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Abstract—Today’s complex systems increasingly require safety
and robustness w.r.t faults occurrences, and diagnosability is a
key property to ensure this at design stage. Intuitively, a system
is diagnosable if its only observable part allows one to determine
without ambiguity the occurrence of its failures. In the recent
years diagnosability has been extensively studied, especially in the
finite state machine (FSM) based models. Among the developed
approaches in this domain thetwin plant method has been proven
to be efficient in verifying diagnosability. However, little work
has been done in other discrete event systems such as Petri nets
(PNs). PNs and their techniques have been proven to overcome
some limitations of FSM, especially the state space explosion
problem. One promising technique is the PN unfolding, whichhas
been successfully applied to model checking. It offers a compact
representation of the state space because runs are represented
by means of partial orders rather than sequences. Therefore, we
demonstrate in this paper how PN unfoldings can be applied to
verify diagnosability by adapting the twin plant method.

I. I NTRODUCTION

Diagnosability is an important property that determines
the ability of a system to detect faults occurrences given
only observable sequences (the system has observable events
and unobservable events including faults). If a system is
diagnosable the diagnosis will find an accurate explanationfor
any possible set of observations from the system, otherwisethe
diagnosis will give an ambiguous and useless explanation.

The seminal work in [17] has introduced a formal language
framework for diagnosis and analysis of diagnosability prop-
erties of discrete event systems (DES) represented by finite
automata. The proposed method for diagnosability verification
is based on the construction of adiagnoser: an automaton with
only observable events which allows one to estimate states
of the system after observation of sequences. Other methods
with polynomial complexity (the previous one is exponential
in the number of states) have been proposed and are based
on thetwin plant method [9], [19]. The basic idea is to build
a verifier from a diagnoser by constructing the synchronous
product of the diagnoser with itself on observable events. The
verifier compares every pair of paths in the system that have
the same observable behaviour. Adaptations of these methods
have been also proposed to deal with the distributed case [15],
[18], where the modularity of the system is used to compute
local twin plants and to verify the diagnosability of the system
by gradually combining local twin plants (in the worst case
building the global twin plant).

Naturally, the state-based twin plant method suffers from
the state space explosion problem. To alleviate this problem
Petri net (PN) unfolding techniques appear promising. A finite

and complete prefix of a PN unfolding gives a compact repre-
sentation of all behaviours and reachable markings of this PN
in a partial order. Executions are considered as partial ordered
set of events rather than sequences, which results in memory
savings. Since introducing the unfolding prefixes in [14] they
have been improved [5], [12], extended and applied to various
practical applications such as distributed diagnosis [6],model
checking (see e.g.[10]), synthesis of asynchronous circuits [11]
or planning problems [1]. Also the problem of diagnosability
has been studied in this context from a purely theoretical point
of view: [8] proposes a definition of diagnosability based on
observable partial orders and, opposed to such quantitative
criteria, a qualitative notion specific to partial orders has
been introduced in [7]. However, the main difference between
their definition and that proposed in this paper lies on the
granularity level of observations. The one proposed in [8] stays
at the partial order level, i.e. any execution of a partial order
corresponds to the same observation, whereas in this work the
different executions of a partial order correspond to different
observations.

The objective of this paper is to use PN unfolding prefixes
to verify diagnosability by adapting the twin plant method
[19]; with the long term objective to develop an approach to
verify diagnosability in a distributed way in the framework
of modular complete prefixes [13]. The system is modelled
as a labelled Petri net, where transitions are labelled with
observable and unobservable events. The diagnosability prop-
erty is tested using a finite and complete prefix of a verifier.
The verifier is obtained by the synchronous product of a
diagnoser (the system enriched with information about the
occurrence of faults). A necessary and sufficient condition
for diagnosability is given. In addition, two algorithms are
given to test diagnosability; one performs an exhaustive search
and reports in the case the system is not diagnosable all
ambiguous explanations, and the other is designed to stop at
the first ambiguous explanation if it exists and simply report
the “binary” result, i.e. if the system is diagnosable or not.
Moreover, two improvements applicable for both algorithms
are presented, which exploit the symmetry and “interesting”
behaviour of the verifier to reduce its size.

The paper is organised as follows. The second section
recalls basic theoretical background concerning PNs, their
unfoldings and the derivation of finite and complete prefixes.
The third section describes the used model and introduces the
twin plant method applied to PN unfolding prefixes. The fourth
section presents the algorithms used to verify diagnosability
and some improvements. The last section draws conclusions
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and presents future perspectives.

II. PETRI NETS AND THEIR UNFOLDINGS

This section presents basic definitions concerning Petri nets
and their unfoldings mainly adapted from [5], [10], [12].

A. Petri nets

A Petri net is a quadrupleN = (P, T, →, M0) such
that P and T are disjoint sets ofplaces and transitions,
respectively,→⊆ (P × T ) ∪ (T × P ) is a flow relation, and
M0 is the initial marking, where a marking is a function
P → N = {0, 1, 2, ...} which assigns a number oftokensto
each place. A Petri net can be considered as a bipartite graph
with directed edges between places and transitions. For a node
x ∈ P ∪ T , its pre-set•x is defined by•x = {y | (y, x) ∈→}
and its post-setx• is defined byx• = {y | (x, y) ∈→}. A
transitiont is enabledat a markingM if ∀p ∈ •t : M (p) ≥ 0,
which is denoted byM [t 〉. An enabled transition canfire
yielding a new markingM ′ = M − •t + t•, which is denoted
by M [t 〉M ′. A transitions sequenceσ = t1, ..., tk ∈ T is a
firing sequencefrom M1 to Mk+1, denoted byM1 [σ 〉Mk+1

or M1 [σ 〉 , iff a set of markingsM2, ..., Mk+1 exit such that
Mi [ti 〉Mi+1, 1 ≤ i ≤ k. A netN is safeif for every reachable
markingM and every placep ∈ P , M (p) ⊆ {0, 1}. A safe
N has a finite number of reachable markings. An example of
a safe Petri net with the initial markingM0 = {p1, p2} is
illustrated in Figure 1(a).

