
0

6
7
1
3
.0

8
1

5
6
6
3
4

7
1

0
.3

0
5

6
7
1
3
.9

8
7

6
6
6
3
4

6
6

0
.2

3
6

3
0

1
0
3
0
8
.6

4
0

7
1
0
2
7
2

3
4
5

2
.3

1
4

1
0
3
1
0
.4

5
1
8

1
0
2
7
2

3
5
0

1
.8

0
1

5
0

1
6
9
9
2
.4

5
0

1
1

1
6
9
7
4

1
8
8
0

1
9
.4

7
3

1
6
9
9
3
.5

1
4

6
5

1
6
9
7
5

7
4
0
6

7
0
.9

1
4

7
5

2
5
5
6
8
.0

5
9

1
7

2
5
5
4
7

3
7
4
3

5
7
.3

9
7

2
5
5
6
9
.3

7
9

2
1
3

2
5
5
4
8

6
2
1
7
5

1
5
3
5
.5

2
0

1
0
0

3
3
9
0
2
.2

8
3

2
2

3
3
8
9
3

9
4
9
8
4

1
9
3
2
.0

9
7

3
3
9
0
3
.6

7
2

5
0
3

*
*

*
1
5
0

5
0
6
7
6
.6

8
6

3
2

*
*

*
5
0
6
7
8
.3

1
2

1
8
0
2

*
*

*

*
C

P
U

-tim
e

ex
ceed

s
1
h

T
a
b
le

4
:

N
u
m

erica
l

resu
lts

fo
r

th
e

co
m

b
in

a
to

ria
l
S
R
K
P

(u
p
p

er
ta

b
le)

a
n
d
C
C
K
P

/
E
C
K
P

(low
er

ta
b
le)

Stochastic Knapsack Problems 19

relaxed problems. These non-optimal solutions have, of course, a smaller value than

the optimum and the chosen ”upper bounds” seem to be tighter. As the duality gaps of

the chosen instances are very small, these smaller ”upper bounds” have a great impact,

i.e. a lot more subtrees are rejected. This can theoretically also cause the exclusion of

a subtree that contains the optimal solution. Anyway, in the case of our instances, the

found optima are in both cases nearly the same.

As mentioned, Table 4 only shows the results for the combinatorial problem in

the case where the average needed time over all 50 instances is at most 1h. In case of

the stochastic gradient algorithm involving approximation by convolution, this limit is

respected when n = 75 but exceeded when n = 100. For n = 100, the the CPU-time

is smaller or equal than 2h in about 78% of the cases and only 6% of the instances

needed more than 24h to terminate. For n = 150, 44% of the tests finished in at most

2h and 56% of the instances needed not more than 24h.

5 Conclusion

In this paper we study, solve and compare two different variants of a stochastic knap-

sack problem with random weights. We apply a branch-and-bound algorithm and solve

continuous subproblems in order to provide upper bounds. We use a stochastic gradient

method for solving the continuous stochastic knapsack problem with simple recourse

(SRKP) and an SOCP algorithm as well as a stochastic Arrow-Hurwicz algorithm for

solving the constrained version of the continuous stochastic knapsack problem (CKP).

In the cases of the stochastic gradient and the Arrow-Hurwicz algorithms, approxi-

mated gradients are computed using approximation by convolution.

Concerning SRKP , we compare the branch-and bound algorithm involving the

stochastic gradient method with a method from literature (Cohn and Barnhart (1998)).

The numerical tests show, that our upper bounds are much tighter, i.e. much less nodes

have to be considered. This results for higher dimensional problems in a smaller CPU

time as well as a smaller memory space needed. In the case of CKP , the Arrow-Hurwicz

algorithm shows a better performance for higher dimensional problems as the time to

compute one upper bound is smaller. In addition, the SOCP algorithm requires a lot

more memory space which results in an exceeding of the available memory space for

high dimensional problems.

References

Andrieu, L. (2004). Optimization sous contrainte en probabilité. Ecole Nationale des

Ponts et Chausses.

Andrieu, L., Cohen, G., and Vzquez-Abad, F. (2007). Stochastic programming with

probability constraints. http://fr.arxiv.org/abs/0708.0281 (Accessed 24 October

2008).

Ağralı, S. and Geunes, J. (2008). A class of stochas-

tic knapsack problems with poisson resource requirements.

http://plaza.ufl.edu/sagrali/research files/Poisson KP ORL Submission.pdf (Ac-

cessed 24 October 2008).

Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. (2007). A knapsack secre-

tary problem with applications. In APPROX-RANDOM, pages 16–28.

20 S. KOSUCH and A. LISSER

Boyd, S., Lebret, H., Lobo, M. S., and Vandenberghe, L. (1998). Applications of

second-order cone programming. Linear Algebra and its Applications, 284:193–228.

