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ABSTRACT
Facilitating the acquisition of small targets is an active area
of research. Despite the usefulness of the techniques pro-
posed so far, we show why this topic can benefit from more
fundamental work. We investigate three factors that might
account for the observed drop in performance when select-
ing small targets: motor accuracy, visual legibility and quan-
tization. Our findings suggest that visual size is as important
as motor scale and that quantization has almost no effect. We
also show that – as proposed by Welford in 1969 – motor in-
accuracy is well-modeled by subtracting a “tremor” constant
from target size. We conclude with implications for design.
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INTRODUCTION
Common tasks such as window resizing and text selection
require pointing at items of only a few pixels. In mobile de-
vices, small items are also common and notoriously difficult
to acquire. Such problems have repeatedly been mentioned
in the past and a variety of approaches have been proposed
to ease the acquisition of small targets. Each of them has ad-
vantages and drawbacks and new solutions are still actively
being explored.

However, surprisingly little is known about the reasons why
small targets are actually difficult to acquire. We argue that
answering that question can not only better guide future re-
search and inform future designs, but can also help choosing
among existing approaches and refining them.

Since Fitts’ law is routinely used to motivate and inform re-
search on pointing facilitation techniques, we first discuss its
suitability as a conceptual framework in the context of small
targets. We also show why taken together, previous stud-
ies on pointing do not provide a clear picture of why small
targets are difficult to acquire.
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We then present a study in which three potential sources of
problems are investigated: motor accuracy, visual legibil-
ity and quantization. Although most ”small targets” men-
tioned in the Human-Computer Interaction literature com-
bine at least the three of these problems, we show how new
insights can be gained from a separate assessment of these
three factors.

Why Fitts’ Law is not Enough
Since Fitts’ law has been proved to be an extremely useful
theoretical framework, one could question the need for al-
ternative models [27]. In this section we show why Fitts’
law is actually not an adequate paradigm for studying small
target acquisition techniques, even when used as a first ap-
proximation. We then list the benefits one can expect from
more systematic investigations into that topic.

Fitts’ Law Provides Misleading Arguments
It seems natural to appeal to Fitts’ law to argue for a new
small target acquisition technique. Fitts’ law does predict
that, all other things being equal, small targets are harder to
acquire than larger ones. But Fitts’ law is first of all a law
about scale invariance: acquisition time depends solely on
D/W , the ratio between target distance (D) and target width
(W ). D is hence as important as W and nothing in Fitts’
law justifies a particular focus on target size. Furthermore,
nothing justifies a particular focus on small target sizes.

Fitts’ law additionally predicts that acquisition time in-
creases logarithmically with D/W 1. This means that reduc-
ing target size should not have an extremely strong impact.
For example, if W = 1 and D = 64, the target theoretically
needs to be expanded by 8 to yield a movement twice as fast.

Fitts’ law is however contradicted by the following observa-
tion: performance seems to degrade rapidly when the target
size falls below a certain threshold, typically below 4 or 5
pixels [23, 1, 22]. Sometimes, acquisition time and error rate
literally explode: in one study [22], users missed a 1-pixel
target more than ten times in a row in 25% of the trials.

Such observations suggest a strong scale effect by which
small-scale pointing tasks are much more difficult than
large-scale ones, D/W being held constant. It is this ob-
served violation of Fitts’ law – and not Fitts’ law itself –
which best justifies small target acquisition techniques.
1Here we can neglect the constant often added inside the log term
and the non-null intercept often observed in the linear regressions.
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Fitts’ Law Provides Misleading Design Guidelines
Fitts’ law also provides misleading guidelines for the design
of small target acquisition techniques. In particular, it ex-
clusively advocates the use of semantic pointing approaches
and cannot discriminate between them.

The term semantic pointing has been originally used for a
technique that lowers mouse gain inside targets [5]. One can
however generalize it to any pointing aid that uses informa-
tion about targets. Such techniques typically reduce D/W
by manipulating target widths and/or distances in the motor
and/or the screen space [2]. Some of them, like sticky tar-
gets [9, 7] and area cursors [16, 29], have been proposed as
a solution to the small target problem.

Although Fitt’s law provides theoretical support for the idea
of reducing D/W , it might actually underestimate the im-
provement obtained on very small targets. Recall that Fitts’
law only predicts a weak effect of target expansion on move-
ment time, no matter the original target size. Similarly, Fitts’
law does not predict that reducing D might not be as efficient
as increasing W , in case W is very small.

Despite their effectiveness, semantic strategies are lim-
ited [2]: they essentially consist in redistributing targets
to have their D/W ratios better match their probability of
acquisition — a special case being removing intervening
spaces with zero click probability [13]. Often there is little
or no space to remove, one example being the color picker
in image authoring applications.

Simple non-semantic approaches nonetheless exist that
could facilitate acquisition despite leaving D/W unchanged.
They consist in increasing all W ’s and D’s in the same pro-
portions, i.e., a uniform magnification solution. Like seman-
tic pointing, magnification can be performed in the screen
space, in the motor space, or in both. Examples of screen-
space magnification techniques are screen magnifiers [17]
and fisheye views [10]. Lowering the control/display (C-D)
gain yields a uniform motor-space magnification [6]. Zoom-
ing magnifies both screen and motor space [4, 22].

