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Abstract—Today’s complex systems increasingly require safety and complete prefix of a PN unfolding gives a compact repre-
and robustness w.r.t faults occurrences, and diagnosabiili is a  sentation of all behaviours and reachable markings of tNis P
key property to ensure this at design stage. Intuitively, aystem j, 5 hatial order. Executions are considered as partiared

is diagnosable if its only observable part allows one to detmine t of ¢ ther th hich Its i
without ambiguity the occurrence of its failures. In the recent Set of events rather than sequences, which results in memory

years diagnosability has been extensively studied, espaity in the ~ Savings. Since introducing the unfolding prefixes in [14yth
finite state machine (FSM) based models. Among the developedhave been improved [5], [12], extended and applied to variou
approaches in this domain thetwin plant method has been proven practical applications such as distributed diagnosisri&idel

to be efficient in verlfylng diagnosability. However, little work checking (see e.g.[10]), synthesis of asynchronous ¢&¢lid]
has been done in other discrete event systems such as Petrisie f . -
(PNs). PNs and their techniques have been proven to overcome®' planning per'?mS _[1]' Also the problem of dlagnqs.ajmllt
some limitations of FSM, especia”y the state space exp|oﬂ' haS been Stud|ed n thIS context from a purely theoretICHdtpO
problem. One promising technique is the PN unfolding, whicthas of view: [8] proposes a definition of diagnosability based on
been successfully applied to model checking. It offers a cqmact  observable partial orders and, opposed to such quantitativ
representation of the state space because runs are represed  (yjtarig a qualitative notion specific to partial orderssha

by means of partial orders rather than sequences. Thereforewe . - .
demonstrate in this paper how PN unfoldings can be applied to been introduced in [7]. However, the main difference betwee

verify diagnosability by adapting the twin plant method. their definition and that proposed in this paper lies on the
granularity level of observations. The one proposed in{@}s

at the partial order level, i.e. any execution of a partialeor
. INTRODUCTION corresponds to the same observation, whereas in this werk th
Diagnosability is an important property that determinedifferent executions of a partial order correspond to défe
the ability of a system to detect faults occurrences givabservations.
only observable sequences (the system has observables everithe objective of this paper is to use PN unfolding prefixes
and unobservable events including faults). If a system te verify diagnosability by adapting the twin plant method
diagnosable the diagnosis will find an accurate explandtion [19]; with the long term objective to develop an approach to
any possible set of observations from the system, othewése verify diagnosability in a distributed way in the framework
diagnosis will give an ambiguous and useless explanation.of modular complete prefixes [13]. The system is modelled
The seminal work in [17] has introduced a formal languagees a labelled Petri net, where transitions are labelled with
framework for diagnosis and analysis of diagnosabilityppro observable and unobservable events. The diagnosabitfy pr
erties of discrete event systems (DES) represented by firgtety is tested using a finite and complete prefix of a verifier.
automata. The proposed method for diagnosability veriioat The verifier is obtained by the synchronous product of a
is based on the construction ofleagnoser an automaton with diagnoser (the system enriched with information about the
only observable events which allows one to estimate stascurrence of faults). A necessary and sufficient condition
of the system after observation of sequences. Other methéals diagnosability is given. In addition, two algorithmsear
with polynomial complexity (the previous one is exponelntigyiven to test diagnosability; one performs an exhaustieecte
in the number of states) have been proposed and are bamsed reports in the case the system is not diagnosable all
on thetwin plant method [9], [19]. The basic idea is to buildambiguous explanations, and the other is designed to stop at
a verifier from a diagnoser by constructing the synchronoube first ambiguous explanation if it exists and simply répor
product of the diagnoser with itself on observable event® Tthe “binary” result, i.e. if the system is diagnosable or.not
verifier compares every pair of paths in the system that haMmreover, two improvements applicable for both algorithms
the same observable behaviour. Adaptations of these nethartk presented, which exploit the symmetry and “interesting
have been also proposed to deal with the distributed cade [Xiehaviour of the verifier to reduce its size.
[18], where the modularity of the system is used to computeThe paper is organised as follows. The second section
local twin plants and to verify the diagnosability of thet®ya recalls basic theoretical background concerning PNs, thei
by gradually combining local twin plants (in the worst casanfoldings and the derivation of finite and complete prefixes
building the global twin plant). The third section describes the used model and introduees th
Naturally, the state-based twin plant method suffers frotwin plant method applied to PN unfolding prefixes. The faurt
the state space explosion problem. To alleviate this pmblesection presents the algorithms used to verify diagnadsabil
Petri net (PN) unfolding techniques appear promising. Adiniand some improvements. The last section draws conclusions



and presents future perspectives.

Il. PETRI NETS AND THEIR UNFOLDINGS

This section presents basic definitions concerning Petsi ne
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and their unfoldings mainly adapted from [5], [10], [12]. ! t, P P 9 s
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A. Petri nets Cs ¢ G
net i 0 4 Als RO (P
A Petri netis a quadrupleN = (P,T, —,M") such o * *
that P and T' are disjoint sets ofplaces and transitions tey& tgy& 17,8
respectively—~C (P x T) U (T x P) is aflow relation and R P | - o |
M?° is the initial marking, where a marking is a function te ty C9p8 CB: Clé
P — N ={0,1,2,...} which assigns a number obkensto ¢ ¢ ¢
each place. A Petri net can be considered as a bipartite graph [0 81% lor@o sy &
with directed edges between places and transitions. Foda no tg é)clz Cis Cis
xz € PUT, its pre-set®zx is defined by*z = {y | (y,z) €—} P P P
and its post-setz® is defined byz® = {y | (z,y) €—}. A @) (b)