Two nodes of a netN , y andy′, are instructural conflict,
denoted byy#y′, if there exist distinct transitionst, t′ ∈ T
such that•t∩•t′ 6= ∅, and(t, y) and(t′, y′) are in the reflexive
transitive closure of the flow relation→, denoted by�.

B. Occurrence nets

An occurrence netis a netON = (C, E,→, C0), where
C is a set of conditions (places),E is the set ofevents
(transitions) andC0 = {c ∈ C : •c = ∅} is the set of initial
conditions satisfying the following: for everyc ∈ C, | •c |≤ 1;
for everyy ∈ C ∪ E, ¬ (y#y) and there are finitely manyy′

such thaty′ ≺ y, where≺ denotes thecausal relation, the
transitive irreflexive closure of→. Two nodes areconcurrent,
denotedy ‖ y′, if neithery#y′ nor y � y′ nor y′ � y.

Branching processes:A branching process(BP) of a
net systemN is a pair β = (ON, h), where morphism
h : ON → N is a total function onON , also called afolding
of ON into N . This folding can be seen as a labelling function
on events and conditions ofON , by which configurations of
ON represent runs ofN . It is further required thatβ satisfies
a parsimony condition: for alle1, e2 ∈ E, if •e1 = •e2

and h(e1) = h(e2) then e1 = e2. To define finite complete
prefixes, it will be useful to consider a (virtual) initial event
⊥ in β, which has an empty preset,C0 as post-set and no
label (i.e. no image byh). An example of a Petri net and one
of its branching processes is shown in Figure 1, where the
morphismh is indicated by the labels of the nodes.

A branching processβ′ = (ON ′, h′) of N is a prefix of a
branching processβ, denoted byβ′ ⊑ β, if ON ′ is a causally
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Figure 1: A Petri net (a) and one of its branching processes
(b).

closed sub-net ofON containing all initial conditions and
such that:∀e ∈ E, e ∈ ON ′ implies e• ∈ ON ′ andh′ is the
restriction ofh to C′∪E′. For each net systemN there exists
a unique (up to isomorphism) maximal (w.r.t⊑) branching
process denoted byUnf(N), or for shortUnfN , called the
unfoldingof N .

Configurations and cuts:A configurationof a branching
processβ is a finite set of eventsκ ⊆ E such that for all
e, e′ ∈ κ, ¬(e#e′) and, for everye ∈ κ, e′ ≺ e implies
e′ ∈ κ; in addition it is required that⊥∈ κ. For every event
e ∈ E, the configuration[e]

df
= {e′|e′ � e} is called the

basic configuration1 of e, and 〈e〉
df
= [e] \ {e} denotes the

set of causal predecessors. Moreover, for a set of eventsE′

we denote byκ ⊕ E′ the fact thatκ ∪ E′ is a configuration
andκ∩E′ = ∅. Such anE′ is a suffixof κ, andκ⊕E′ is an
extension ofκ. The set of all finite (resp. basic) configurations
of a branching processβ is denoted byκβ

fin (resp.κβ
bas), and

the superscriptβ is dropped whenβ = UnfN .
A co-setis a set of conditionsC′ such that for all distinct

c, c′ ∈ C′, c ‖ c′, and acut is a maximal co-set for the set
inclusion. Letκ be a configuration thenCut(κ)

df
=

(

C0 ∪ κ•
)

\
•κ is a cut; furthermore, the set of placesh (Cut(κ)) is a
reachable marking ofN , which is denoted byMark (κ). A
markingM of N is representedin β if there is a configuration
κ of β such thatM = Mark(κ). Every marking represented
in β is reached inN , and every reachable marking ofN
is represented inUnfN . For a branching processβ of N a
possible extensionis a pair(t, B), whereB is a co-set inβ
andt is a transition ofN such thath (B) = •t andβ contains
no t-labelled event with presetB.

For example, in Figure 1(b) the basic configuration[e4] =
{e2, e4} with the cutCut([e4]) = {c5, c7} and the correspond-
ing markingMark ([e4 ]) = {p5, p8}. A possible extension of
this configuration is(t5, {p5}) or (t8, {p8}). Note that neither

1also calledlocal configurationin literature.
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{e1, e2} nor {e3, e6} are configurations since the former
includes events in conflictse1#e2, and the latter does not
includee1 sincee1 ≺ e6.

C. Finite and complete prefixes

Although unfoldings are infinite whenever the original net
has infinite runs they can be truncated in such a way that the
resulting finite prefix contains enough information to decide a
certain behavioural property. If this is satisfied a prefix issaid
to becompletefor that property. There exist different methods
to truncate unfoldings depending which kind of information
should be preserved of the unfolding in the prefix and other
aspects related to the construction of the prefix.

Definition 1: A cutting contextfor UnfN is a triple Θ =
(

≈, ⊳, {κe}e∈E

)

, where:

1) ≈ is an equivalence relation onκfin .
2) ⊳, called anadequateorder, is a strict well-founded

partial order onκfin refining ⊂, i.e. κ′ ⊂ κ′′ implies
κ′

⊳ κ′′.
3) ≈ and⊳ arepreserved by finite extensions, i.e. for every

pair of configurationsκ′ ≈ κ′′, and for every suffixǫ′

of κ′, there exists a finite suffixǫ′′ of κ′′ such that

a) κ′′ ⊕ ǫ′′ ≈ κ′ ⊕ ǫ′, and
b) if κ′′

⊳ κ′ thenκ′′ ⊕ ǫ′′ ⊳ κ′ ⊕ ǫ′.

4) {κe}e∈E is a family of subsets ofκfin .

The first parameter determines the information intended to
be preserved in the complete prefix; the second parameter
specifies which configurations are preserved in the complete
prefix; the last parameterκe is needed to specify the set
of configurations used to decide whether an event can be
designed as a cut-off event (in practise,κe only contains
basic configurations for efficiency reasons). There exist several
equivalence relations and adequate orders (e.g. see [10]).The
cutting contextΘERV =

{

≈m , ⊳tot , {κe = κbas}e∈E

}

corre-
sponds to the framework in [5], where≈m is the equivalence
relation on reachable markings ofN , i.e. κ′ ≈m κ′′ iff
Mark (κ′) = Mark (κ′′), and⊳tot is a total adequate order.

