
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

ROBUST SELF-STABILIZING CONSTRUCTION

OF BOUNDED SIZE WEIGHT-BASED
CLUSTERS

JOHNEN C / MEKHALDI F

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

04/2009

Rapport de Recherche N° 1518

Robust Self-Stabilizing construction of bounded size

weight-based clusters

Rapport de Recherche LRI No 1518

Colette Johnen

LaBRI, Univ. Bordeaux, CNRS

F-33405 Talence Cedex, France

johnen@labri.fr

Fouzi Mekhaldi

LRI, Univ. Paris-Sud, CNRS

F-91405 Orsay Cedex, France

mekhaldi@lri.fr

Abstract

An Ad hoc network consists of wireless hosts that communicate with each other in the absence
of a fixed infrastructure. Such networks cannot rely on centralized and organized network man-
agement. The clustering problem consists of partitionning network nodes into non-overlapping
groups called clusters. Clusters give a hierarchical organisation to the network that facilitates
network management and that increases its scalability.
In this paper, we propose a clustering protocol for Ad hoc network that ensures fault-tolerance,
load-balancing, best choice of clusterheads, and reliability.
The clusterheads are selected according to their weight (node’s parameter). The higher the
weight of a node, the more suitable this node is for the role of clusterhead. In Ad hoc network,
the amount of bandwidth, memory and processing capacity, or battery power of a node can
be used to determine the weight values.
The load balancing is achieved by building bounded size clusters. Our protocol guarantees
a threshold (SizeBound) on the number of nodes that a clusterhead handle. So, none of
the clusterheads are overloaded. The fault-tolerance and the reliability, in our protocol, are
achieved by the robust self-stabilization property.
The robustness property guarantees that starting from an arbitrary configuration, after four
rounds, a safe configuration is reached. In a safe configuration, a minimum service is achieved:
the network is partitioned into bounded size clusters having a leader. During the convergence
to a legitimate configuration, the safety property stays verified. Thus, the minimal service
is continuously provided. In a legitimate configuration, the optimal service is achieved: the
clusters satisfy the well-balanced clustering properties (i.e. best choice of clusterheads, and
their number is locally minimized).

Keywords: Ad hoc network, Clustering, Load-Balancing, Fault-tolerance, Self-Stabilization,
Robustness, Reliability.

1

Résumé

Un réseau Ad hoc est un ensemble d’hôtes (noeuds) communiquant entre eux via un réseau
sans fil sans infrastructure fixe. Dans un tel réseau, ce sont les noeuds qui prennent en
charge la gestion du réseau (routage, bande passante, ... etc.), et ils doivent prendre des
décisions collectives d’une manière répartie. Le problème d’agrégation consiste à partitionner
les noeuds d’un réseau en grappes disjointes. Ces grappes donnent au réseau une organisation
hiérarchique, ce qui facilite la gestion du réseau, et renforce son extensibilité.
Dans cet article, nous proposons un protocole d’agrégation, pour les réseaux Ad hoc, assurant
la tolérance aux pannes, la répartition de la charge, un meilleur choix des responsables de
grappes, et de la régularité.
Les responsables de grappes sont choisis selon leur poids (paramètre mesurant l’aptitude d’un
noeud à devenir responsable). Plus le poids d’un noeud est grand, plus ce noeud est apte à
être responsable. Dans un réseau Ad hoc, la bande passante, la capacité de stockage et de
calcul, et l’énergie d’un noeud peuvent être utilisées pour déterminer le poids de ce noeud.
La construction de grappes ayant une taille bornée assure la répartition de la charge. Dans
notre protocole, chaque grappe contiendra au maximum SizeBound membres. Donc, aucun
responsable ne sera surchargé. La tolérance aux pannes et la régularité sont assurées par la
propriété de Stabilisation Robuste.
La propriété de Robustesse garantie qu’à partir de n’importe quelle configuration, une con-
figuration sûre sera atteinte au bout de 4 cycles maximum. Dans une configuration sûre, un
service minimum est offert : le réseau est divisé en grappes de taille bornée avec un respons-
able élu au sein de chaque grappe. Pendant la convergence vers une configuration légitime, la
propriété de sûreté reste vérifiée. Donc, le service minimum est continuellement offert. Dans
une configuration légitime, un service optimale sera offert : les grappes vérifient les propriétés
de grappes équilibrées (c-a-d un choix des responsables localement optimale, et leur nombre
est aussi localement optimale).