transitiont is enabledat a markingM if Vp € *t : M (p) > 0,
which is denoted byM [t). An enabled transition cafire
yielding a new marking\/’ = M — *t + t*, which is denoted (0).
by M [t)M’. A transitions sequence = t1,...,t, € T is a
firing sequencdrom M; to My, denoted byM; [0 ) My.41 o o "
or My [0}, iff a set of markings\la, ..., M1 exit such that closed sub-net oDN cor)tglnlr!g aII. initial Icondltlf)rjs and
M; [tiYM;i1,1 < i < k. AnetN is safeif for every reachable SUch thatve & E*ie O/N implies e* € ON’ andr” is the
marking M and every place € P, M (p) C {0,1}. A safe restrlptlon ofh to C UE’. F(_)r each ngt systev there ex!sts
N has a finite number of reachable markings. An example 8funiqué (up to isomorphism) maximal (w.Ef) branching
a safe Petri net with the initial marking/® = {p,,p»} is Process denoted by/nf(N), or for short Unfy, called the
illustrated in Figure 1(a). unfoldmgpf N'_ _ . )
Two nodes of a netV, y andy/, are instructural conflict Conﬂguratl(_)n_s and cutsA configurationof a branching
denoted byy#y/, if there exist distinct transitions ¢’ € T pro/cessﬁ IS a f|n/|te set of events C E S”ICh that for all
such thattn*t’ # ), and(t, y) and(t',y’) are in the reflexive ©¢ € ~(e#te’) and, for everye € x, ¢ < e implies
transitive closure of the flow relations, denoted by<. ¢’ € r; in addition it is required thatle «. For every event
e € FE, the configurationfe] = {e’le’ < e} is called the
basic configuratioh of e, and (¢) = [¢] \ {e} denotes the
set of causal predecessardloreover, for a set of events’
An occurrence nefs a netON = (C, E,—,C°), where we denote byx ¢ E’ the fact thats U E’ is a configuration
C is a set ofconditions (places), E is the set ofevents andx N E’ = (. Such anE’ is asuffixof x, andx @ E’ is an
(transitions) andC® = {c € C': *c = (0} is the set of initial extension ofc. The set of all finite (resp. basic) configurations
conditions satisfying the following: for everye C, | *c|<1; of a branching process is denoted by, (resp.s;,,), and
for everyy € C' U E, - (y#y) and there are finitely many  the superscript is dropped wherms = Unfy.
such thaty’ < y, where < denotes thecausal relation the A co-setis a set of condition€” such that for all distinct
transitive irreflexive closure of-. Two nodes ar€oncurrent ¢ ¢’ € C’, ¢ || ¢/, and acut is a maximal co-set for the set
denotedy || v/, if neithery#y’ nory < y' nory’ < y. inclusion. Lets be a configuration the@'ut (k) = (C° U k®)\
Branching processesA branching procesgBP) of a ¢ is a cut; furthermore, the set of placégCut(x)) is a
net systemN is a pair 3 = (ON,h), where morphism reachable marking ofV, which is denoted byMark(x). A
h:ON — N is a total function orON, also called dolding markingM of N is representedn 3 if there is a configuration
of ON into . This folding can be seen as a labelling functior of 3 such thatM = Mark(x). Every marking represented
on events and conditions @ N, by which configurations of in g is reached inN, and every reachable marking of
ON represent runs aN. It is further required thap satisfies s represented irl/nfy. For a branching process of N a
a parsimony condition: for alki,es € E, if *e; = ®e2 possible extensiois a pair(t, B), where B is a co-set in3
and h(e1) = h(ez) thene, = e;. To define finite complete andt is a transition ofV such thath (B) = *t and3 contains
prefixes, it will be useful to consider a (virtual) initial @t no ¢-labelled event with preses.
L in 3, which has an empty presef,’ as post-set and no  For example, in Figure 1(b) the basic configuratjes] =
label (i.e. no image by:). An example of a Petri net and ON€{e,, 4} with the cutCut([e4]) = {cs, ¢7} and the correspond-
of its branching processes is shown in Figure 1, where tfigy marking Mark([e;]) = {ps,ps}. A possible extension of
morphism#h is indicated by the labels of the nodes. this configuration igts, {ps}) or (ts, {ps}). Note that neither
A branching procesg’ = (ON’, k') of N is aprefix of a
branching process, denoted by3’ C 3, if ON’ is a causally  !also calledlocal configurationin literature.

Figure 1: A Petri net (a) and one of its branching processes

B. Occurrence nets



{e1,ea} nor {es,eq} are configurations since the former [1l. DIAGNOSABILITY
includes events in conflicts; #e,, and the latter does not Tphe system is modelled as a labelled Petri net, where
includee, sincee; < e. transitions are labelled with observable and unobservable
events. The twin plant method [9] is applied to the framework
of Petri net unfoldings. This involve to build a finite and
complete prefix of a verifier, where the diagnosability pmbpe
Although unfoldings are infinite whenever the original nes tested. The verifier is obtained by the synchronous prioduc
has infinite runs they can be truncated in such a way that thiea diagnoser (the system enriched with information about
resulting finite prefix contains enough information to decéd the occurrence of faults). A necessary and sufficient cadit
certain behavioural property. If this is satisfied a prefigagd for diagnosability is given.
to becompletefor that property. There exist different methods
to truncate unfoldings depending which kind of information, System model
should be preserved of the unfolding in the prefix and other
aspects related to the construction of the prefix.
Definition 1: A cutting contextfor Unfy is a triple© = N =(N,0,U,1), 1)
(~,<,{Ke}.cp), Where:
1) =~ is an equivalence relation os,,.
2) «, called anadequateorder, is a strict well-founded
partial order onkg,, refining C, i.e. " C £” implies
K <k, '
3) ~ and< arepreserved by finite extensign. for every
pair of configurations:’ ~ x”, and for every suffixe’
of «/, there exists a finite suffix” of x” such that