Definition 2: The set offeasible events, denoted byfsbleΘ ,
and the set ofstatic cut-off events, denoted byEcutΘ , are two
sets of events ofUnfN defined inductively, in the following
way:

1) An evente is a feasible event if〈e〉 ∩ EcutΘ = ∅.
2) An evente is a static cut-off event if it is feasible, and if

there is a (so calledcorresponding) configurationκ ∈ κe

such thatκ ⊆ fsbleΘ \EcutΘ , κ ≈ [e], andκ ⊳ [e]. (An
evente′ is referred ascorresponding eventif κ = [e′].)

The branching processPrefΘN induced by the set of events
fsbleΘN is called thecanonical prefixof UnfN .
Note thatPrefΘN is uniquely determined by the cutting context
Θ. Several fundamental properties ofPrefΘN have been proven
in [12]. In particular,PrefΘN is always complete w.r.t.EcutΘN ,
and it is finite if≈ has finitely many equivalence classes and
κe ⊇ κbas . The prefix induced by the eventse1−e9 in Figure
1(b) is a canonical prefixPrefΘERV

N with the set of cut-off
eventsEcutΘERV

N = {e7, e8, e9}.

III. D IAGNOSABILITY

The system is modelled as a labelled Petri net, where
transitions are labelled with observable and unobservable
events. The twin plant method [9] is applied to the framework
of Petri net unfoldings. This involve to build a finite and
complete prefix of a verifier, where the diagnosability property
is tested. The verifier is obtained by the synchronous product
of a diagnoser (the system enriched with information about
the occurrence of faults). A necessary and sufficient condition
for diagnosability is given.

A. System model

The system is modelled with a safelabelled Petri net

N = (N, O, U, ℓ) , (1)

which is a Petri netN extended with sets ofobservableand
unobservabletransition labelsO andU , respectively, and a la-
belling functionℓ : T → O∪U on transitions. The observable
transitions correspond to controller commands, sensor readings
and their changes, and in contrast, unobservable transitions
correspond to some internal events that cause changes in the
system not recorded by sensors. The set offault transition
labels F ⊆ O ∪ U and it is assumed thatF ⊆ U since
it is trivial to diagnose fault transitions that are observable.
Moreover,F = F1 ∪ ... ∪ Fn is partitioned into disjoint sets,
whereFi denotes the set of fault transitions corresponding to
a fault typei such that1 ≤ i ≤ n andn is the number of fault
types. This allows one to handle subsets of faults if it is not
necessary to detect uniquely every fault transition. An example
of a system is illustrated in Figure 2(a) with highlighted set
of observable transitions labelled withO = {a, b, c}, and the
set of unobservable transitions labelled withU = {u, f1, f2}
includingF = F1 ∪ F2, whereF1 = {f1} andF2 = {f2}.

The labelled Petri netN inherits the operational semantics
of the underlying netN . One hasM [ℓ (t) 〉M ′ if M [t 〉M ′.
Moreover, a firing sequenceσ ∈ O∪U is called atraceof N
if M [σ 〉. The language of a labelled Petri netN is the set of
all traces ofN and is denoted byL (N ).

The set of markings reachable fromM0 can be represented
as a reachability graph, an edge-labelled directed graph on
reachable markings withM0 as root and edges fromM to
M ′ labelledℓ (t) if M [t 〉M ′ with L (N ). It can be regarded
as a finite automaton (where all states are accepting) with the
languageL (N ). It is assumed thatL (N ) is live. We denote
by |σ| the length of a traceσ, by Obs (σ) the observable trace
produced by any traceσ of L (N ), and byObs−1 (σ) the set
of sequences ofL (N ) sharing withσ the same observable
traces.

Definition 3: Let fi stand for any fault inFi. Let σfi
be a

trace ending with a transition labelledfi, i.e. M0 [σfi
〉M for

some reachable markingM , and letσ′
fi

be any continuation

trace ofσfi
, i.e.M

[

σ′
fi
〉M ′ for some other reachable marking

M ′. The faultfi is diagnosable iff:

(∃n ∈ N)
(

∀σfi
σ′

fi

) [∣

∣σ′
fi

∣

∣ ≥ n⇒ D
]

,

whereD is: ∀ω ∈ Obs−1

(

σfi
σ′

fi

)

⇒ fi ∈ ω.
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Figure 2: The systemN (a) and the canonical prefix of the
diagnoserD (b).

This diagnosability definition is based on the one introduced
in [17].

B. Diagnoser

In the diagnoser2 only observable transition are visible and
unobservable transitions can be seen as silent transitions. Thus,
in order to keep track of the occurrences of fault types an
additional piece of information is needed. Letν : F → {0, 1}
be a fault label functionthen to each markingM of N is
associated a fault label as follows:

• ν0 = (0, ..., 0), whereν0 is the fault label ofM0

• M i [ℓ (t) 〉M i+1 ⇒ νi+1

j =

{

1 if νi
j = 1 ∨ ℓ (t) ∈ Fj

0 otherwise
,

1 ≤ j ≤ n

Hence, adiagnoser stateof N is a pair(M, ν), whereM
is a marking ofN andν is the fault label associated withM .
Let Fault((M, ν))

df
= ν. The diagnoser3 can be represented

as
D = (N , ν0) (2)

2The diagnoser used here is not the same as in the original workof [17].
In both cases it describes the behaviour of the system w.r.t.the observable
events by introducing information about faults in the states. The diagnoser
defined in [17] is always deterministic and a state may involve different
states of the system with different fault labels. This meansthat after the
observation of a given trace the system can be in one of these different states
with the corresponding fault labels. The diagnoser defined here can be non-
deterministic and a state is represented by only one state ofthe system with
the corresponding fault label. This means that after the observation of a given
trace the system is in this state with the corresponding fault label.