Key Questions
We argue that the following three questions regarding small
targets are worth investigating due to their potential implica-
tions for design:

1. Is there any small-scale effect? If this hypothesis is
wrong, it would imply that semantic pointing is the way to
go. If it is true, it would imply that a) non-semantic mag-
nification approaches should receive more attention and
b) among the possible semantic strategies, expanding W
should work best.

2. What are the causes of the small-scale effect? Assuming
the hypothesis above holds, it is still unclear whether se-
mantic and non-semantic target expansion should be per-
formed in the screen space, in the motor space, or both.
In some cases target expansion might not even be enough.
Answering these questions requires identifying, isolating
and testing potential causes of problems.

3. What would be a good model of small target acquisition?
Assuming efficient techniques can been identified, it is
still unclear how to tune them. For example, will a magni-
fication of 4x be enough? What gain in performance can
be expected? Being able to assess movement time accord-
ing to factors such as D and W will help answering these
questions.

Potential Sources of Problems
With respect to our second question, we chose to investigate
three potential sources of problem with small targets:

• Small motor scale: Targets that are small in the motor
space could be difficult to acquire because they demand
too much motor precision.
• Small visual scale: Targets that are small in the screen

space are difficult to see and this could make their acqui-
sition more challenging.
• Quantization: Moving 4 pixels to click on a 1-pixel target

feels less smooth than moving 400 pixels to click on a
100-pixels target, and this could be a source of problem
as well.

The last point is rarely mentioned. We always assume that
pointing on a computer screen is a smooth and continuous
task, despite the fact that the screen is a discrete space. Al-
though this approximation is correct most of the time, quan-
tization starts to be noticeable when acquiring a target of
only a few pixels in size. In fact, problems with high C-
D gains have been sometimes attributed to the fact that the
mouse cursor jumped by steps of more than one pixel due to
its low resolution [15, 6]. This implies that quantization of
the visual feedback could result in a drop in performance.

There can be other sources of problems in small-scale target
acquisition tasks: physical occlusion [25], parallax [22], and
landing/take-off inaccuracies [23] are all common issues in
direct-touch and pen-based user interfaces. Even on desk-
top computers, the mouse cursor can occasionally occlude
small targets. In this paper, we however chose to solely focus
on the three potential sources of problem enumerated above,
which are intrinstic to all small target pointing tasks. We
believe that taken together, they form a general and rather
complete definition of the concept of ”small target”.

RELATED WORK
In this section, we briefly recall previous work on small tar-
get acquisition techniques. Also relevant to our questions
above are previous investigations into scale effects in Fitts’
law and some of the proposed alternatives to Fitts’ law.

Small Target Acquisition Techniques
There has been considerable interest for pointing facilitation
techniques. Studies focusing on small targets have been con-
ducted on different types of hardware.

Desktop computers. A number of studies demonstrated the
efficacy of motor-space semantic magnification for small tar-
gets [9, 7, 16, 29]. At the same time, it was suggested that
in-target feedback in the form of visual or auditory confir-
mation yield at best marginal improvements [7, 8].
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Pen-based devices. Ren et al. studied the use of pen land-
ing and pen take-off for selection and found 5 pixels (1.8
mm) to be a critical target size [23]. Ramos and al. showed
that pressure-activated zooming lenses dramatically facili-
tate pointing for targets less than 4 pixels (1.1 mm) [22].

Touch-screens. By suppressing finger occlusion, the take-off
technique was shown to reduce errors but tiny targets were
still abnormally long to acquire [25]. Albinsson et al. pro-
posed the use of discrete taps or a levering scheme that mag-
nifies motor space [1]. Both methods were useful for targets
of 1 pixel (0.4 mm) but zooming was found to be the fastest
of all. The authors still advocated approaches that leave vi-
sual content unchanged and argued that for pointing, “the
limitation is in control, not visual resolution” [1].

Taken together, these studies provide enough anecdotal evi-
dence for a small-scale effect and suggest ways to overcome
it. But besides pointing out a “problematic target size thresh-
old”, they have little explanatory power and generalizability.
Fitts’ law analyses are either absent or deemed inconclusive
— with the exception of two studies that showed a good fit
but with a single target size condition [9, 7].

Furthermore, it is not clear what problems each of the exist-
ing techniques solves, especially on direct pointing devices
where occlusion, parallax and landing/take-off imprecision
can all affect pointing. Finally, most techniques have sev-
eral parameters — e.g., magnification factor — whose val-
ues seem to be chosen arbitrarily and vary across studies.

Scale Effects in Fitts’ Law Studies
Although scale effects have been occasionally studied from
the perspective of target distance [19, 11], here we essen-
tially focus on scale effects caused by small target widths.
Several early studies on Fitts’ law mentioned such small-
scale effects (for a review, see [20]), but the direct tap para-
digm made it difficult to determine its exact causes.

Some answers can be found in studies on C-D gain, which
typically manipulate the scale of pointing tasks in the mo-
tor space. Despite conflicting results (for a review, see [6]),
some researchers postulated that the drop in performance
sometimes observed with high C-D gains was due to quanti-
zation [15, 6]. After controlling for quantization, Casiez and
al. still observed a slight decrease in performance for high
C-D gains that they attributed to a motor accuracy issue [6].

Langolf et al. studied small target acquisition on a stylus-
pegboard configuration under microscope magnification.
They found that by fixing D, acquisition time followed
Fitts’ law, suggesting no motor acurracy issue [19]. Simi-
larly, Guiard et al. used a double-scale visual magnification
scheme to test higher IDs and found a target size effect for
the puck but not for the stylus [12]. He postulated that with
a precision grip, “the likely limiting factor for tolerance [W ]
is vision, not motor control”.