C. Finite and complete prefixes

The system is modelled with a safbelled Petri net

which is a Petri netV extended with sets adbservableand
unobservabléransition labelsD andU, respectively, and a la-
belling function? : T'— OUU on transitions. The observable
transitions correspond to controller commands, sensdirga

and their changes, and in contrast, unobservable tramsitio
correspond to some internal events that cause changes in the
system not recorded by sensors. The sefanfit transition
labels ¥ € O U U and it is assumed that” C U since

a) k" &'~ G, and it is trivial to diagnose fault transitions that are obsétea
b) if k" <k’ thens” ® " < v’ @€ Moreover,F' = F, U... U F, is partitioned into disjoint sets,
4) {Kc}eer is a family of subsets okg,,. where F; denotes the set of fault transitions corresponding to

The first parameter determines the information intended fofault typei such thatl < i < n andn is the number of fault
be preserved in the complete prefix; the second parame%?es' This allows one to handle subsets of faults if it is not
specifies which configurations are preserved in the compl&igcessary to detect uniquely every fault transition. Amea
prefix; the last parametes. is needed to specify the setof @ system is illustrated in Figure 2(a) with highlighted se

of configurations used to decide whether an event can plobservable transitions Ig_belled with = {a, b, c}, and the
designed as a cut-off event (in practise, only contains S€t Of unobservable transitions labelled with= {u, f1, f2}
basic configurations for efficiency reasons). There exigtigg  INClUding " = Fy U Fy, whereFy = {fi} and F, = {fp}.
equivalence relations and adequate orders (e.g. see THa) The labelled Petri ned inherits the operational semantics
cutting contexid gy = { o, ror, { e = K’bas}eeE} corre- Of the underlyi_ng netV. One hasM [Ié_(t) YM'if M [t)M'.
sponds to the framework in [5], where,, is the equivalence Moreover, a firing sequenee€ OUU is ca_lled gtrace of N
relation on reachable markings af, i.e. k' ~,, K" iff if M o). The Iangu.age of a labelled Petri n¥tis the set of
Mark(x') = Mark(x"), and<i; is a total adequate order, &/l fraces of\" and is denoted by, (/\/').0

Definition 2: The set offeasible eventsdenoted byfsble®, The set of .”_‘a”"”gs reachable frahd can be represented
and the set ostatic cut-off eventgdenoted byFcut®, are two as areachability graph an edge-labelled directed graph on

i i 0
ts of ts ofJ defined inductively, in the followi reachable marklngs witd/ as root and edges from/ to
jVZ;. of events o/nfyy defined inductively, in the following M’ labelled? (t) if M [t) M’ with L (N). It can be regarded

. ] ) as a finite automaton (where all states are accepting) with th
1) An evente is a feasible event ife) N E_C“te =0. _languagelL (N). It is assumed thak (\) is live. We denote
2) An evente is a static cut-off event if itis fea_5|ble, and if by |o| the length of a trace, by Obs (¢) the observable trace
there is a (so calledorrespondinyconfiguratiors € k. produced by any trace of L (), and byObs~! (¢) the set
such thatx C fsble® \ Ecut®, k ~ [e], andr < fe]. (AN of sequences of (\) sharing witho the same observable
evente’ is referred agorresponding everit x = [€'].)  traces.
The branching procesﬁref]f? induced by the set of events Definition 3: Let f; stand for any fault in¥;. Let o, be a
fsbleﬁ is called thecanonical prefixof Unfy. trace ending with a transition labellef, i.e. M° [0y, ) M for
Note thatPref]\(? is uniquely determined by the cutting contexsome reachable markiny/, and leto’,, be any continuation

©. Several fundamental properties Bfefy’ have been proven ace ofoy,,i.e. M {a}, ) M’ for some other reachable marking

in [12]. In particular,Pref]\? is always complete w.r.tEcuty, A, The fault f; is diagnosable iff:
and it is finite if ~ has finitely many equivalence classes and ! '

Ke 2 K,,,. The prefix induced by the events — eq in Figure (3n € N) (Voy,0%) [|0},| > n= D],
1(b) is a canonical prefifref]\(;)”‘/ with the set of cut-off _
eventsEcuty™" = {er, ez, e} where D is: Vw € Obs™! (o—ficr}i) = fi €w.



with (M,v)[€(t))(M', V') if M[¢(t))M' andv,v' are the

fault labels associated td/ and M’, respectively. Note that
the number of states of a diagnoser grows23ycompared

with A,

A branching process of a labelled Petri étis a branching
process ofV augmented with additional labelling of its events
toh : E — OUU. The function “Fault” is extended to
configuration of the branching processfwith Fault(r) <
Fault(Mark(x)). In order to build a canonical prefix db the
equivalence relation has to be adapted to diagnoser stajes;
is defined as follows: =, «’ iff Mark(k) = Mark(x’) and
Fault(k) = Fault(x'). Then, a canonical prefiRrefS" can
be obtained witt®™" = {~,, tor, {Ke = Kpyy}ocp }» Where
=, is the equivalence relation on diagnoser states,<ajdis
a total adequate order [5]. The diagnogemnd its canonical
prefix Pref®" are depicted in Figure 2 (in figures the cut-off
events are drawn as double boxes, and dotted lines indfoate t
corresponding events of cut-off events; in addition, toheac
evente is associated a fault vector d¢¢], which is shown