3Note that a diagnoser can be seen as a Signal Transition Graph(STG) [16],
a labelled Petri net used to specify asynchronous circuits.Both have labelled
transitions, although labelled in different context (the STG’s transitions
correspond to input and output signals of a circuit), and both extend their
states with additional information (the STG state is extended with a signal
coding function). Thus, it is natural to adapt definitions and notions of STGs
and their canonical prefixes from [10] to diagnosers.

with (M, ν) [ℓ (t) 〉(M ′, ν′) if M [ℓ (t) 〉M ′ and ν, ν′ are the
fault labels associated toM and M ′, respectively. Note that
the number of states of a diagnoser grows by2n compared
with N .

A branching process of a labelled Petri netN is a branching
process ofN augmented with additional labelling of its events
ℓ ◦ h : E → O ∪ U . The function “Fault” is extended to
configuration of the branching process ofD with Fault(κ)

df
=

Fault(Mark(κ)). In order to build a canonical prefix ofD the
equivalence relation has to be adapted to diagnoser states;≈ν

is defined as followsκ ≈ν κ′ iff Mark (κ) = Mark (κ′) and
Fault(κ) = Fault(κ′). Then, a canonical prefixPrefΘ

tot

D can
be obtained withΘtot =

{

≈ν , ⊳tot , {κe = κbas}e∈E

}

, where
≈ν is the equivalence relation on diagnoser states, and⊳tot is
a total adequate order [5]. The diagnoserD and its canonical
prefix PrefΘ

tot

D are depicted in Figure 2 (in figures the cut-off
events are drawn as double boxes, and dotted lines indicate the
corresponding events of cut-off events; in addition, to each
event e is associated a fault vector of[e], which is shown
next to events). Observe that in a canonical prefix ofN the
evente8 would be a cut-off event with the corresponding event
e2 since only the relation≈m is considered. However, their
codes are different and thereforee8 cannot be designated as
a cut-off event of a diagnoser; the prefix has to be extended
until the cut-off evente11, which has a corresponding event
e8 ([e8] ≈ν [e11] and [e8] ⊳tot [e11]).

C. Synchronous product

The synchronous product of two labelled Petri nets on
common observable events is presented. From the language
theory point of view a language generated by a product
is the intersection of the languages generated by the two
synchronised nets. In this case it is the intersection of the
projection of observable language/words.

Definition 4: LetN1 andN2 be two labelled Petri nets their
productN = N1 ×N2 is defined as

P = {(p1, ⋆) : p1 ∈ P1} ∪ {(⋆, p2) : p2 ∈ P2}
T = {(t1, t2) : t1 ∈ T1, t2 ∈ T2,

ℓ1 (t1) = ℓ2 (t2) ∈ O1 ∩O2}
∪ {(t1, ⋆) : t1 ∈ T1, ℓ1 (t1) /∈ O1 ∩O2}
∪ {(⋆, t2) : t2 ∈ T2, ℓ2 (t2) /∈ O1 ∩O2}

→ =







•(t1, t2) = •t1 ∪ •t2
•(t1, ⋆) = •t1
•(⋆, t2) = •t2

for t1 ∈ T1, t2 ∈ T2

M0 = M0
1 ∪M0

2

O = O1 ∪O2

U = U1 ∪ U2

ℓ (t1, t2) =

{

ℓ1 (t1) if t1 ∈ T1

ℓ2 (t2) if t2 ∈ T2

where⋆ is a dummy element. The flow relation is defined
symmetrical for post-sets of transitions.
In the product the places of each component are preserved;
the transitions which have a common observable label are
synchronised by merging common transitions, otherwise the
transitions of each component are also preserved. The firing
(M1, M2) [ℓ ((t1, t2)) 〉(M ′

1, M
′
2) of N corresponds to firings

M1 [ℓ1 (t1) 〉M
′
1 in N1 andM2 [ℓ2 (t2) 〉M

′
2 in N2, where the

firing of ⋆ means that an empty transition sequence fires.
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Figure 3: Petri net of the verifierV (a) and part of its canonical
prefix showing non-diagnosable traces (b).

Figure 3(a) shows the product of the running example
(Figure 2(a)) with itself. For simplicity, a place is denoted with
p1 for (p, ⋆) and with p2 for (⋆, p), this also applies to non-
synchronised transitions, where their labels are depicted. For
synchronised transitions only their labels are used. Observe
that there are four transitions labelled witha (and also with
b). This is due to the fact thatt3 and t5 are labelled with
a in the original net, and in the product they synchronise
to (t3, t3) , (t3, t5) , (t5, t3) and (t5, t5) (and similar applies
to transitions labelled withb). Note that in general, some
transitions in the product may never be enabled, however, in
this example this is not the case.

D. Verifier

In order to check the diagnosability property a verifier is
build from the synchronous product of the diagnoser with
itself. Theverifier

V = D ×D =
(

N ×N ,
(

ν0, ν0
))

, (3)

whereD = (N , ν0) is a diagnoser,N is the system model
and

(

ν0, ν0
)

is the synchronised fault label. In the sequelV is
denoted as

(

N ,N , ν0, ν0
)

for the sake of simplicity. Thus,V
can be regarded as a diagnoser net (it has the same dynamics
as a diagnoser net). The canonical prefix of the verifierV ,
PrefΘV , is used withΘ =

{

≈ν ,⊂, {κe = κbas}e∈E

}

, the set
of feasible eventsfsbleΘV and the set of static cut-off events
EcutΘV . Note that for simplicity⊂ is used as adequate order.

E. Condition for diagnosability

A traceσ in V forms acycleif there exists a traceσ′ within
σ such that

(

M1, M2, ν1, ν2
)

[σ′ 〉
(

M1, M2, ν1, ν2
)

andσ′ 6=

∅. Let e ∈ EcutΘV be a cut-off event inPrefΘV then κe df
=

{κ : [e] ⊆ κ}. (Note that in the sequel proofs are given in the
appendix.)

Lemma 1:The following holds.