Taken together, these studies suggest that motor scale, vi-
sual scale and quantization can all contribute to the small-

scale effect. However, the relative importance given to these
factors varies considerably across studies. Although the use
of different muscular groups partly explains that discrep-
ancy [19, 3, 11], we know nothing about the relative influ-
ence these three factors can have on a specific hardware con-
figuration, such as a standard desktop computer.

Alternatives to Fitts’ Law
A number modifications to Fitts’ law have been proposed to
improve its fit with observed data (for a review, see [24]).
While some of them still express movement time (MT ) as a
function of D/W , D and 1/W must be given asymetric roles
to account for small-scale effects. We introduce four such
formulae here 2.

A well-known formula is by Welford and assumes different
throughputs for the ballistic and the homing phases of move-
ment [28]:

MT = a+b. log2(D)+ c. log2(W ) (1)
Kvålseth also proposed a power model that exhibited a better
fit to the original Fitts’ data [18]:

MT = a.Db.W c (2)
Note that this is simply a logarithmized version of Equa-
tion 1. In order to account for the interactions between W
and D, Oel et al. argued for the following refinement [21]:

MT = a.Db+d.log2(W ).W c (3)
Finally, the first part of Welford’s paper contains an alter-
native model, which to the best of our knowledge has never
been used in HCI [28]:

MT = a+b. log2(
D

W − c
+1) (4)

Where c is an experimentally-determined constant attributed
to hand tremor.

EXPERIMENT
We conducted a user study in order to confirm the exis-
tence of a small-scale effect and investigate its causes on
a standard mouse-screen configuration. We asked subjects
to perform 1-D target acquisition tasks and independently
manipulated visual scale, motor scale and quantization. We
first introduce our experiment design and our use of scaling
methods as a way to manipulate these three factors. We then
discuss our main findings and their implications.

Scaling Methods
For consistency (i.e., the lower value the harder), we will
use here the term continuity as the inverse of quantization.
One can think of visual scale, motor scale and continuity as
forming a 3-D space that can used to characterize pointing
tasks. All three dimensions are relative: a visual scale of 2
would magnifying D and W by 2× on the screen according
to a nominal pointing task. A continuity of 2 would mean
doubling the resolution of the mouse and of the screen.
2We have added the missing intercept a to the original Equations 1
and 4, and replaced 0.5 by 1 in Equation 4 to allow easier compar-
ison with Mackenzie’s widely-used formulation of Fitts’ law [20].
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An ideal experiment would evenly sample this 3-D space.
However, there are two difficulties. First, all points cannot
be measured due to hardware constraints: if a pointing task
involves a 1-pixel target, it is not possible to scale it visually
by a factor of 0.5 or 1.5, nor is it possible to make it more
continuous. Second, evenly paving the space would yield
too many conditions for a single experiment. We hence de-
vised an approach based on scaling methods.

A scaling method is a specific way of scaling up a pointing
task. Suppose the task is to acquire a target of distance and
size Dv,Wv on the screen and Dm,Wm in the motor space. Let
Ds be the number of discrete steps required for the cursor to
progressively reach the middle of the target, and Ws the num-
ber of possible cursor locations inside the target. Typically,
these are equal to Dv and Wv as expressed in pixels. Finally,
let Cv be the cursor’s visual size and G the C-D gain, i.e., the
ratio between the cursor’s and the mouse’s travel distances,
both expressed in metric coordinates.

Such a target acquisition task can be scaled up by a positive
integer S using five possible methods:
• MotorMag multiplies Dm and Wm by S and leaves the rest

unchanged, except for G which is multiplied by 1/S. In
other terms, this is a motor-space magnification.
• VisualMag multiplies Dv, Wv and Cv by S and leaves the

rest unchanged, except for G which is multiplied by S. In
other terms, this is a visual-space magnification.
• FullMag multiplies Dm, Wm, Dv, Wv and Cv by S, and

leaves the rest unchanged. This amounts to increase the
size of the pixel and of the mouse dot.
• Zoom is the same as FullMag except that Cv is left un-

changed and Ws and Ds are multiplied by S. This amounts
to enlarge the task in both spaces while keeping the origi-
nal pointing resolution.
• ZoomBis is the same as Zoom, but in addition, the cursor’s

size is multiplied by S.

With respect to the previous 3-D space model, the Motor-
Mag and VisualMag methods cover the motor scale and the
visual scale axes. The FullMag method covers the bisection
of these two axes, whereas Zoom and ZoomBis both cover
the bisection of the three axes.

We introduced the ZoomBis variant because one conse-
quence of FullMag is to increase the cursor’s size, while the
cursor remains visually small for Zoom — hence a possi-
bility of confound. In ZoomBis and FullMag, the cursor is
the same. However, since subjects still have to bring the
whole cursor into the target, Wv must be enlarged by the
same amount as Cv in order to preserve Ws and Wm.

Apparatus
We conducted the experiment on a high-end workstation
running X Window and Java. The display was a 22” ultra-
high-resolution LCD monitor with a native resolution of
3840×2400 and 0.125 mm pixel size (about 200 dpi). The
pointing device was a ultra-high-resolution gaming mouse of
83.5 dots per mm (about 2000 dpi). The mouse was teflon-
coated and was used on a varnished plywood surface.