@ (b) next to events). Observe that in a canonical prefix\bthe
Figure 2: The systen\ (a) and the canonical prefix of the€ventes would be a cut-off event with the corresponding event
diagnoserD (b). es since only the relatioms,, is considered. However, their

codes are different and thereforg cannot be designated as
a cut-off event of a diagnoser; the prefix has to be extended

This diagnosability definition is based on the one introducé!ntil the cut-off evente;;, which has a corresponding event
in [17]. es ([es] =y [e11] and(es] <iyor [e11])-

B. Diagnoser C. Synchronous product

In the diagnoséronly observable transition are visible and The synchronous product_ of two labelled Petri nets on
unobservable transitions can be seen as silent transifibms, C°MMON observable events is presented. From the language

in order to keep track of the occurrences of fault types H€OTY point of view a language generated by a product
additional piece of information is needed. Let F — {0,1} is the intersection of the languages generated by the two

be afault label functionthen to each marking/ of A’ is synchronised nets. In this case it is the intersection of the
associated a fault label as follows: projection of observable language/words.
W0 = (0,....0), wherer is the fault label ofA1® Definition 4: Let N, andV; be two labelled Petri nets their

y ' productN = N x N, is defined as
o MEJO(t)) MY = it = L ’/.7'__1\/ (t)EFJ’, P = {(p1,%) :p1 € PL}U{(%,p2) : p2 € P2}
J 0 otherwise T = {(t1,t2) : t1 € Th,t2 € T3,
1<jij<n fl(tl)zfg(tg)EOlﬁOQ}

Hence, adiagnoser stateof A\ is a pair(M,v), where M U{(t1,*) : t1 € Th, 41 (t1) € O1 N O3}
is a marking ofA/ andv is the fault label associated with/. U{(*,t2) : tg € Ta, la (t2) ¢ O1 N O2}
Let Fault((M,v)) < v. The diagnosércan be represented *(t1,t2) = *t1 Uty
as — = .(tl,*) =% fort; € Ty, to €Ty

D= (N’ VO) 2 .(*7 t2) =%l
MO = M{) U MS
2The diagnoser used here is not the same as in the original efdik7]. o) = 0O,UO0,
In both cases it describes the behaviour of the system wetobservable .
events by introducing information about faults in the stat€he diagnoser U = LUl )
defined in [17] is always deterministic and a state may irmotiifferent - b () ift ety
states of the system with different fault labels. This metra after the t (tl’ t2) - 0y (tg) if to € Th

observation of a given trace the system can be in one of th#feeedt states ; ; ; ;
with the corresponding fault labels. The diagnoser define ltan be non- wherex is a dummy element. The flow relation is defined

deterministic and a state is represented by only one statleec§ystem with Symmetrical for post-sets of transitions.
the corresponding fault label. This means that after themfsion of a given In the product the places of each component are preserved;

trace the system is in this state with the corresponding fabkl. the transitions which have a common observable label are

SNote that a diagnoser can be seen as a Signal Transition G3a®) [16], h ised b . L. h . h
a labelled Petri net used to specify asynchronous circBit¢h have labelled syncnronise y merging common transitions, otherwise the

transitions, although labelled in different context (th&G% transitions transitions of each component are also preserved. The firing

correspond to input and output signals of a circuit), anchimttend their A7 ALY [0 ((#.t M. ML) of corresponds to firinas
states with additional information (the STG state is exéehevith a signal (My, My) [€((t1, t2)) ) (M3, M) of A P 9

15 /A
coding function). Thus, it is natural to adapt definitionsi artions of STGs Ml [¢1 (t1) ) M7 in N7 and M> [¢s (t2) >M2 in Na, Wher? the
and their canonical prefixes from [10] to diagnosers. firing of x means that an empty transition sequence fires.



1) for each cycle in the verifieV there is a configuration
Kk € k° such thate € Ecut‘?

2) for eachx € x°, wheree € Ecut‘(;), there exists a cycle
in the verifierV

It is assumed that there are no cycles of unobservable events
however, if this assumption is dropped it can be easily check
while building the canonical prefix (by checking whether
there is an occurrence of an observable event between the
cut-off events and their corresponding events; note that th
corresponding event of a cut-off event is always in the nysto

of its cut-off event sinceC is used as adequate order).

Lemma 2:Let ¢ = (M M%v',0v?) and ¢ =
(M, M, 1v'?) be two states in a cycle i/ then
vt =" andv? = 2.

Recall that the verifier compares every pair of traces in
the system which have the same observables. Thus, if a
cut-off evente occurs this means that there exists a cycle
(betweere and its corresponding event). Furthermore, if there

co ek )
Figure 3(a) shows the product of the running examp%xcls'[lt?g?rin(t Ilocal fault labels o, le. v; 7 vi With

. o e . ) v u2), the system is not diagnosable w.Fj.
(Figure 2(a)) with itself. For simplicity, a place is dendteith o . :
p! for (p,) and withp? for (x,p), this also applies to non- Th|S_ is illustrated in F|gure_3(b), Where_z a part of the cacahi

. o T : prefix of the verifier in Figure 3(a) is shown. The cut-off
synchronised transitions, where their labels are depidted eventeg and its corresponding event form a cycle since
synchronised transitions only their labels are used. Qbser, . . , . 9
that there are four transitions labelled with(and also with their basic configurations reach the same mark{mgpg}.

o ... It is evident that the system is not diagnosable w.Fi.
b)'. This is (_ju_e to the fact .tha&?’ and; are labelled W'th. since their corresponding fault labels are different. Tltlsre
a in the original net, and in the product they synchronise . . . .
o2 .~ “exist two equivalent observable traces in the system orfe wit

to (ts,ts), (ts,ts5), (t5,t3) and (t5,¢5) (and similar applies

. . X an occurrence ofy (f},a,b,c) and the other without any
to transitions labelled witrb). Note that in general, SOME ccurrence offy (u?,a,b,c). They can never be distinguished
transitions in the product may never be enabled, however,

| o
i ot dihce they are within a cycle.
this example this is not the case. y 4

Figure 3: Petri net of the verifiér (a) and part of its canonical
prefix showing non-diagnosable traces (b).