Mots-clés: Réseau Ad hoc, Agrégation, Répartition de charge, Tolérance aux pannes, Auto-
Stabilisation, Robustesse, Régularité.

2

1 Introduction

A Mobile Ad hoc NETwork (MANET) is an infrastructureless wireless network. It consists
of mobile hosts which can move arbitrarily, and communicate between them via wireless links
without any pre-existing fixed infrastructure. The absence of infrastructure in MANET may
arise in emergency situations, remote regions, hostile areas, or due to the latency period and
financial costs that are involved in the deployment of a fixed infrastructure. However, owing
to the absence of infrastructure, nodes in MANET need to behave as routers in order to
ensure distant communications.
In the flat architecture of MANET, all nodes are considered equal and take the same part
in the routing and forwarding task. This kind of organisation is not scalable on large scale
network due to resource consumption (energy, and bandwidth), and communication overhead.
To provide scalable solutions in many large scale networks, a hierarchical structure has been
used (for instance, in [18]).

The clustering is a hierarchical organization which consists of partitioning network nodes into
groups called clusters. Each cluster has a single clusterhead that acts as local coordinator
of cluster. Several tasks can be achieved by a clusterhead like: resolving channel scheduling,
performing power measurement/control, maintaining time division frame synchronization,
and enhancing the spatial reuse of time slots and codes.
Clustering has other advantages. It limits the amount of topology information stored and
maintained at nodes, since nodes outside of a cluster usually do not need to know the detailed
state of this cluster. When topology changes occur in a cluster, only nodes in this cluster has
to change their topology information. Moreover, clustering reduces the amount of routing
information stored in nodes; and decrease the transmission overhead.

Numerous clustering protocols are proposed [2, 4, 10, 19, 22], since the clustered architecture
is more effective than the flat architecture. In [10], Lowest-ID and Highest-Connectivity
protocols are presented. In the Lowest-ID protocol, the node having the lowest identity
in its neighborhood is selected as clusterhead. Whereas, Highest-Connectivity chooses as
clusterheads the nodes having the highest degree in their neighborhood. In [19], a network
architecture for MANET is proposed, where nodes are organised into nonoverlapping clusters,
and the clusterheads are selected according to their identity. In [2], the weight notion is
introduced to generalize the selection criteria of clusterheads; the suitability of a node to
become clusterhead is based on the node’s weight value. A node is chosen to be clusterhead
if its weight is higher than any of its neighbors weight. In [4], a clustering protocol based on
combined weight metric is proposed. The combined metric takes into account several system
parameters like: node’s degree, battery power, mobility and some one. In [22], a weight-based
clustering protocol is presented, the weight of a node dependS on its degree and the degree
of its neighbors. A survey on clustering protocols can be found on [1].

A technique for designing solutions that tolerate transient faults is the self-stabilization. Start-
ing from any configuration, a self-stabilizing system reaches in a finite time a legitimate con-
figuration. The system behaves properly from any legitimate configuration. Conversely, a non
self-stabilizing system driven to an illegitimate configuration by some perturbations, may not
recover to a correct behavior. Self-stabilizing protocols are attractive because they need not
be initialized: they converge from any state to a legitimate configuration. They have also the
ability to adapt to network topology changes. If the current configuration is inconsistent with
the network topology, the self-stabilizing protocol eventually converges from it to a legitimate
configuration.
In [24], a self-stabilizing protocol that constructs a minimal dominating set is presented. In
[9, 12], self-stabilizing protocols building a connected dominating set are presented. A set
is dominating if each node of the network is either member of this set, or it has a neighbor

3

that is member of the set. A dominating set is minimal if any node leaves the set then the
set is no more a dominating set. The clusterheads set may be a dominating set in order to
to build 1-hop clusters (i.e., nodes are at distance 1 of their clusterhead). In [11], a self-
stabilizing protocol to construct a maximal independent set (MIS) is presented. In [8], a
probabilistic self-stabilizing MIS protocol is presented; in the average the MIS is built in
O(lg(|V |)) rounds, where |V | is the network size. (the nodes in this set are not neighbors, and
the set is maximal to this property). In [3], a self-stabilizing link-cluster protocol is proposed
under the asynchronous message-passing system model. In the obtained clusters, each node
is in at most two hops of its clusterhead. A self-stabilizing clustering protocol is presented in
[21]; the density criteria (defined in [20]) is used to select the clusterheads.