1) for each cycle in the verifierV there is a configuration
κ ∈ κe such thate ∈ EcutΘV

2) for eachκ ∈ κe, wheree ∈ EcutΘV , there exists a cycle
in the verifierV

It is assumed that there are no cycles of unobservable events;
however, if this assumption is dropped it can be easily checked
while building the canonical prefix (by checking whether
there is an occurrence of an observable event between the
cut-off events and their corresponding events; note that the
corresponding event of a cut-off event is always in the history
of its cut-off event since⊂ is used as adequate order).

Lemma 2:Let q =
(

M1, M2, ν1, ν2
)

and q′ =
(

M ′1, M ′2, ν′1, ν′2
)

be two states in a cycle inV then
ν1 = ν′1 andν2 = ν′2.

Recall that the verifier compares every pair of traces in
the system which have the same observables. Thus, if a
cut-off event e occurs this means that there exists a cycle
(betweene and its corresponding event). Furthermore, if there
exist different local fault labels ofFi, i.e. ν1

i 6= ν2
i with

Fault([e]) =
(

ν1, ν2
)

, the system is not diagnosable w.r.t.Fi.
This is illustrated in Figure 3(b), where a part of the canonical
prefix of the verifier in Figure 3(a) is shown. The cut-off
event e6 and its corresponding evente5 form a cycle since
their basic configurations reach the same marking

{

p1
8, p

2
8

}

.
It is evident that the system is not diagnosable w.r.t.F1

since their corresponding fault labels are different. Thus, there
exist two equivalent observable traces in the system one with
an occurrence ofF1 (f1

1 , a, b, c) and the other without any
occurrence ofF1 (u2, a, b, c). They can never be distinguished
since they are within a cycle.

However, it is not enough to check the basic configuration
of a cut-off evente since its concurrent events can influence
the decision. This is also illustrated in Figure 3(b) with the
fault type F2. The fault label of[e6] indicates that there is
no ambiguity, yet the occurrence of the concurrent evente4,
which corresponds toF2, changes one of the fault label ofF2

and the system becomes not diagnosable w.r.t.F2. One has
f1
1 , a, b, c and u2, a, b, c with the occurrence off2

2 (note that
this happens only in the case where the corresponding fault
vectors of a fault typeFi are zero, otherwise one can straight
conclude about diagnosability without considering concurrent
events of cut-offs).

Proposition 1: Let PrefΘV be the canonical prefix of the
verifier V with its set of cut-off eventsEcutΘV . Then V is
called Fi-diagnosablew.r.t. O and Fi if ∀e ∈ EcutΘV ∀κ ∈
κe, ν1

i = ν2
i , whereFault(κ) =

(

ν1, ν2
)

.

Remark 1:The systemN is diagnosablew.r.t. O andF if
it is Fi-diagnosable for allFi ∈ F .

Remark 2:To reduce complexity of the verifier one can
consider one fault type at a time and perform the diagnosability
check n times w.r.t. to the fault type setF1, ..., Fn as in
[9] (by setting other faults as non-fault unobservables) . The
complexity is then linear in the number of faults (the state
space reduces by2n−1).
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Algorithm 1 General algorithm

input :V =
(

N 1 ×N 2,
(

ν1
0

, ν1
2

))

output :∆i

Pref ← C0 = h−1
(

M0
)

pe← PE (Pref ) (possible extensions)
Ecut← ∅ (cut-off events)
∆i ← ∅ (minimal non-diagnosable traces ofFi)

while pe 6= ∅ do

choosee ∈ min⊂pe
pe← pe\ {e}
if e is a cut-off eventthen

Ecut← Ecut ∪ {e}
else

Pref ← Pref ⊕ {e}
pe← pe ∪ updatePE (Pref , e)

Pref ← Pref ⊕ {Ecut}

forall e ∈ Ecut do

forall i, 0 ≤ i ≤ n do

forall κ ∈ κe do

if κ is non-diagnosable w.r.t.Fi then

∆i ← ∆i ∪ {κ}

IV. V ERIFICATION OF DIAGNOSABILITY

A. General algorithm

Algorithm 1 generates the canonical prefixPrefΘV and
checks diagnosability. It returns (if the system is not diagnos-
able) a set of configurations∆i for each fault typeFi which
explain why the system is not diagnosable. The canonical
prefixPrefΘV is build by using the algorithm presented in [12].
The construction ofPrefΘV starts with the conditions which
correspond to the initial marking of the verifierV and no
events. Then, the set of possible extension is computed by
the functionPE. New non-cut-off events together with their
post-sets are added each at a time and the set of possible
extension is updated w.r.t. the new added event (by the function
updatePE). Whereas, cut-off events are stored and added
after the prefix generation terminates (when the set of possible
extension is empty). In order to test diagnosability the cut-off
events and their concurrent events are examined for ambiguous
fault labels. The result is then reported in form of a set of
configurations showing non-diagnosable traces if they exists.

B. Improvements

As stated in the previous section one can consider one fault
typeFi at a time and perform the diagnosability testn times.
The above procedure can also be applied in the same way but
with a reduced fault vector i.e. only theith bit corresponding
to Fi is considered, and by setting the remaining fault types
F \ Fi as non-fault unobservables. This approach is favoured
by the diagnosability community.

1) Contracted verifier:It would be advantageous to exploit
the symmetry of the verifier. Recall that the verifierV com-
pares every pair of equivalent observable traces corresponding
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Figure 4: PN of the contracted verifierVc (a) and its canonical
prefix (b).

to the diagnosers,D1 and D2. Given a fault f in V f ¹
corresponds toD1 andf ² corresponds toD2. There are four
cases:

1) a faultf ¹ occurs but not its counterpartf ²,
2) a faultf ² occurs but not its counterpartf ¹,
3) the occurrence of bothf ¹ andf ², and
4) the absence of bothf ¹ andf ².

The first two cases show that the system is not diagnosable if
occurring in a infinite trace, and the last two cases indicating
that the considered trace is diagnosable.

Due to the symmetry it is sufficient to consider either Case
1 or 2 (e.g. let consider Case 1). Moreover, the Case 4 can be
made redundant by removing from the verifierV the fault
transitionsF 2 corresponding to the diagnoserD2 together
with their arcs resulting in acontractedverifier Vc. By doing
this the traces containing a fault ofF 2 are not reachable
leaving only Case 1 and 3. Thus, the diagnosability check
is reduced as follows. The system is not diagnosable if there
exists an infinite trace containing a fault corresponding toD1.
Note that it is enough to check for faults corresponding toD1

since faults corresponding toD2 will never occur in a trace
because they are not reachable due to the removal.