However, it is not enough to check the basic configuration
. of a cut-off evente since its concurrent events can influence
D. Verifier the decision. This is also illustrated in Figure 3(b) witte th
In order to check the diagnosability property a verifier ifault type F». The fault label of[eg] indicates that there is
build from the synchronous product of the diagnoser witho ambiguity, yet the occurrence of the concurrent ewvgnt

itself. Theverifier which corresponds té5, changes one of the fault label 6%
0 0 and the system becomes not diagnosable wikt.One has
V=DxD=(NxN, "), ©) fi,a,b,c andu?, a,b, c with the occurrence of? (note that

where D = (N,0) is a diagnoser\V' is the system model this happens only in the case where the corresponding fault
and (V07 I/O) is the synchronised fault label. In the sequels vectors of a fault type; are zero, otherwise one can straight
denoted ai]\/ N0 VO) for the sake of simplicity. Thus/ conclude about diagnosability without considering conentr

can be regarded as a diagnoser net (it has the same dynar%Y@é“s of cut-offs).

as a diagnoser net). The canonical prefix of the verifier  Proposition 1: Let Pref? be the canonical prefix of the
Pref?, is used With® = {~,, C,{k. = Ky, }.c 5}, the set verifier V with its set of cut-off eventsEcuty. ThenV is
of feasible eventgisble? and the set of static cut-off eventscalled F;-diagnosablew.r.t. O and F; if Ve € Ecut] Vk €

Ecut;}. Note that for simplicityC is used as adequate orders®, v} = v2, where Fault(k) = (v!,1?).

Remark 1:The systemV is diagnosablew.r.t. O and F' if

E. Condition for diagnosability it is F;-diagnosable for alF; € F.

A traceo in V forms acycleif there exists a trace’ within Remark 2: To reduce complexity of the verifier one can
o such that{ M*, M2, 01, 12) [0’ ) (M*, M? ', v?) ando’ #  consider one fault type at a time and perform the diagnadsabil
0. Let e € Ecut? be a cut-off event inPref? thenx® = checkn times w.rt. to the fault type sefi,... F;, as in
{k: [e] C x}. (Note that in the sequel proofs are given in théd] (by setting other faults as non-fault unobservableshe T
appendix.) complexity is then linear in the number of faults (the state

Lemma 1: The following holds. space reduces g 1).



Algorithm 1 General algorithm

input :V = (Nl x N2, (Vlo,l/12))
output :A;

Pref — C° =p! (]V[O)

pe «— PE (Pref) (possible extensions)

Ecut +— @ (cut-off events)

A; « ( (minimal non-diagnosable traces Bf)

while pe # () do
choosee € mincpe
pe — pe\ (e}
if e is a cut-off eventhen
Ecut — EcutU{e}
else
Pref «— Pref @ {e}
pe «— pe U update PE (Pref, e)

Pref — Pref @ { Ecut}

forall e € Ecut do
forall i,0 <i<ndo
forall k € k¢ do

Figure 4: PN of the contracted verifigf. (a) and its canonical
prefix (b).

to the diagnosersp! and D2. Given a faultf in V f1
corresponds ta)' and f2 corresponds td?. There are four
cases:

if x is non-diagnosable w.r.£; then

1) a fault f* occurs but not its counterpaft,

2) a fault f2 occurs but not its counterpaft,
3) the occurrence of botlfit and f2, and
4) the absence of botfit and f2.

The first two cases show that the system is not diagnosable if
occurring in a infinite trace, and the last two cases indicati

Algorithm 1 generates the canonical prefikef¢ and [hatthe considered trace is diagnosable.
checks diagnosability. It returns (if the system is not dias Due to the symmetry it is sufficient to consider either Case
able) a set of configurations, for each fault typeF; which 1 or 2 (e.g. let consider Cage 1). Moreover, the Case 4 can be
explain why the system is not diagnosable. The canonidﬁ?d‘?_redur‘gam by removing from the venfﬂe;r the fault
prefix Pref¢ is build by using the algorithm presented in [12]iransitions /% corresponding to the diagnosér” together
The construction ofPref¢ starts with the conditions which With their arcs resulting in @ontractedverifier V.. By doing
correspond to the initial marking of the verifigf and no this the traces containing a fault df* are not reachable
events. Then, the set of possible extension is computed |§§ving only Case 1 and 3. Thus, the diagnosability check
the functionPE. New non-cut-off events together with their'S reduced as follows. The system is not diagnosable if there