The period of time where a self-stabilizing system converges to a legitimate configuration is
called the convergence period. Usually, during the convergence period, a self-stabilizing sys-
tem does not guarantee any property. In addition, the duration of convergence period may
be proportional to the size of the network; particularly, in weight-based clustering protocols.
Thus, in large scale networks, the convergence towards a legitimate configuration can require
a long time. In order to overcome this drawback, we are interested to the robust stabilization.
The robust stabilization guarantees that from an illegitimate configuration and without oc-
currence of faults, the system reaches quickly a safe configuration. From a safe configuration,
all reached configurations are safe. Thus, the safety property stays always verified.
In [17] a robust self-stabilizing protocol building a minimum connected dominating sets is
proposed. In a safe configuration, the built set is a dominating set. In [16], a robust self-
stabilizing version of DMAC (presented in [2]) under synchronous scheduler is presented. A
robust self-stabilizing weight-based clustering protocol for ad hoc networks is proposed in [14].
It is a robust self-stabilizing version of GDMAC. In [16] and [14], a configuration is safe iff
the network is partioned into clusters.

In some solutions described previously, once a clusterhead is selected, all its neighbors must be
ordinary nodes. So, two clusterheads are never neighbors. A problem can arise where nodes
are non-uniform distributed in the whole area. If a certain zone becomes densely populated
with nodes, the clusterhead might not be able to handle all the traffic generated by the nodes
of its cluster. In addition, the power consumption of a clusterhead depends proportionally on
the number of nodes of its cluster. Thus, controlling the number of nodes in a cluster will
extend its clusterhead’s lifetime, and will improve the stability of the cluster. For this reason,
our protocol keeps the number of nodes in a cluster inferior to a pre-defined threshold, called
SizeBound. Thus, the clusters have bounded size, and the clusterheads are not overloaded.
In [5], the Weighted Clustering Algorithm (WCA) is presented. It builds bounded clusters.
In [23], the obtained clusters have a size bounded by a lower and an upper bound.

In this paper, we propose the first robust self-stabilizing protocol that constructs bounded size
weight-based clusters. The obtained clusters satisfy the well-balanced clustering properties,
defined in [13]:
(i). Each node belongs to a cluster.

(ii). The size of each cluster is less than SizeBound.

(iii). Two clusterheads are neighbors only if the cluster of the one having the highest weight
contains SizeBound members.

The protocol presented in [13] is self-stabilizing, but it is not a robust self-stabilizing protocol.
During the convergence period, a node may not belong to a cluster even if it belongs initially
to a well-formed cluster (i.e., satisfies the well-balanced clustering properties). In this paper,
the presented protocol is a robust self-stabilizing one. From an illegitimate configuration, our
protocol reaches a safe configuration in a constant number of rounds, and from this configura-
tion, the protocol provides a minimum service: each node belongs to a cluster having a leader,

4

and the size of each cluster is less than SizeBound. Notice that, in a safe configuration, the
well-balanced clustering properties may not be verified.
If no fault occurs for enough period of time, our protocol converges to a legitimate configura-
tion in O(|V |) rounds. In a legitimate configuration, the system provides the optimal service,
i.e., the clusters satisfy the well-balanced clustering properties. During the convergence to a
legitimate configuration, the safety property is preserved, i.e., the network stays partitioned
into clusters having less than SizeBound members.

2 Model and Concepts

In this section, we give some definitions that are used throughout the paper.

2.1 Model

A distributed system S is modelled by an undirected graph G = (V,E) in which, V is the set
of (mobile) nodes and E is the set of edges. There is an edge {u, v} ∈ E, if and only if u and
v can communicate between them (links are bidirectional). In this case, we say that u and v
are neighbors, and we note by Nv the set of neighbors of the node v.
Due to mobility of nodes, the neighborhood Nv of a node v can change in the time. In this
paper, we assume that at any moment Nv contains the current neighbors of v, i.e., it is always
consistent with the current graph G.

Every node v in the network is assigned a unique identifier id. For simplicity, we identify each
node with its identity id, and we denote both with v.
We consider a weighted network, i.e., a weight wv (a real number) is assigned to each node
v. For the sake of simplicity, in this paper we assume that the nodes weight are different (the
tie in node’s weight could be broken by the id).