We set the display at half its native resolution and program-
matically divided by 5 the resolution of the mouse, hence ap-
proaching the resolutions and C-D gain of a standard desktop
computer while virtually eliminating potential confounds
due to display quality and input sensor accuracy. No mouse
acceleration was used.

Participants
Twelve unpaid volunteers, ten male and two female, all
right-handed, participated in the experiment. Two additional
participants failed the vision test (see below) and thus did not
proceed with the experiment. Participants were experienced
mouse users with ages ranging from 21 to 32 (median 25).

Task and Procedure
A trial was a 1-D discrete target acquisition task decomposed
as follows. First, a gray target and two gray markers sym-
bolizing the location of the cursor appeared at the center of
the screen (Figure 1a). The participant had been instructed
not to move the mouse until the actual (black) cursor ap-
pears. After a short random foreperiod, the black cursor was
shown (Figure 1b) and the participant had to bring it inside
the target (Figure 1c) and press the left mouse button.

To better resemble a typical computer pointing task, a trial
had to end successfully even if it included mouse presses
outside the target. The next trial then started after the par-
ticipant had released the mouse button. We recorded move-
ment times from the first mouse movement to the first mouse
press, as well as to the first successful mouse press. The par-
ticipant was allowed to rest every 22 trials.

(a) (b) (c)

Figure 1. A sample trial: (a) the target and the future location of cursor
are shown; (b) the cursor appears after a random foreperiod; (c) the
user selects the target.

Before starting the experiment, participants were given writ-
ten instructions telling them to be as fast and as accurate as
possible and to avoid mouse clutching. To allow them to do
so, mouse drifting was eliminated by grouping trials by pairs
with the same target distance and width, but with opposite
movement direction.

Upon reading the instructions, participants were asked to sit
in a comfortable position and the screen was moved at a dis-
tance of 70 cm to their eyes. A string was then placed in
front of their chest to remind them not to lean forward, as
mentioned in the written instructions.

Participants were then given a vision test involving 12 la-
beled representations of a target and a cursor, where the cur-
sor was 1-pixel wide and the targets 1 or 2 pixels wide. The
cursor was either inside the target or just next to it. Par-
ticipants were asked to tell when the cursor was inside the
target. The test was considered successful if all the targets
were properly identified and there was no false positive.
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Design
The experiment was a within-participant design with the fol-
lowing factors:
• five scaling methods METHOD: Zoom, ZoomBis, FullMag,

MotorMag and VisualMag;
• four scales SCALE: 1, 4, 16 and 64;
• four nominal widths W: 1, 2, 4 and 8 pixels/dots;
• four nominal distances D: 2, 4, 8 and 16 pixels/dots.
The design was not a full factorial. Instead, we only in-
cluded all the possible combinations of D = {8,16} and W
= {1,2,4,8} plus the combinations (2,1), (4,1) and (4,2),
for a total of 11 (D,W) couples. (D,W) was fully crossed with
METHOD and SCALE, giving a total of 220 conditions. Note
that Fitts’ IDs remained constant across METHOD and SCALE.

As mentioned before, movement directions were alternated
to limit mouse drift. For each METHOD × SCALE condition,
participants were presented with 5 blocks of Direction × W
× D = 5 × 2 ×22 = 110 trials. The presentation order of W
× D was randomized within each block. The first block was
for training and the remaining four were recorded.

A pilot study suggested that large variations in C-D gain
were the most difficult to accomodate (the nominal gain was
4.15 and ranged from 0.065 to 4.15 for MotorMag and from
4.15 to 266 for VisualMag). We hence blocked by METHOD

and sub-blocked by SCALE. For MotorMag and VisualMag,
we presented the SCALE conditions monotonically and in-
formed participants of changes in mouse sensitivity through
text messages. For the other methods, where the C-D gain is
constant, the presentation order of SCALE was randomized.

Additionally, in order to avoid important changes in C-D
gain when transitioning between MotorMag and VisualMag,
we always presented these two methods at the second and at
the fourth position. We computed a Latin square for (Zoom,
ZoomBis, FullMag) and crossed it with the two possible or-
derings of (MotorMag, VisualMag), yielding six different
orderings for METHOD, each of which was presented to two
participants.

Finally, note that in the case of SCALE 1, all the METHOD

conditions are equivalent. We hence decided to present the
condition only once and arbitrarily assigned it to the Zoom
METHOD. This removed 4 (SCALE) × 5 (Blocks) × 11 (W×D)
× 2 (Direction) = 440 redundant trials.

A participant hence performed 5 (METHOD) × 4 (SCALE) × 5
(Blocks) × 11 (W×D) × 2 (Direction) − 440 = 1760 point-
ing tasks, 1408 of which were recorded. We obtained 96
measures for a full condition and a total of 16896 measures.
The experiment lasted approximately 65 minutes.

RESULTS
We first perform a full factorial analysis by removing the
data for D=2 and D=4 and by duplicating the data from Zoom
METHOD at SCALE=1 to the other methods. The remaining
data, e.g., the (D, W) couples (2, 1), (4, 1) and (4, 2), will be
dealt with later on.