post-sets are added each at a time and the set of possﬁﬁ@ts an i_nf_inite trace containing a fault correspondi_n@ﬂo
extension is updated w.r.t. the new added event (by theiamctNOte that it is enough to check for faults correspondingto
updatePE). Whereas, cut-off events are stored and add&i'ce faults corresponding D will never occur in a trace
after the prefix generation terminates (when the set of ptessi®ecause they are not reachable due to the removal.
extension is empty). In order to test diagnosability theaffit  Algorithm 1 can be applied to check diagnosability with
events and their concurrent events are examined for amigu§e contracted verifier and the reduced diagnosability kchec
fault labels. The result is then reported in form of a set &¢onsider the verifier in Figure 3(a). Its contracted versin

configurations showing non-diagnosable traces if theytexis Shown in Figure 4(a), where fault transitio_ﬁé’ ={ft. f3}
and their arcs are removed. The transition marked black

correspond to transitions which are not reachable due to the

B. Improvements removal. This is evident on the canonical prefix depicted in

As stated in the previous section one can consider one fakigure 4(b). Note that the fault vector correspondingild
type F; at a time and perform the diagnosability testimes. is only important for the diagnosability check since theesth
The above procedure can also be applied in the same way feudt vectors are always zero. There are two cut-off events,
with a reduced fault vector i.e. only th&" bit corresponding es and eq; it is immediately evident from the fault vector
to F; is considered, and by setting the remaining fault types e that the system is not diagnosable w.Fi., and it is
F\ F; as non-fault unobservables. This approach is favourtader evident that there exist a configurationfft (containing
by the diagnosability community. es and its concurrent event, which correspond tgf}) that

1) Contracted verifier:lt would be advantageous to exploitshows that the system is also not diagnosable w.t.
the symmetry of the verifier. Recall that the verifiércom- 2) Reduced verifier w.r.t a faultOne can go a step further
pares every pair of equivalent observable traces correlpgn and consider a verifier built out of the product of a diagnoser

IV. VERIFICATION OF DIAGNOSABILITY
A. General algorithm



Algorithm 2 Depth-first approach

input :V = (Nl x N, (1/10, Vlo))
output : isDiagnosable

Pref «— C% =h~1! (MO)

pe «— PE (Pref) (possible extensions)

Ecut — ( (cut-off events)
isDiagnosable «— true

while pe # () do
choosee € pe : e is the last added event jpe

run without f; pe — pe\ {e}
' run with £ if e is a cut-off eventhen
R ' if e is not diagnosabléhen

return isDiagnosable — false

(2) Pref ®) D, © Dy, @Vi =D Dy, Ecut < EcutU {e}
Figure 5: Reducing the verifier applied to fayit else if (oh(e) € F ande is not diagnosabléhen
return isDiagnosable — false
else
containing only fault occurrences and a diagnoser comgini Pref < Pref & {e}
only non-fault occurrences. This is especially interestior pe <« pe Uupdate PE (Pref,e)

the case where one fault type at a time is considered due to thereturn isDiagnosable
size reduction. Given a diagnos®&r in which one fault type
F; is considered (i.eF'\ F; is set to non-fault unobservables)
one has theeducedverifier w.r.t. the faultf; 3(b) with the fault vector corresponding ;. Incidentally,

Ve —Dv x D+ @) the reduced verifier w.r.tf, Vy,, is similar toVy,, they only

fi Ji fir differ in the fault vectorsD¢, corresponds to the run in Figure

where f; is any fault in F;, 1 < i < n, and the reduced 5(c) andDy, correspond to the run in Figure 5(b).
diagnoserDy, (Dy,), which corresponds to the part db 3) Depth first approach ‘A depth-first approach(see Al-
containing (non-j-fault occurrences. Extracting fault andgorithm 2) as opposed to the breadth-first approach pregente
non-fault occurrences at the level of the diagnoser is napove can be employed to test diagnosability. It is advanta-
straightforward due to the cyclicity of the net. Howeverisit geous if simply an answer about the system’s diagnosability
possible to extract this information from the canonicalfigre is needed. The depth-first search tries to extend a branch
of the underlying system of the diagnosefe]j? (with c as ©of a prefix before considering other branches. This means
adequate order) by examining maximal configurations w.ithat the possible extensions enabled by the last addedsevent

set inclusion, calleduns are explored (added to the prefix) before any other possible
Definition 5: Let Q be the set of runs iPref&. Then, extensions in the prefix. To do that the diagnosability check
e Oy ={weQ/Iecw: loh(e) € F} has to be extended, not only cut-off events are candidates bu
. Q]; —{weQNecw:loh(e) ¢ B}, also their concurrent events are. Recall that the diagildgab

check is done w.r.t some cut-off eventby examining fault

/ labels of x¢. Sincee might be added before its concurrent
In other words(2y, (€2) |s_th_e_ set of runs where faults fromevents (the sek® is not complete) they must be included in

type £ (not) occur. By definitionf2y, (€27) corresponds to y, diagnosability test. However, only events correspagth

all the possible gxecutlons of the _reduced underlying BYSt§4ults are of interest since only they can influence the dmtis

model representing the reduced diagnaBgr (D). Hence, about diagnosability. Thus, given a non-cut-off evehthere

thedprloj_ection off2y;, ang {27 onto the d(ijagnoseD ((\j/ia i}s exists a configuration corresponding to a non-diagnosable
underlying system modeN) correspond toDy, and Dy, 06 iff ¢ o h(e) € F; and there exists a cut-off event
respectively. For each fault the reduced verifier is cocsta such thate’ || and v} # v2 or ' # 12, where
from Pref€, which is unchanged, only the extracted informa. €N " Vi Vi Vi)

X L N ) ' Fault([e]) = (v, v?) and Fault([¢']) = (v"*,"?). Observe,
tion differs. Thus, it has to be build only once.