We use the state model of computation introduced in [6], in which each node v maintains
some local variables. The node v can read its own variables and those of its neighbors, but
can modify only its own one.
The state of a node is defined by the values of its local variables. A configuration of the
system S is an instance of the node states. The program of each node is a set of rules. Each
rule has the following form: Rulei : Guardi −→ Actioni. The guard of a rule of a node v is a
Boolean expression involving the local variables of v, and those of its neighbors. The action
of a rule of v updates one or more variables of v. A rule can be executed only if it is enabled,
i.e., its guard evaluates to true. A node is said to be enabled if at least one of its rules is
enabled. In a terminal configuration, no node is enabled.
A computation step ci → ci+1 consists of one or more enabled nodes executing a rule. A
computation is a sequence of configurations e = c0, c1, ..., ci, ..., where ci+1 is reached from ci

by one computation step: ∀i > 0, ci → ci+1. We say that a computation e is maximal if it is
infinite, or if it reaches a terminal configuration.
A computation is fair, if for any node v that is continuously enabled along this computation,
eventually performs an action.
We note by C the set of all possible configurations, and by E the set of all possible computations
of the system S. The set of computations starting from a particular configuration c ∈ C is
denoted Ec. EA is the set of computations where the initial configuration belongs to the
configurations set A ⊂ C.

We say that a node v is neutralized in the computation step ci → ci+1, if v is enabled in ci

and not enabled in ci+1, but does not execute any action during this computation step. The
neutralization of a node represents the following situation: at least one neighbor of v changes
its state between ci and ci+1, and after this change, the guard of all actions of v are false.

5

We use the notion of round [7] to measure the time complexity. We say that the prefix
e
′

= ci, ci+1, ..., cj of a computation e = c1, ..., cj , ... is a round, if the following conditions
hold:
1. Every node v that is enabled in ci, either executes or becomes neutralized during some
step of e

′

.

2. The prefix ci, ..., cj−1 does not satisfy the condition 1.

The round complexity of a computation is the number of disjoint rounds in this computation.

2.2 Self-Stabilization

A distributed system is called self-stabilizing if and only if without occurrence of faults,
it converges to a legitimate configuration regardless of its initial one, and it remains in a
legitimate configuration till no fault occurs.

In Ad hoc network, the events like node arrival, node departure, communication link failure,
network merging and so one, are possible at any time. These events cause changes in the
network topology, and possibly in the legitimacy of the system configuration. One example
in which topology changes falsify the legitimacy of the system configuration is the clustering
task. A clustering protocol ensures that each node affiliates with a clusterhead which is in
a closed proximity. So, the legitimacy of a configuration depends on the current topology
configuration, and topology changes could lead the system to an illegitimate configuration.
Therefore, self-stabilizing clustering protocols designed for such networks should tolerate such
events.

We use the attractor notion [15] to define self-stabilization. Informally, a set of configurations
B satisfying a property P is said attractor, if and only if it is guaranteed that the system
converges to a configuration c of B in a finite time from any arbitrary configuration. Fur-
thermore, once a configuration c of B is reached and without occurrence of faults, all reached
configurations from c belong to B (the property P stays verified).

Definition 1 (Attractor). Let B1 and B2 be subsets of configurations of C. B2 is an
attractor from B1, if and only if the following conditions hold:
• Convergence:

∀e ∈ EB1
(e = c1, c2, ...),∃i > 1 : ci ∈ B2.

∀c ∈ B1, If (Ec = ∅) then c ∈ B2.

• Closure: ∀e ∈ EB2
(e = c1, ...),∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization). A distributed system S is self-stabilizing if and only
if there exists a non-empty set L ⊆ C, called set of legitimate configurations, such that the
following conditions hold:

• L is an attractor from C.

• All configurations of L satisfy the specification problem.

2.3 Robustness

A self-stabilizing protocol guarantees to reach a legitimate configuration. However, self-
stabilizing protocols do not guarantee any property during the convergence period. Moreover,
the convergence time of a self-stabilizing weight-based clustering protocol is intrinsically pro-
portional to the network diameter. So, in large scale networks, the convergence may require
a long time.