All SCALE SCALE≥ 4
Factors DF,Den F p DF,Den F p

METHOD 4,44 71.2 < 0.0001 4,44 71.2 < 0.0001
SCALE 3,33 35.7 < 0.0001 2,22 16.9 < 0.0001

W 3,33 166.9 < 0.0001 3,33 560.0 < 0.0001
D 1,11 234.5 < 0.0001 1,11 1441.4 < 0.0001

METHOD×SCALE 12,132 36.3 < 0.0001 8,88 15.9 < 0.0001
METHOD×W 12,132 27.3 < 0.0001 12,132 27.3 < 0.0001
METHOD×D 4,44 23.0 < 0.0001 4,44 23.0 < 0.0001
SCALE×W 9,99 17.7 < 0.0001 6,66 16.0 < 0.0001
SCALE×D 9,33 2.4 0.0829 2,22 11.8 0.0003

W×D 3,33 0.7 0.5509 3,33 2.0 0.1365
METHOD×SCALE×W 36,396 8.0 < 0.0001 24,264 2.4 0.0004
METHOD×SCALE×D 12,132 2.9 0.0013 8,88 0.6 0.7727

METHOD×W×D 12,132 1.6 0.0857 12,132 1.6 0.0857
SCALE×W×D 9,99 1.6 0.1226 6,66 1.9 0.0908

METHOD×SCALE×W×D 36,396 1.3 0.1262 24,264 1.2 0.1951

Table 1. Results of the ANOVA for MT ∼METHOD × SCALE ×W ×D.

Movement Time
In this analysis, we consider the movement time MT to the
successful mouse press, as this measure has the advantage to
include penalties caused by the errors. We performed a fac-
torial repeated measures analysis of variance for the model
MT ∼ METHOD × SCALE × W × D × Random(PARTICIPANT).
Table 1 shows the results of this ANOVA for the data, with
and without SCALE=1. We first observe a significant effect
of METHOD and SCALE on MT and a significant interaction
METHOD × SCALE.
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Figure 2. Movement time as a function of SCALE, grouped by METHOD.
The five darkest bars represent the same data.

Figure 2 shows the effect of SCALE on each METHOD. We ob-
serve that Zoom and ZoomBis follow a similar pattern: MT
decreases as scale increases, up to a scale of 16. A post-hoc
Tukey test for difference in means confirms these observa-
tions. FullMag is similar but we observe a drop in perfor-
mance for SCALE=64. With MotorMag, we see a small per-
formance improvement from scale 1 to 4 and then a degra-
dation. For VisualMag, we also find an improvement from
scale 1 to 4, but higher scales seem to have no effect. All
these observations were confirmed by post-hoc tests.

We can also observe in Figure 2 that Zoom, ZoomBis and
FullMag seem very close. Indeed, the only difference shown
by a post-hoc Tukey test is between ZoomBis and FullMag
for SCALE=64.

Now we analyze the factors W and D. Unsurprisingly, we
found an effect on MT. Figure 3 illustrates these effects as
well as the interactions with the factor METHOD. We can
see that the difference between methods decreases as W in-
creases. In particular, if we exclude MotorMag, the differ-
ence between VisualMag and other methods is large for W=1
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Figure 3. MT as a function of W (left) and D (right), for each METHOD.

but vanishes for W=8. One can also observe that the impact
of D is weaker with VisualMag than with the others methods.

Figure 4 illustrates the interactions between W and SCALE,
for the Zoom method (left of the figure) and for MotorMag
(right). We can see that for Zoom, the difference between
SCALE=1 and the others scales decreases as W increases.
ZoomBis, FullMag and VisualMag exhibit a similar trend,
but for VisualMag and SCALE≥ 4 the lines are almost con-
founded (figures not included). However, as can be observed
in Figure 4 (right), the situation is completely different with
MotorMag.
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Figure 4. MT as a function of W for Zoom (left) and MotorMag (right),
for each SCALE.

Error Rate
We found an overall error rate of 7.02% (5.80% for SCALE≥
4). The ANOVA reveals a significant effect of METHOD

and W for both datasets under consideration (all SCALE and
SCALE≥ 4), and a significant effect of SCALE for the data with
all SCALE. No effects were found for D.

W

E
rr

or
 R

at
e 

(%
)

1 2 4 8

0
5

10
15

20
25

30

●

●

● ●

●

Scale 1
Scale 4
Scale 16
Scale 64

W

E
rr

or
 R

at
e 

(%
)

1 2 4 8

0
5

10
15

20
25

●

●

● ●

●

Zoom
ZoomBis
FullMag
VisualMag
MotorMag

Figure 5. Error rate as a function of W, for each SCALE and each
METHOD.

We also observed significant interactions of METHOD × W
and SCALE × W (all SCALE and SCALE≥ 4), as shown in Fig-
ure 5. For SCALE=1 in particular, we have a higher error rate
than other scales when W=1 but this difference vanishes as W
increases. The same can be said when comparing MotorMag
with other methods. For the remaining METHOD, we only see
very small differences in the error rates.
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Figure 6. Error rate as a function of SCALE grouped by METHOD

We also found a significant interaction of METHOD × SCALE,
but this interaction was no longer significant when restrict-
ing the data to SCALE≥4. Figure 6 shows the error rate as a
function of SCALE grouped by METHOD.