Let consider the prefix of the running exampleref?
in Figure 5(a) and the case that only the fault typge is
considered (thus, events @ are set to unobservable non-C c lexi
fault events). There are two runs iPref?, one with the fault ™~ omp e_xny _ _

/1 and the other without the considered fault type. From the A canonical prefixPrefi? can be exponentially smaller than
runs the reduced diagnosebg, and D, (depicted in Figure the reachability graph o¥/, especially ifV" exhibits a high

5(b) and (C)’ respectlvely) are obtained by projecting t 4[4] shows that the depth-first search is incorrect when apglit to PN

D. The re_duced Ve.riﬁevfl = Df1 X Df1 is shown in F_igur_e unfolding prefixes, however, here the prefix constructioersuan adequate
5(d) and its canonical prefix corresponds to the one in Figuseler (), and thus, is correct.

wheree is an event inPref?.

that the above introduced improvements can be applied to the
depth-first approach in a similar way.



degree of concurrency combined with a moderate humber of
branching behaviour. However, in worst caBeef? can be
exponential in the size oV. In spite of that, the proposed
improvements offer a size reduction &fef?. In particular,
when taking into account the symmetry of the verifier or
considering one fault type at a time the size reduction can b
significant when buildingPref§ from the contracted and/or
reduced verifier. Moreover, the depth-first approach tagreth

the breath-first one.

V. CONCLUSION AND FUTURE WORK

This paper proposes an approach to verify diagnosability
in the framework of PN unfoldings based on the twin plant
method. The approach consists in constructing a verifieighwh
compares pairs of paths from the initial model sharing the
same observable behaviour. In the canonical prefix of the
verifier the diagnosability test is reduced to the compariso
of binary vector pairs of configurations associated with- cut
off events. Each configuration is linked with a pair of binary
vectors containing information about fault occurrences in
two executions sharing the same observables. This is furthe
reduced when considering the symmetry of the verifier, then
only binary vectors of one configuration instead of the pair
is examined while considering a reduced reachable space.
Moreover, other proposed improvements can be applied to
reduce the complexity.

The advantage of using PN and its unfolding prefixes lies
in the compact knowledge representation. This compactness
manifests, on the one hand, in the model itself and its exten-
sions (the diagnoser and the verifier) and, on the other hiand,
the formalism used to test diagnosability (the canonicefipr
of the verifier).

In the future we plan to improve the efficiency of the
proposed approach as follows:

APPENDICES

Lemma 1:The following holds.
1) for each cycle in the verifieV there is a configuration

Kk € k¢ such thate € Ecut‘?

¢?) for eachk € x°, wheree € Ecut‘?, there exists a cycle

in the verifierV’

Proof:
with the improvements may offer a more efficient way that 1) et

us consider a cycle in the verifierl’V
cyc :(]Vfll, M2 vi, 1/12) [a1, ..., ak—1 )(JV[,%7 M2, v, l/i)
with (Mll,Mlg,l/},V%) = M,i,M,f,u,i,u,%). By
definition of cut-off events it follows that some;
(1 < ¢ < k—1) corresponds to a cut-off event in
Prefﬁ. Without loss of generality let;; = ax_; and
e; = e,—1. We consider two cases.

a) The traceu, ..., a;_1 correspond to the configura-
tion [ex—1], a; € Lo h([ex—1]) for j = 1.k — 1.
Thus, [ex—1] is a configuration ofx¢-1 which
corresponds to the cycleyc.

b) There is a subseB = {by,...,b,,} (m > 1) of
A = {a1,...,a—1} such thatb,, = a;—; and
bj e€lo h([ek_l]). LetD=A \ B = {dl, ...,dr}
(r > 1) be the remaining transition labels of.
Then, each element; does not correspond to
a predecessor of,_; (otherwise it would be in

[ex—1]). It does not correspond to successor of

ex—1 (since ey_1 corresponds tou,_; the last

transition label in the trace). Furthermore, it does
not correspond to an event in conflict with elements

of ey since the trace,, ..., ax—: includesd; and
ax—1 such thatay_; = £ o h(eg—_1). This means
that eache; (d; = ¢ o h(e;)) is concurrent to
the cut-off event;_4. Therefore, the configuration
k corresponding toas, ...,ap—1 contains|ex_1],
K € K&-1,

« using other adequate orders to build canonical prefixes in2) Suppose: € ¢, wheree € Ecut®. We consider two

order to obtain smaller prefixes with fewer test cases.

« constructing complete prefixes of reduced verifiers di-
rectly from the extracted runs of the system’s canonical
prefix; this would reduced the construction complexity of
the canonical prefix of the reduced verifier.

« applying a directed search in the depth-first algorithm as
it has been done in [1] for the reachability analysis. The
unfolding generation could be guided in such a way that
only “interesting” branches are explored first rather than
“blindly” choosing branches.

In addition, we also plan to extend this approach to verify
diagnosability in distributed systems as an application of
modular complete prefixes [13]. Moreover, we currently Biwve
tigate the application of LTL model checking to diagnosapil
verification using existing approaches to LTL model chegkin
with net unfoldings [2], [3]. This idea has arisen after mayi
defined the diagnosability problem in this paper.
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Lemma 2:Let ¢ =

cases.

a) If k = [e] then by definition of cut-off events
corresponds to a cycle.

b) If k = k¢ and k # [e]. Let us consider the
cycle cycmin, Which corresponds tde] and to
the traceb, ..., b,, (Whereb,, = £ o h(e)). Since
k¢ = {k:[e] C k} then k includes in addition
to events of [e] (corresponding toby,...,b,,)

a concurrent set of events corresponding to

dy...d, Let a;...ax_1 be a trace involving
elements of bothb,,...,b,, and d;...d.. Let
g = (M'M?v',v?) be the state ofV

reached after executing a trace involving all

the eventsa;...ap_1. We can then show thajg

belongs to a cycle. Indeed, this cycle is obtained

by executing fromg the trace by, ...,b,,, i.e.
(MY, M2, v 0%) [by )...[bm>(Ml,M2,u17u2)

since the concurrent events are not executed the

same marking is reached.
[ |
(]\/II,MQ,I/I,I/Q) and ¢ =



(M, M, V',v?) be two states in a cycle i/ then
1 /2

vt =" andv? = 2.