Algorithm 1 can be applied to check diagnosability with
the contracted verifier and the reduced diagnosability check.
Consider the verifier in Figure 3(a). Its contracted versionis
shown in Figure 4(a), where fault transitionsF 2 =

{

f2
1 , f2

2

}

and their arcs are removed. The transition marked black
correspond to transitions which are not reachable due to the
removal. This is evident on the canonical prefix depicted in
Figure 4(b). Note that the fault vector corresponding toD1

is only important for the diagnosability check since the other
fault vectors are always zero. There are two cut-off events,
e8 and e10; it is immediately evident from the fault vector
of e10 that the system is not diagnosable w.r.t.F1, and it is
later evident that there exist a configuration inκe8 (containing
e8 and its concurrent evente9, which correspond tof1

2 ) that
shows that the system is also not diagnosable w.r.t.F2.

2) Reduced verifier w.r.t a fault:One can go a step further
and consider a verifier built out of the product of a diagnoser
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= Df1
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Figure 5: Reducing the verifier applied to faultf1.

containing only fault occurrences and a diagnoser containing
only non-fault occurrences. This is especially interesting for
the case where one fault type at a time is considered due to the
size reduction. Given a diagnoserD in which one fault type
Fi is considered (i.e.F \Fi is set to non-fault unobservables)
one has thereducedverifier w.r.t. the faultfi

Vfi
= Dfi

×Df̄i
, (4)

where fi is any fault in Fi, 1 ≤ i ≤ n, and the reduced
diagnoserDfi

(Df̄i
), which corresponds to the part ofD

containing (non-)fi-fault occurrences. Extracting fault and
non-fault occurrences at the level of the diagnoser is not
straightforward due to the cyclicity of the net. However, itis
possible to extract this information from the canonical prefix
of the underlying system of the diagnoserPrefΘN (with ⊂ as
adequate order) by examining maximal configurations w.r.t.
set inclusion, calledruns.

Definition 5: Let Ω be the set of runs inPrefΘN . Then,

• Ωfi
= {ω ∈ Ω/∃e ∈ ω : ℓ ◦ h (e) ∈ Fi}

• Ωf̄i
= {ω ∈ Ω/∀e ∈ ω : ℓ ◦ h (e) /∈ Fi},

wheree is an event inPrefΘN .
In other wordsΩfi

(Ωf̄i
) is the set of runs where faults from

type Fi (not) occur. By definition,Ωfi
(Ωf̄i

) corresponds to
all the possible executions of the reduced underlying system
model representing the reduced diagnoserDfi

(Df̄i
). Hence,

the projection ofΩfi
and Ωf̄i

onto the diagnoserD (via its
underlying system modelN ) correspond toDfi

and Df̄i
,

respectively. For each fault the reduced verifier is constructed
from PrefΘN , which is unchanged, only the extracted informa-
tion differs. Thus, it has to be build only once.

Let consider the prefix of the running examplePrefΘN
in Figure 5(a) and the case that only the fault typeF1 is
considered (thus, events ofF2 are set to unobservable non-
fault events). There are two runs inPrefΘN , one with the fault
f1 and the other without the considered fault type. From the
runs the reduced diagnosersDf1

andDf̄1
(depicted in Figure

5(b) and (c), respectively) are obtained by projecting themon
D. The reduced verifierVf1

= Df1
×Df̄1

is shown in Figure
5(d) and its canonical prefix corresponds to the one in Figure

Algorithm 2 Depth-first approach

input :V =
(

N 1 ×N ,
(

ν1
0

, ν1
0

))

output : isDiagnosable

Pref ← C0 = h−1
(

M0
)

pe← PE (Pref ) (possible extensions)
Ecut← ∅ (cut-off events)
isDiagnosable← true

while pe 6= ∅ do

choosee ∈ pe : e is the last added event inpe
pe← pe\ {e}
if e is a cut-off eventthen

if e is not diagnosablethen

return isDiagnosable← false
Ecut← Ecut ∪ {e}

else if ℓ◦h(e)∈F ande is not diagnosablethen

return isDiagnosable← false
else

Pref ← Pref ⊕ {e}
pe← pe ∪ updatePE (Pref , e)

return isDiagnosable

3(b) with the fault vector corresponding toF1. Incidentally,
the reduced verifier w.r.t.F2, Vf2

, is similar toVf1
, they only

differ in the fault vectors;Df2
corresponds to the run in Figure

5(c) andDf̄1
correspond to the run in Figure 5(b).

3) Depth first approach :A depth-first approach4 (see Al-
gorithm 2) as opposed to the breadth-first approach presented
above can be employed to test diagnosability. It is advanta-
geous if simply an answer about the system’s diagnosability
is needed. The depth-first search tries to extend a branch
of a prefix before considering other branches. This means
that the possible extensions enabled by the last added events
are explored (added to the prefix) before any other possible
extensions in the prefix. To do that the diagnosability check
has to be extended, not only cut-off events are candidates but
also their concurrent events are. Recall that the diagnosability
check is done w.r.t some cut-off evente by examining fault
labels of κe. Since e might be added before its concurrent
events (the setκe is not complete) they must be included in
the diagnosability test. However, only events corresponding to
faults are of interest since only they can influence the decision
about diagnosability. Thus, given a non-cut-off evente′ there
exists a configuration corresponding to a non-diagnosable
trace iff ℓ ◦ h (e′) ∈ Fi and there exists a cut-off event
e such thate′ ‖ e and ν1

i 6= ν′2
i or ν′1

i 6= ν2
i , where

Fault([e]) =
(

ν1, ν2
)

andFault([e′]) =
(

ν′1, ν′2
)

. Observe,
that the above introduced improvements can be applied to the
depth-first approach in a similar way.