Learning
Regarding learning effects, we performed an analysis of
variance for the model MT ∼ BLOCK × METHOD × SCALE. We
found a significant simple effect of BLOCK for the SCALE≥4
data (F3,33 = 6.4, p = 0.0015) but not for the full data set.
However, we found significant interactions for BLOCK ×
METHOD (F12,132 = 2.5, p = 0.0055) and BLOCK × METHOD ×
SCALE (and no BLOCK × SCALE interaction) for both datasets.
In Figure 7 we can observe that the learning effect is essen-
tially caused by MotorMag and that this effect is specially
strong for SCALE=64. Indeed, post-hoc Tukey tests show
a significant difference in means (around 100 ms) between
block 5 and blocks 2 and 3 for MotorMag but no difference
for the other methods.
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Figure 7. MT as a function of block by METHOD for each SCALE > 1.

Small Distances and Small Widths
So far we have excluded the trials where D=2 and D=4. To
study these cases, we have performed full factorial analyses
of variance for (i) the model MT ∼ METHOD × SCALE × D on
the data subset where D∈ {2,4,8,16} and W=1 and (ii) the
model MT ∼ METHOD × SCALE × W × D on the data subset
where D∈{4,8,16} and W∈{1,2}. We obtained results very
similar to those discussed previously.

Variants on MT Measures
One may want to stick to a more traditional methodol-
ogy [20] and either: (i) take movement times up to the first
click (MT0) instead of the successful click (MT1); (ii) remove
errors (MT1 = MT0) and outliers (using MT0). In both cases
the analysis yields results that are very similar to those we
obtained so far. The results of the ANOVA’s are similar, with
different p and F values but without change in significance.
Of course, conditions with high error rates become faster,
but the differences are small and do not affect the results.

Scale Blocks and Duplicate Tasks
In the Zoom condition, some tasks were duplicated across
different SCALE blocks. In fact, the (D,W) couples (2,1),
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(4,1) and (4,2) at SCALE=4 were the exact same tasks as
the couples (8,4), (16,4) and (16,8) at SCALE=1. The same
is true for scales 16 and 4, and scales 64 and 16. One may
expect to find similar movement times and error rates. This
was not the case: on average, participants were faster but did
more errors in the high-scale block. This can be explained
by the fact that duplicated (D,W) couples were the most diffi-
cult tasks in the high-scale blocks, but the easiest ones in the
low-scale blocks. Hence, the overall difficulty of the block
might have influenced the speed-accuracy tradeoff.

MOVEMENT TIME MODELS
As in standard Fitts’ law analyses we consider here move-
ment time to the first click [20]. Moreover, we aggregate
the data over METHOD, SCALE, W and D, taking the mean
over all participants. Target widths and distances denoted
by Wm and Dm are expressed in the motor space, in mouse
dots (1dot = 0.060mm). Although the actual unit does not
matter in a standard Fitts’ law analysis (MT only depends on
D/W ), it does matter when testing alternatives to Fitts’ law.
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Figure 8. MT as a function of ID and IDc=0.8 for VisualMag.

For VisualMag, the left plot in Figure 8 shows movement
time as a function of Fitts ID and the corresponding regres-
sion line. The fit is not extremely good (r2 = 0.767), with
the smallest targets lying way above the regression line. Cor-
recting IDs using Welford’s tremor model solves this issue
(see Equation 4):

IDc = log2(
Dm

Wm− c
+1) (5)

Taking c = 0.8 significantly improves the fit (r2 = 0.946), as
can be seen in Figure 8. For SCALE≥4, the improvement goes
from r2 = 0.799 to r2 = 0.982.

Note that this model does better than the other (more popu-
lar) model from Welford (Equation 1) that gives r2 = 0.931
for SCALE≥ 4 and r2 = 0.904 for all SCALE. Moreover, it is as
good as Oel et al’s model (Equation 3) that gives r2 = 0.978
and r2 = 0.942, despite having one more degree of freedom.
This suggests that Welford’s tremor model accurately mod-
els pointing for targets that are small in the motor space.

Motor Magnification

The left plot in Figure 9 shows the standard Fitts regression
with MotorMag for SCALE≥4. Like VisualMag, the fit is
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Figure 9. MT as a function of ID and IDd=0.2 for MotorMag.

not extremely good (r2 = 0.824), but the alternative mod-
els mentioned above do not yield satisfactory results. This
suggests a different phenomenon.

For MotorMag, recall we observed an important decrease
in performance as scale grows. One may hence postulate
problems originating from the stimulus-response (S-R) in-
compatibility between large-scale mouse movements and a
small-scale visual feedback. One way to correct for the ID
is to increase target distance as the scale grows and this led
us to consider the following model:

IDd = log2(
Dm +d.

√
4.15

CDGain −1 .Dm

Wm
+1) (6)

where d is a constant and 4.15/CDGain expresses the S-R
incompatibility (4.15 is the C-D gain for SCALE=1).

IDd improves the fit of the MotorMag data for SCALE≥4, as
shown in Figure 9 (r2 = 0.953). Again, our results are com-
parable to Oel et al (r2 = 0.931), despite their extra degree
of freedom.
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Figure 10. MT as a function of ID and IDk=0.92 for Zoom.

The left plot in Figure 10 shows the standard Fitts regression
with the Zoom method. The bad fit (r2 = 0.534) is essen-
tially caused by the condition SCALE=1. If we remove this
condition we obtain r2 = 0.825. But like VisualMag, adopt-
ing Welford’s tremor model is enough to improve the overall
fit, with r2 = 0.881 and c = 0.8.