Boyd, S., Lobo, M. S., and Vandenberghe, L. (1995). Software for second-order

cone programming. http://www.stanford.edu/∼boyd/old software/socp/doc.pdf

(Accessed 24 October 2008).

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press.

Carraway, R. L., Schmidt, R. L., and Weatherford, L. R. (1993). An algorithm for

maximizing target achievement in the stochastic knapsack problem with normal

returns. Naval research logistics, 40(2):161–173.

Claro, J. and de Sousa, J. P. (2008). A multiobjective meta-

heuristic for a mean-risk static stochastic knapsack problem.

www.springerlink.com/index/b668736740218j72.pdf (Accessed 24 October 2008).

Cohn, A. and Barnhart, C. (1998). The stochastic knapsack problem with random

weights: A heuristic approach to robust transportation planning. In Proceedings of

the Triennial Symposium on Transportation Analysis (TRISTAN III).

Dean, B. C., Goemans, M. X., and Vondrák, J. (2004). Approximating the stochastic

knapsack problem: The benefit of adaptivity. In Proceedings 45th Annual IEEE

45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages

208–217.

Goel, A. and Indyk, P. (1999). Stochastic load balancing and related problems. In 40th

Annual Symposium on Foundations of Computer Science, pages 579 – 586.

Harvey M. Salkin, C. A. D. K. (2006). The knapsack problem: A survey. Naval Research

Logistics, 22(1):127–144.

Henig, M. I. (1990). Risk criteria in a stochastic knapsack problem. Operations Re-

search, 38(5):820–825.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer-Verlag

(Berlin, Heidelberg).

Kieper, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a re-

gression function. Annals of Mathematical Statistics, 23:462–466.

Kleywegt, A. J. and Papastavrou, J. D. (2001). The dynamic and stochastic knapsack

problem with random sized weights. Operations Research, 49:26–41.

Kleywegt, A. J., Shapiro, A., and de mello, T. H. (2001). The sample average approxi-

mation method for stochastic discrete optimization. SIAM Journal on Optimization,

12:479–502.

Klopfenstein, O. and Nace, D. (2006). A robust approach to the

chance-constrained knapsack problem. http://www.optimization-

online.org/DB HTML/2006/03/1341.html (Accessed 24 October 2008).

Kolesar, P. J. (1967). A branch and bound algorithm for the knapsack problem. Man-

agement Science, 13(9):723–735.

Kushner, H. J. and Yin, G. G. (2003). Stochastic Approximation and Recursive Algo-

rithms and Applications. Springer Verlag.

L’Écuyer, P. and Yin, G. (1998). Budget dependent convergence rate of stochastic

approximation. SIAM Journal Optimization, 8:217–247.

Lin, G., Lu, Y., and Yao, D. (2008). The stochastic knapsack revisited: Switch-over

policies and dynamic pricing. Operations Research, 56:945–957.

Lu, Y. (2008). Approximating the value functions of stochastic knapsack prob-

lems: a homogeneous monge-ampère equation and its stochastic counterparts.

http://arxiv.org/abs/0805.1710 (Accessed 24 October 2008)(to be published in In-

Stochastic Knapsack Problems 21

ternational Journal of Mathematics and Statistics).

Marchetti-Spaccamela, A. and Vercellis, C. (1995). Stochastic on-line knapsack prob-

lems. Mathematical Programming, 68:73–104.

Martello, S. and Toth, P. (1977). An upper bound for the zero-one knapsack problem

and a branch and bound algorithm. European Journal of Operational Research,

1(3):169–175.

Morton, D. P. and Wood, R. K. (1997). Advances in Computational and Stochastic

Optimization, Logic Programming and Heuristic Search, chapter On a stochastic

knapsack problem and generalizations, pages 149–168. Kluwer Academic Publishers

(Norwell, MA, USA).

Nevel’son, M. B. and Has’minskii, R. Z. (1976). Stochastic Approximation and Recur-

sive Estimation. American Mathematical Society.

Polyak, B. T. (1990). New method of stochastic approximation type. Automation and

Remote Control, 51:937–946.

Prekopa, A. (1995). Stochastic Programming. Kluwer Academic Publishers (Dordrecht,

Boston).

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of

Mathematical Statistics, 22:400–407.

Ross, K. W. and Tsang, D. H. K. (1989). The stochastic knapsack problem. IEEE

Transactions on Communications, 37(7):740–747.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and oppor-

tunities. Computers and Chemical Engineering, 28:971983.

Sun, X., Sheng, H., and Li, D. (2007). An exact algorithm for 0-1 polynomial knapsack

problems. Journal of industrial and management optimization, 3(2).

	RR1505entete
	RR1505rapp
	Introduction
	Mathematical formulations
	Problem solving methods
	Numerical results
	Conclusion