C. Complexity

A canonical prefixPrefΘV can be exponentially smaller than
the reachability graph ofV , especially ifV exhibits a high

4[4] shows that the depth-first search is incorrect when applying it to PN
unfolding prefixes, however, here the prefix construction uses an adequate
order (⊂), and thus, is correct.
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degree of concurrency combined with a moderate number of
branching behaviour. However, in worst casePrefΘV can be
exponential in the size ofV . In spite of that, the proposed
improvements offer a size reduction ofPrefΘV . In particular,
when taking into account the symmetry of the verifier or
considering one fault type at a time the size reduction can be
significant when buildingPrefΘV from the contracted and/or
reduced verifier. Moreover, the depth-first approach together
with the improvements may offer a more efficient way that
the breath-first one.

V. CONCLUSION AND FUTURE WORK

This paper proposes an approach to verify diagnosability
in the framework of PN unfoldings based on the twin plant
method. The approach consists in constructing a verifier, which
compares pairs of paths from the initial model sharing the
same observable behaviour. In the canonical prefix of the
verifier the diagnosability test is reduced to the comparison
of binary vector pairs of configurations associated with cut-
off events. Each configuration is linked with a pair of binary
vectors containing information about fault occurrences in
two executions sharing the same observables. This is further
reduced when considering the symmetry of the verifier, then
only binary vectors of one configuration instead of the pair
is examined while considering a reduced reachable space.
Moreover, other proposed improvements can be applied to
reduce the complexity.

The advantage of using PN and its unfolding prefixes lies
in the compact knowledge representation. This compactness
manifests, on the one hand, in the model itself and its exten-
sions (the diagnoser and the verifier) and, on the other hand,in
the formalism used to test diagnosability (the canonical prefix
of the verifier).

In the future we plan to improve the efficiency of the
proposed approach as follows:

• using other adequate orders to build canonical prefixes in
order to obtain smaller prefixes with fewer test cases.

• constructing complete prefixes of reduced verifiers di-
rectly from the extracted runs of the system’s canonical
prefix; this would reduced the construction complexity of
the canonical prefix of the reduced verifier.

• applying a directed search in the depth-first algorithm as
it has been done in [1] for the reachability analysis. The
unfolding generation could be guided in such a way that
only “interesting” branches are explored first rather than
“blindly” choosing branches.

In addition, we also plan to extend this approach to verify
diagnosability in distributed systems as an application of
modular complete prefixes [13]. Moreover, we currently inves-
tigate the application of LTL model checking to diagnosability
verification using existing approaches to LTL model checking
with net unfoldings [2], [3]. This idea has arisen after having
defined the diagnosability problem in this paper.
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APPENDICES

Lemma 1:The following holds.

1) for each cycle in the verifierV there is a configuration
κ ∈ κe such thate ∈ EcutΘV

2) for eachκ ∈ κe, wheree ∈ EcutΘV , there exists a cycle
in the verifierV

Proof:

1) Let us consider a cycle in the verifierV
cyc =

(

M1
1 , M2

1 , ν1
1 , ν2

1

)

[a1, ..., ak−1 〉
(

M1
k , M2

k , ν1
k, ν2

k

)

with
(

M1
1 , M2

1 , ν1
1 , ν2

1

)

=
(

M1
k , M2

k , ν1
k, ν2

k

)

. By
definition of cut-off events it follows that someai

(1 ≤ i ≤ k − 1) corresponds to a cut-off eventei in
PrefΘV . Without loss of generality letai = ak−1 and
ei = ek−1. We consider two cases.

a) The tracea1, ..., ak−1 correspond to the configura-
tion [ek−1], aj ∈ ℓ ◦ h ([ek−1]) for j = 1...k − 1.
Thus, [ek−1] is a configuration ofκek−1 which
corresponds to the cyclecyc.

b) There is a subsetB = {b1, ..., bm} (m ≥ 1) of
A = {a1, ..., ak−1} such thatbm = ak−1 and
bj ∈ ℓ ◦ h ([ek−1]). Let D = A \B = {d1, ..., dr}
(r ≥ 1) be the remaining transition labels ofA.
Then, each elementdj does not correspond to
a predecessor ofek−1 (otherwise it would be in
[ek−1]). It does not correspond to successor of
ek−1 (since ek−1 corresponds toak−1 the last
transition label in the trace). Furthermore, it does
not correspond to an event in conflict with elements
of ek−1 since the tracea1, ..., ak−1 includesdj and
ak−1 such thatak−1 = ℓ ◦ h (ek−1). This means
that eachej (dj = ℓ ◦ h (ej)) is concurrent to
the cut-off eventek−1. Therefore, the configuration
κ corresponding toa1, ..., ak−1 contains [ek−1],
κ ∈ κek−1 .

2) Supposeκ ∈ κe, wheree ∈ EcutΘV . We consider two
cases.

a) If κ = [e] then by definition of cut-off eventsκ
corresponds to a cycle.

b) If κ = κe and κ 6= [e]. Let us consider the
cycle cycmin, which corresponds to[e] and to
the traceb1, ..., bm (wherebm = ℓ ◦ h (e)). Since
κe = {κ : [e] ⊆ κ} then κ includes in addition
to events of [e] (corresponding tob1, ..., bm)
a concurrent set of events corresponding to
d1...dr . Let a1...ak−1 be a trace involving
elements of both b1, ..., bm and d1...dr . Let
q =

(

M1, M2, ν1, ν2
)

be the state ofV
reached after executing a trace involving all
the eventsa1...ak−1. We can then show thatq
belongs to a cycle. Indeed, this cycle is obtained
by executing from q the trace b1, ..., bm, i.e.
(

M1, M2, ν1, ν2
)

[b1 〉... [bm 〉
(

M1, M2, ν1, ν2
)

since the concurrent events are not executed the
same marking is reached.

Lemma 2:Let q =
(

M1, M2, ν1, ν2
)

and q′ =
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(

M ′1, M ′2, ν′1, ν′2
)

be two states in a cycle inV then
ν1 = ν′1 andν2 = ν′2.