Interestingly, applying Welford’s tremor model after remov-
ing SCALE=1 yields a higher tremor constant c = 2.5 (r2 =
0.933). This suggests that c might vary with Wm, leading us
to consider the following alternative:

IDk = log2(
Dm

Wm− k× log2(Wm +1)
+1) (7)
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With k = 0.92, we obtain r2 = 0.951 for all scales (see Fig-
ure 10) and r2 = 0.921 for SCALE≥4, which is better than IDc
and again similar to Oel et al.

We obtained very similar results for ZoomBis. For FullMag
we also obtain relatively good fits, yet not as good. A reason
for this is that the IDc and IDk models do not account for the
degradation we measured for scale 64.

Adjusting for Effective Widths
The idea of effective width, introduced by Crossman in his
unpublished doctoral dissertation, is to perform “an adjust-
ment for accuracy”: the width of the target is corrected so
that (under certain hypotheses) the data yields an uniform
error rate of 4%. We refer the reader to [26] for computa-
tional details and more motivations for the use of We.

One might hope that using effective widths will normalize
speed between scale blocks, as we noted important differ-
ences in error rates. However, recall that for Zoom for ex-
ample, faster scale blocks are those with less error rates. In
fact, if we compute the motor effective widths, we find they
enlarge small motor targets (from 1 to 4), they leave mo-
tor targets unchanged from 8 to 64 and shrink motor targets
from 128 to 512. That explains why we actually obtained
less good fits with IDe than with ID and suggests that the
use of effective widths is not adapted to our study.

However, using the IDc model together with We leads to
a slightly better fit than IDc alone (SCALE≥ 4, Zoom and
ZoomBis). This yields higher values of c and this is ex-
plained by the fact that We measures, in part, motor noise.

DISCUSSION
Here we build upon our findings to address the three ques-
tions mentioned in the introduction. We then discuss the
limits of our study and suggest possible options for future
work.

There is a Small-Scale Effect
Our experiment confirms previous results and intuitions
about small-scale effects. This is shown by Zoom and
ZoomBis: at high scales, we have normal pointing tasks.
At scale 1, however, we have targets that are small in all
respects, i.e., typical ”small targets” on desktop computers.
Task IDs do not change. Still, we observe a clear drop in
performance as scale approaches 1. This naturally yields a
bad fit with Fitts’ law.

The drop in performance is progressive yet very fast: it starts
to be observable from scale 16 (targets of 16-256 pixels3) to
scale 4 (targets of 4-32 pixels). At scale 1 (targets of 1-8
pixels), there is more than twice as much errors, for a speed
almost twice as slow. Since we used high-end I/O hardware
and controlled for pointer occlusion, these are likely under-
estimates of what we would obtain on an actual computer.

3All figures are given according to our experimental conditions,
i.e., 0.06 mm mouse dot size, 0.25 mm pixel size and a distance of
70 cm to the screen.

What Causes the Small-Scale Effect
Our experiment suggests that — at least on desktop comput-
ers — the causes are both visual and motor. Quantization
does not seem to significantly impact performance.

Visual Causes
For very small targets, the primary causes of the small-scale
effect are visual. Data from VisualMag provides strong ev-
idence for this. Visual size has no effect when it is large
enough. But we observe an important deterioration from
scale 4 (targets of 4-32 pixels) to scale 1 (targets of 1-8 pix-
els): there are twice as much errors and a reduction in speed
of about 25%. Our data actually suggests important differ-
ences for targets up to 4 pixels.

The exact origin of these visual problems is unclear, since
we actually controlled for visual legibility (we use a sharp
monitor and gave a vision test). However, visual legibility
is probably not a binary property: participants might have
spent more time processing visual information because of
its unusually small size. This could have slowed them down.

Motor Causes
We also confirmed the common intuition that motor accu-
racy is a cause of the small-scale effect. This supported by
our data on MotorMag. There is an observable deteriora-
tion from scale 4 (targets of 4-32 mouse dots) to scale 1
(1-8 dots). Data suggest problems start to arise at 4 dots.
Since we controlled for the accuracy of electronic sensors
the problem is likely physiological, although mechanical
factors such as mouse/surface friction could also play a role.

The role of motor accuracy is further supported by the
data from VisualMag and FullMag: we observed that mo-
tor+visual magnification performs slightly better than visual
magnification alone, and the improvement goes up to scale
8 while it stops at scale 4 for visual magnification alone.

Quantization
The quantization present in small-scale pointing tasks seems
to be a very secondary cause to the small-scale effect. This is
suggested by our data on FullMag and Zoom. Recall the first
method simply magnifies pixels and mouse dots, whereas the
second one improves pointing resolution as scale increases.
We found no significant difference between the two methods
overall, except for scale 64 (targets from 64 to 512 pixels).

One possible explanation is that although quantization de-
teriorates the information that is normally available during
pointing, it also provides ”snapping”. With snapping, the
cursor is clearly either inside or outside the target. However,
it is not clear whether snapping actually helps. In fact, we
found dwell time to be higher for FullMag than for Zoom at
scale 64. Another possibility is that the human visuo-motor
system is able to infer the missing information.

Low C-D gains
When the target is small in only one respect, one extra factor
to consider is C-D gain. Recent findings suggest it should
not affect performance [6]. Although we found this to be
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true overall — especially for high C-D ratios (VisualMag)
— MotorMag suggests this is not true for very low C-D ra-
tios (despite no mouse clutching). This is supported by the
degradation of performance we observed as motor magnifi-
cation increases (C-D ratios of 0.26 and 0.06).