Our protocol is self-stabilizing. And, it also ensures a safety property during the conver-
gence period. The safety property is defined in such a way that the system still performs

6

correctly its task once the safety property is reached. From an illegitimate configuration, our
protocol reaches a safe configuration after four rounds. In a safe configuration, our protocol
provides a minimum service: each node belongs to a cluster, and the size of each cluster is less
than SizeBound. Along the convergence to a legitimate configuration, the safety property
is preserved. Once a legitimate configuration is reached, the optimal service is provided: the
clusters satisfy the well-balanced clustering properties. Moreover, the safety predicate stays
verified after some changes in the network topologies.

Definition 3 (Robustness under Input Change [14]). Let SP be the safety predicate,
that stipulate the safe configurations. Let IC be a set of input changes that can occur in the
system. A self-stabilizing system is robust under any input changes of IC if and only if the
set of configurations satisfying SP is:

• closed under any computation step.

• closed under any input changes of IC.

3 Robust Self-Stabilizing protocol for Bounded Size Weight-

based Clusters

3.1 The protocol goal

Our clustering protocol partitions the nodes of the network into clusters (i.e. each node
belongs to one and only one cluster). Each cluster has a single leader (named clusterhead)
that acts as the local coordinator of its cluster. To reduce the intra-clusters communication
cost, each clusterhead is at distance 1 of the ordinary nodes in its cluster. Thus, our protocol
builds 1-hop clusters; the set of clusterheads is a dominating set.

A node decides its own role knowing solely the state of its neighbors at one hop. Therefore,
the decision of the node’s role is taken quickly, and with a little communication overhead.

Our protocol is weight based: the clusterhead selection criteria is based on the weight of
nodes. Each node has a weight w representing its capacity to be clusterhead. The higher the
weight of a node, the more suitable this node is for the role of clusterhead.
A significant node’s weight can be obtained by a sum of different normalised parameters like:
node mobility, memory and processing capacity, bandwidth, battery and transmission power,
and so one. The computation of the weight value is out the scope of this paper. Therefore,
the weight of a node is an input value that can increase or decrease, reflecting the changes in
the node’s status.

The proposed clustering protocol provides bounded size clusters; at most SizeBound ordinary
nodes can be in a cluster. This limitation on the number of nodes that a clusterhead handle,
ensures the load balancing over the network: no clusterhead is overloaded at any time.
As clusters have a bounded size and the network topology is arbitrary, it is necessary to allow
clusterheads to be neighbors: the set of clusterheads may not be an independent set.

Our protocol provides clusters satisfying the following well-balanced clustering properties:
• Affiliation condition: each ordinary node affiliates with a neighboring clusterhead, such
that the weight of its clusterhead is greater than its weight.

• Size condition: each cluster contains at most SizeBound ordinary nodes.

• Clusterhead neighboring condition: if a clusterhead v has a neighboring clusterhead
u such that wu > wv, then the size of u’s cluster is SizeBound.

The first condition ensures that each node belongs to a cluster, and each node can communi-
cate directly with its clusterhead (they are neighbors). Moreover, it ensures that the weight of

7

an ordinary node is smaller than the weight of its clusterhead (i.e. the clusterhead is the node
having the highest weight of the cluster). The second condition ensures that a clusterhead
will be not overburden by the management workload of its cluster: each cluster has at most
SizeBound members (the cluster management workload is proportional to the cluster size).
The third condition limits the number of clusterheads. A node v stays clusterhead only if it
cannot join another cluster in its neighborhood. If it changes of cluster then its new cluster
would violate the size condition, or the affiliation condition.

3.2 The proposed protocol

The protocol’s constants, variables, and macros are presented in the Protocol 1. The predi-
cates and rules are illustrated in Protocol 2. We note by Nv the set of v’s neighbors, and we

note by Clusterv the v’s cluster, i.e., the set of nodes having chosen v as their clusterhead:
Clusterv = {z ∈ Nv : Headz = v}.

Protocol 1 : Variables and macros on node v.
Constants

wv ∈ R; The weight of node v.
SizeBound ∈ N; The upper bound on a cluster size.

Local variables

Chv ∈ {T, F,NF}; Indicates the role of v.
Headv ∈ {IDs}; The clusterhead’s identity of v.
CDv ⊆ {IDs}; The list of nodes that can choose v as their clusterhead.
Sv ∈ N; Is the size of v’s cluster.