Proof: Let us consider for the sake of contradiction that
∃j : ν1

j 6= ν′1
j , e.g. ν1

j = 1 and ν′1
j = 0. Since q and

q′ are in a cycle ofV then the statess1 =
(

M1, ν1
)

(re-
spectivelys2 =

(

M2, ν2
)

) and s′1 =
(

M ′1, ν′1
)

(respectively
s′2 =

(

M ′2, ν′2
)

) are in a cycle of the diagnoserD. For some
traceσ = b1, ..., bm we have

(

M1, ν1
)

[σ 〉
(

M ′1, ν′1
)

. Since
ν1

j = 1 and by definition of the fault propagation we must
haveν′1

j = 1 (faults are not reversible!). This contradicts the
above assumption. It can be proven that the other case (if we
suppose thatν1

j = 0 andν′1
j = 1) leads also to a contradiction

by taking a path from
(

M ′1, ν′1
)

to
(

M1, ν1
)

and using the
same arguments. It can also be proven in an analogous manner
that ν2

j = ν′2
j .

Proposition 1: Let PrefΘV be the canonical prefix of the
verifier V with its set of cut-off eventsEcutΘV . Then V is
called Fi-diagnosablew.r.t. O and Fi if ∀e ∈ EcutΘV ∀κ ∈
κe, ν1

i = ν2
i , whereFault(κ) =

(

ν1, ν2
)

.
Proof: The following proof is inspired from that of

Theorem 2 in [19].
(⇒) Suppose thatL (N ) is diagnosable. For the sake of

contradiction suppose that∃e ∈ EcutΘV , ∃κ ∈ κe, ν1
i 6= ν2

i ,
where Fault(κ) =

(

ν1, ν2
)

. From Lemma 1 it follows
that there exists a cycle inV which corresponds toκ.
Hence, there exist two corresponding cycles inD: there
are two tracess0 and s′0 such that

(

M0, ν0
)

[s0 〉
(

M1
1 , ν1

)

and
(

M0, ν0
)

[s′0 〉
(

M2
1 , ν2

)

with Obs (s0) = Obs (s′0)
and ν1

i 6= ν2
i . For example,ν1

i = 1 and ν2
i = 0,

i.e. fi ∈ s0 and fi /∈ s′0. The cycle of the first
machine is

(

M1
1 , ν1

)

[a1 〉
(

M1
2 , ν1

)

... [an−1 〉
(

M1
1 , ν1

)

,
and the cycle of the second machine is
(

M2
1 , ν2

)

[b1 〉
(

M2
2 , ν2

)

... [bm−1 〉
(

M2
1 , ν2

)

.
Let us take fork > 1, Z (k) = s0 (a1, ..., an−1)

k and
Z ′ (k) = s′0 (b1, ..., bn−1)

k. Then, we haveZ (k) , Z ′ (k) ∈
L (N ), Obs (Z (k)) = Obs (Z ′ (k)), and fi ∈ Z (k) and
fi /∈ Z ′ (k). Moreover, we have|Obs (Z (k))| ≥ 1 and
|Obs (Z ′ (k))| ≥ 1 due to the assumption that there are no
unobservable cycles.

Sincefi ∈ Z (k) let us considerZ (k) = σσ′ such thatσ
finishes withfi and σ′ is the continuation ofσ w.r.t. Z (k).
Then, by choosing a largek we will find that |σ′| > n for
eachn > 1 and Obs (Z (k)) = Obs (Z ′ (k)) = Obs (σσ′),
i.e. Z ′ (k) ∈ Obs−1 (σσ′) but f1 /∈ Z ′ (k), which represent a
counter example to the diagnosability of the system. This isa
contradiction.

(⇐) Suppose that∀e ∈ EcutΘV , ∀κ ∈ κe, ν1
i = ν2

i with
Fault(κ) =

(

ν1, ν2
)

. For the sake of contradiction suppose
L (N ) is non-diagnosable:(∀n ≥ 1)∃σσ′ (σ is a trace fin-
ishing with fi and σ′ is one of its continuation inL (N ))
such that|σ′| ≥ n and ∃ω ∈ Obs−1 (σσ′) and fi /∈ ω. Let
Max be the maximum number of states in the state graph
of the V (denoted byGV ), and letn ≥ Max. Let ω = sω′

such thats ∈ Obs−1 (σ); since fi /∈ ω it is obvious that
fi /∈ s. In the diagnoser we have:

(

M0, ν0
)

[σ 〉(Mσ, νσ) and
(

M0, ν0
)

[s 〉(M s, νs) with νσ
i = 1 and νs

i = 0. The state
q = (Mσ, M s, νσ, νs) is accessible inGV .

We have also in the diagnoser:
(

M0, ν0
)

[σσ′ 〉
(

Mσσ′

, νσσ′

)

and
(

M0, ν0
)

[ω 〉(Mω, νω)

with νσσ′

i = 1 and νω
i = 0. The state

q′ =
(

Mσσ′

, Mω, νσσ′

, νω
)

is accessible inGV .

Since we take|σ′| ≥ n there is somer ≥ n and some trace
a1...ah such that

(

M1
0 , M2

0 , ν1
0 , ν2

0

)

[a1 〉
(

M1
1 , M2

1 , ν1
1 , ν2

1

)

...
[ar 〉

(

M1
r , M2

r , ν1
r , ν2

r

)

with q =
(

M1
0 , M2

0 , ν1
0 , ν2

0

)

and q′ =
(

M1
r , M2

r , ν1
r , ν2

r

)

. Since r ≥ n ≥ Max there must be a
cycle inside the path betweenq and q′. This means that
for some x and y with 1 ≤ x ≤ y ≤ r we have
(

M1
x , M2

x , ν1
x, ν2

x

)

=
(

M1
y , M2

y , ν1
y , ν2

y

)

with
(

ν1
x

)

i
=

(

ν1
y

)

i
=

1 and
(

ν2
x

)

i
=

(

ν2
y

)

i
= 0. According to the Lemma 1 this

cycle corresponds to a cut-off evente and a configuration
κ ∈ κe such thatν1

i 6= ν2
i , whereFault(κ) =

(

ν1, ν2
)

. This
is in a contradiction with the supposition.
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