Participants had trouble performing large and fast move-
ments when the visual feedback provided was very small,
as we observed lower peak velocities with MotorMag than
with Zoom. However, this is likely a matter of training, as
suggested by the learning effect we found on MotorMag.

Is there a Law of Movement for Small Targets?
One important finding from our study is that small target
acquisition is complex. It involves different phenomena, and
there is probably no simple law for small target acquisition.

Welford’s model of human tremor was nevertheless quite
successful at modeling motor problems when acquiring
small targets. It has a simple interpretation: one can think
of an area cursor whose hot spot’s location is unknown — to
avoid random errors, the user would have to bring the whole
cursor inside the target, hence effectively reducing its size.

Note that the tremor constant c is not the same as the motor
noise from the traditional impulse variability model, which
is linear and scale-independent [27]. (W−c) is also different
from the concept of effective width [26]. Effective width is
computed from a single target width, whereas c is obtained
through model fitting on several target widths.

One difficulty with Welford’s model is that c can vary. In-
deed, we found c to be higher for Zoom than for VisualMag.
We proposed a modified model where c depends on Wm, but
this model is essentially computational. It could be that hu-
mans can adapt their “constant” motor noise to the overall
task demands [27].

Our motor magnification model is also mostly computa-
tional, and captures both visual legibility problems and low
C-D gain issues. For low C-D gains we observed lower peak
velocities, and it hence seemed natural to assume that Dm
will penalize MT more than Wm. The good fit we obtained
after correcting for Dm suggested this was the case.

Limits of the Study
Distance Range and IDs. We chose to test a wide range of
scales rather than large distances. The next step could be to
restrict the scale range and explore larger distances in order
to further validate and possibly refine our models.

Intermediate Scales. We did a sparse sampling of the scale
range. For all scaling methods we observed the largest
changes between scales 1 and 4. So one direction for a fur-
ther experiment could be the study of intermediate scales.

Hybrid Scaling. We only investigated specific values for the
visual, motor and quantization factors. As we now know
better about visual limits, we can chose a large enough visual
scale (4) and then study the effect of motor scale.

Error Rate. Another limit is the differences we obtained in
error rates, despite having instructed subjects to be accurate.
Pilot studies did suggest that maintaining a 4% error rate
would be challenging given the difficulty of some tasks. We
hence opted for a solution consisting in having the subject
finish the task. This is closer to real computing tasks where
failed clicks are frequent, especially with small targets [22].

Generalizability. Out study involves 1-D tasks. With 2-D
pointing tasks, some factors — especially quantization —
might have behaved differently. Similarly, all our findings
concern moused-based desktop computers and the results
would have probably been different with, e.g., pen devices
or touch-screens.

IMPLICATIONS FOR DESIGN
Our study shows that problems start to arise below a certain
target size. This size is at least 1 mm on a screen at a dis-
tance of 70 cm, and at least 0.2 mm in the motor space (for a
computer mouse). These values can be higher depending on
the hardware quality.

In these cases, one should consider adding support for zoom-
ing. Zooming solves both visual and motor issues and pre-
serves C-D ratio. It is especially useful on dense populations
of targets, such as in text editors, image processing appli-
cations and vector graphics applications. The zoom factor
should be chosen so that the smallest targets are enlarged
just above the sizes mentioned above (typically 4×).

The traditional solution is to use zoom & pan navigation. For
the sole purpose of target selection, however, a better strat-
egy might be temporary zooming [22], e.g., a spring-loaded
zoom mode. But all known zooming approaches have pros
and cons and this topic certainly deserves more research.

Zooming is not necessarily the best strategy in all case sce-
narios. When targets are isolated and when it is crucial to
preserve visual context, semantic pointing could be the way
to go. Note that semantic pointing works for small targets as
well as large targets.

Alternatively, visual magnification can also facilitate point-
ing and is supported natively in some OSs. Variants are mag-
nification lenses and fisheyes, but the motion artefacts they
produce can be distracting [14]. Motor magnification alone
can also be used on low-accuracy input devices, but it is ad-
visable to keep the C-D gain above 1.

Another good thing to know is that visual quantization does
not harm. For example, one could hide the mouse cursor
inside menus to improve text legibility, if roll-over effects
are already present. An alternative idea could be to simply
make the mouse cursor smaller or less visible.

And finally, Fitts’ law does not fit all. When working with
small targets, Welford’s tremor model (Equation 4) seems
more adapted and might better help answering questions
such as which scale factor — or pointing technique, or in-
put device — is the best for a specific target layout.
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CONCLUSION AND FUTURE WORK
The goal of this paper was to better understand why small
targets are so difficult to acquire, a question that has been
only partially addressed by previous work. We had sub-
jects perform small target acquisition tasks on a desktop
computer, and manipulated the scale of the tasks by various
means. Our study confirmed the existence of a ”small-scale
effect” that violates Fitts’ law and whose causes are both
visual and motor. One important implication is that more
attention should be given to zooming techniques.

We have also found our data to be consistent with Welford’s
model of human tremor, where IDs can be normalized by
removing a constant from target widths. We argued for the
adoption of this model instead of Fitts’ law when design-
ing for small targets. Although our work is exploratory, we
generated testable hypotheses and suggested directions for
further investigations. These include testing larger distances
and IDs, as well as using a finer sampling of small scales to
better understand what happens ”near the singularity”.
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