Macros

The size of v’s cluster:
Sizev := |{z ∈ Nv : Headz = v}|;

The v’s neighbors could be clusterheads of v:
N+

v := {z ∈ Nv : (v ∈ CDz) ∧ (Chz = T) ∧ (wz > wHeadv
) ∧ (wz > wv)};

Computation of CD2v:
Begin

CD0v := {z ∈ Nv : wHeadz
< wv ∧ wz < wv};

If |CD0v| 6 SizeBound − Sizev then CD1v := CD0v;
Else CD1v contains the SizeBound − Sizev smallest members of CD0v;
If CDv ⊆ CD1v ∪ {z ∈ Nv : Headz = v} then CD2v := CD1v;
Else CD2v := ∅;

End

In our protocol, a node v has three possible states. It can be a clusterhead (Chv = T), nearly
ordinary node (Chv = NF), or an ordinary node (Chv = F).
A node v that is clusterhead or nearly ordinary, is the leader of the cluster, and it is responsible
to managing it.
A clusterhead having to resign its role, takes the nearly ordinary state; and it stays in this state
till its cluster is not empty. On the other hand, an ordinary node v belonging to a cluster
whose clusterhead has the nearly ordinary state (ChHeadv

= NF), has to quit its cluster
(to become clusterhead or to change the cluster). These conditions guarantee that during
the construction/maintenance of clusters, no clusterhead abandons its leadership. Thus, the
hierarchical structure of the network is continuously provides even during its reorganization.

Notation 1 We note by CDv(c) the value of v’s CD variable in a configuration c, and we
note by Clusterv(c) the value of Clusterv in a configuration c.
Let Ps(v) be the following predicate, Ps(v) ≡ |CDv ∪ Clusterv| 6 SizeBound.

8

Protocol 2 : Robust Self-Stabilizing Clustering Protocol on node v.

Predicates

G0(v) ≡ (Headv /∈ Nv ∪ {v}) ∨ (wv > wHeadv
) ∨ (ChHeadv

6= T) ∨ (SHeadv
> SizeBound)

G1(v) = G11(v) ∨ G12(v)
G11(v) ≡ (Chv = F) ∧ (N+

v = ∅) ∧ G0(v)
G12(v) ≡ (Chv = NF) ∧ (N+

v = ∅)
G2(v) = G21(v) ∨ G22(v)

G21(v) ≡ (Chv = F) ∧ (N+
v 6= ∅)

G22(v) ≡ (Chv = NF) ∧ (Sizev = 0) ∧ (N+
v 6= ∅)

G3(v) ≡ (Chv = T) ∧ (N+
v 6= ∅)

G4(v) ≡ (Chv = T) ∧ [(Sv 6= Sizev) ∨ (Headv 6= v) ∨ (CDv 6= CD2v)]
G5(v) ≡ (Chv = NF) ∧ [(Sv 6= 0) ∨ (Headv 6= v) ∨ (CDv 6= ∅)]
G6(v) ≡ (Chv = F) ∧ [(Sv 6= 0) ∨ (CDv 6= ∅)]

Rules

R1(v) : G1(v) −→ Chv := T ; Headv := v; Sv := Sizev; CDv := CD2v;
R2(v) : G2(v) −→ Chv := F ; Headv := maxwz{z ∈ N+

v }; CDv := ∅; Sv := 0;
R3(v) : G3(v) −→ Chv := NF ; Headv := v; Sv := 0; CDv := ∅;

R4(v) : ¬G3(v) ∧G4(v) −→ Headv := v; Sv := Sizev; CDv := CD2v;
R5(v) : ¬G1(v) ∧ ¬G2(v) ∧ G5(v) −→ Headv := v; Sv := 0; CDv := ∅;
R6(v) : ¬G1(v) ∧ ¬G2(v) ∧ G6(v) −→ Sv := 0;CDv := ∅;

R2(4)

Clusterhead Ordinary node

SizeBound = 3

Initial configuration

Nearly ordinary node

Wid = id

1

2

3
4

5

CD6 = {2, 3, 4}

Head6 = 6

Head5 = 5

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 4

R2(3),
R2(2),

3
4

5

CD6 = {2, 3, 4}
Head6 = 6

Head5 = 5

Head3 = 6

Head1 = 6

6

Head4 = 6

2

1

Head2 = 6

Figure 1: Violation of the size condition from a configuration not satisfying Ps(v).