Jj - vj # v}, eg.vj = 1 andv]' = 0. Sinceq and
¢ are in a cycle ofV’ then the states; = (M, ') (re-
spectivelys, = (M?,1?)) ands; = (M',v'")(respectively

sh = (M",1/2)) are in a cycle of the diagnosér. For some @1--an Such that(Mg, M, vg, v§) [ax ) (M1, M7, vi, v}
Y(M}E, M2 vk, v2) with ¢ = (M}, Mg, v§,13) andq =

traceo = by, ..., by, We have(M*,v!) [o) (M, v""). Since [a;

le = 1 and by definition of the fault propagation we mus

We
(MO9,00) [o0”) (M”",, V"",) and (M°,10) [w)(M«,*)
Proof: Let us consider for the sake of contradiction th%ith
q = (
Since we takéos’| > n there is some > n and some trace

have also in the diagnoser:

)

oo’ The

State

% = 1 and vy = 0.

Mo M« v°° v is accessible ilGV .

2 1 2)

T

M} M2, v} v?). Sincer > n > Maz there must be a

T

haver/! = 1 (faults are not reversible!). This contradicts théYcle inside the path betweep and ¢'. This means that

above assumption. It can be proven that the other case (if {p¢ some z and y with 1 < 2 < y < r we have

suppose that/} =0 andu}1 = 1) leads also to a contradiction (Mg, M3, vy, v7) = (M.vijyQ”/.v}v’/Q) with (Vi)l (Vé)l

by taking a path from(M"*,»'") to (M*, ') and using the 1 and (v2),

Y

(vy), = 0. According to the Lemma 1 this

same arguments. It can also be proven in an analogous marfiy§fe corresponds to a cut-off eveatand a configuration

2 2
thatl/j =vi. [ |

Proposition 1: Let PrefS be the canonical prefix of the S in & contradiction with the supposition.

verifier V' with its set of cut-off eventsZcut;. ThenV is
called F;-diagnosablew.r.t. O and F; if Ve € Ecut‘(;) Vk €
k% v} =v?, whereFault(rk) = (v',1?).

Proof: The following proof is inspired from that of
Theorem 2 in [19].

(=) Suppose that. (N) is diagnosable. For the sake of
contradiction suppose th@e € Ecuto,3x € v v} # V2,
where Fault(k) = (v',v?). From Lemma 1 it follows
that there exists a cycle iV which corresponds tos.
Hence, there exist two corresponding cycles Iih there
are two tracessy and s; such that(M°,1°) [so ) (M],v1!)
and (M°09) [sy) (M2, v?) with Obs(so) = Obs(sp)
and v} # v?. For example,v} 1 and v} 0,

Q-

(1]

(2]

(3]

(4]

ie. fi € so and f; ¢ s;. The cycle of the first
machine is (M}, ") [a1 )(M3,vY) o fan—1 (M, vY), B
and the «cycle of the second machine s

(M2, 02) [by }(M3,0?) ... b1 ) (M, 7).

Let us take fork > 1, Z(k) = sq(a1,....an_1)" and
Z' (k) = s)(b1,....bp_1)". Then, we haveZ (k),Z' (k) € [7]
L(N), Obs(Z (k)) Obs (Z' (k)), and f; € Z (k) and
fi ¢ Z'(k). Moreover, we haveObs (Z (k))] > 1 and 8]
|Obs (Z' (k))] > 1 due to the assumption that there are no
unobservable cycles.

Since f; € Z (k) let us considelZ (k) = oo’ such thato el
finishes with f; and ¢’ is the continuation ot w.r.t. Z (k).
Then, by choosing a large we will find that |o/| > n for
eachn > 1 and Obs (Z (k)) = Obs (Z' (k)) = Obs (o0’),
i.e. Z' (k) € Obs™! (c0’) but f1 ¢ Z’ (k), which represent a
counter example to the diagnosability of the system. Thi is
contradiction. [12]

(6]

[10]

[11]

<) Suppose thate € Ecut?, Vi € k¢ v} = v2 with
( ) pp 174 7 )

Fault(x) = (v',?). For the sake of contradiction suppos¢13]
L (N) is non-diagnosable(vn > 1) Jo¢’ (o is a trace fin-
ishing with f; and ¢’ is one of its continuation in’ (N))
such thatjo’| > n and 3w € Obs™! (c0’) and f; ¢ w. Let
Max be the maximum number of states in the state gra?lr%]
of the V (denoted byG"), and letn > Maz. Letw = sw’

such thats € Obs™! (0); since f; ¢ w it is obvious that

fi & s. In the diagnoser we hav¢M°,1°) [) (M?,v7) and  [16]
(MO,00) [s)(M*,v*) with 7 = 1 andv{ = 0. The state

q= (M°,M?*,v°,v°%) is accessible irG".

[14]

k € K¢ such thaty} # v?

7

where Fault(x) = (v',1?). This
|
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