To prevent the violation of the size condition, a node u cannot freely join a cluster: u needs
the permission of its potential new clusterhead. More precisely, only the nodes belonging to
the set CDv may join v’s cluster. The goal of this mechanism is to preserve the size condition
after any computation step. To achieve that goal, each clusterhead v will satisfy the predicate
Ps(v) (the Ps predicate is stronger than the size condition).
A cluster whose the clusterhead v satisfies the predicate Ps(v), verifies the size condition in
the current configuration and after any computation step. On the contrary, a cluster whose
the clusterhead v not satisfying the predicate Ps(v), may not verify the size condition after
a specific computation step (in which all nodes of CDv join v’s cluster). This feature is
illustrated in Figure 1. In the initial configuration, Cluster6 = {1}, and CD6 = {2, 3, 4}.
Thus, the size condition is satisfied, but the Ps(6) predicate is not satisfied:

9

R2(4),

SizeBound = 3

Initial configuration :c1.

Wid = id

1

2

3
4

5

CD6 = {}

Head6 = 6

Head5 = 6

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 6

1

2

3
4

5

CD6 = {4, 5}

Head6 = 6

Head5 = 5

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 4

R2(5),
R4(6)

Configurationc2.

Clusterhead Ordinary nodeNearly ordinary node

Figure 2: Illustration of CD value computation.

|CD6 ∪Cluster6| = |{1, 2, 3, 4}| > 3. After the computation step where all nodes of CD6 join
6’s cluster, the size condition is no more satisfied. Therefore, the variable CDv is computed
in such a way that the predicate Ps(v) stays verified after any computation step.
For each clusterhead v, the macro CD2v is used to compute CDv value. The value of CD2v

is computed in 3 steps. CD0v is the set of v’s neighbors that want to enter in the v’s cluster,
i.e., their weight and their clusterhead weight are smaller than v’s weight. The size of CD0v

can be greater than SizeBound − Sizev : CD1v is a subset of CD0v, containing at most
SizeBound−Sizev elements. The set CD2v is a subset of CD1v ensuring that the predicate
Ps(v) stays verified by v after any computation step from the current configuration (assuming
that Ps(v) is verified in the current configuration).

The Figure 2 illustrates the computation of CDv value. In the initial configuration, there
are 5 clusters satisfying the size condition, and CD6 = {4, 5}. For simplicity, let the weight
of a node is equal to its identity. Thus, the clusterhead 6 has the highest weight in its
neighborhood. The nodes 2, 3, 4 and 5 want to belong to Cluster6 (the node 1 is already in
Cluster6); so, CD06 = N6 − Cluster6 = {2, 3, 4, 5}.
The set CD16 contains only two nodes, because SizeBound = 3 and |Cluster6| = 1; so,
CD16 = {2, 3}.
In the reached configuration, c2, CD6 = ∅ because CD6(c1) * {CD16(c1) ∪ Cluster6(c1)}.
Notice that in c2, Ps(6) is still verified: |CD6(c2) ∪ Cluster6(c2)| 6 SizeBound.

The set N+
v is the neighbors of v that are better clusterhead than the current v’s clusterhead.

If the set N+
v is not empty, then v must change of clusterhead. For an ordinary node, the rule

R2 is enabled. A clusterhead v having N+
v 6= ∅ does not satisfy the neighboring clusterhead

condition (it must join another cluster). In order to maintain the hierarchical structure over
the network, the clusterhead v does not take directly the ordinary state; so, v becomes a
nearly ordinary node (rule R3). In this state, v performs correctly its task of clusterhead, but
Chv = NF and CDv = ∅, i.e. no node can join the v’s cluster.

An ordinary node v has to change of cluster if G0(v) is verified, i.e., its cluster does not verify
the size condition (SHeadv

> SizeBound), or its clusterhead has a nearly ordinary state. The
rule executed by v depends on N+

v value. If N+
v = ∅, then no node can be the clusterhead of

v. So, v must become a clusterhead (rule R1). If N+
v 6= ∅, then v has a neighbor that could

be its new clusterhead. So, v changes of cluster (rule R2).
The members of a cluster whose the leader has the nearly ordinary state, have to quit their
cluster (they verify the predicate G0). Thus, a nearly ordinary node v, will eventually be the

10

manager of an empty cluster (Sizev = 0). Then, either it joins an existing cluster if N+
v 6= ∅

(rule R2), or it becomes a clusterhead (rule R1).

Due to an incorrect initial configuration, a node v may have to correct the value of its lo-
cal variables: Headv, CDv, and Sv. In this case, it verifies one of the following predicates:
G4(v), G5(v), or G6(v).

3.3 Safety predicate

A configuration satisfying the safety predicate is safe. The safety predicate SP is defined as
follow:
SP ≡ ∀v, SPv = True
SPv ≡ (Headv ∈ Nv ∪ {v}) ∧ (ChHeadv

6= F) ∧ (|Clusterv ∪ CDv| 6 SizeBound);

The safety predicate ensures that the following properties are satisfied:
• each node belongs to one cluster;

• each cluster has an effectual leader (no condition on a leader’s weight, but its status is not
ordinary node);

• the size of each cluster is less than SizeBound.

The safety predicate SP is preserved after the following input changes:
• the change of node’s weight,

• the crash of an ordinary node,

• the failure of a link between (1) a clusterhead and a nearly ordinary node, (2) two cluster-
head nodes, (3) two nearly ordinary nodes, or (4) two ordinary nodes,

• the joining of a subnetwork that verifies the predicate SP .

The convergence process from a safe configuration to a legitimate configuration is illustrated
in Figure 3. The weight of a node is its identity. In the Configuration a, each node belongs
to a cluster, and the size of each cluster is less than SizeBound: it is a safe configuration.
The ordinary node 9 has the higher weight in the network, thus it has to be clusterhead.
In initial configuration (Configuration a), node 9 is enabled because it is in ordinary state.
During the first computation step, node 9 performs the rule R1 to become clusterhead and it
sets CD9 to {6, 7}. In Configuration b, the nodes 6 and 7 must change of cluster, because
N+

6
= N+

7
= {9}. So, node 6 and 7 resign to nearly ordinary state (Configuration c). As

no node belongs to the cluster of 6 in configuration c, node 6 can perform the rule R2 in
order to integrate the cluster of 9. In the same configuration, the clusterhead of node 5 has
the nearly ordinary state, thus node 5 is enabled. As node 5 has not a suitable clusterhead
in its neigborhood (N+

5
= ∅), it can perform the rule R1. After a move of nodes 5 and 6,

the configuration d is reached. In the configuration d, the cluster of 7 is empty, thus 7 can
join the cluster of 9. In Configuration e, the construction of clusters is terminated. The last
computation step allows to reach a terminal configuration where CDv = ∅ for every node v.

The convergence proof is described in two steps. In the section 4, we prove that from any
arbitrary configuration, a safe configuration is reached in four rounds; and the safety predicate
holds continuously during the stabilization to a legitimate configuration (that is also safe).
A legitimate configuration is terminal and verifies the well-balanced clustering properties. In
the section 5, we prove that from a safe configuration, the system reaches a legitimate con-
figuration in a bounded number of rounds.
In section 6, we prove that any terminal configuration is legitimate.

11

5

6

579

6

579

6

79

9 5

6

79 5

6

7

CD9 = {6, 7}

R1(9)
R3(6)

R2(6)

R3(7)

R1(5)

R2(7)R4(9)

CD9 = {6, 7}CD9 = ∅

Configuration a Configuration b Configuration c

Configuration dConfiguration eConfiguration f

Clusterhead Ordinary nodeNearly ordinary node

6

579

SizeBound = 3

CD5 = ∅ CD5 = ∅CD5 = ∅

Wid = id

Figure 3: Illustration of convergence to a legitimate configuration.

4 Convergence to a safe configuration

In this section, we prove that Ai is an attractor from Ai−1 for 0 6 i 6 3 (Let A−1 is C).

Notation 2

Pt(v) ≡ CDv = ∅;

A0 = {c ∈ C | ∀v : Ps(v) ∨ Pt(v) is satisfied }.
A1 = {c ∈ C | ∀v : Ps(v) is satisfied }.
A2 = A1 ∩ {c ∈ C| ∀v : |Clusterv| 6 SizeBound}.
A3 = A2 ∩ {c ∈ C| ∀v : [(Chv 6= F) ∧ (Sv 6 SizeBound) ∧ (Headv = v)] ∨

[(Chv = F) ∧ (Headv ∈ Nv) ∧ (ChHeadv
6= F)]}.

Observation 1 Let v be a node of V . Let cs be a computation step: c1

cs
→ c2.

According to the macro N+ and the rule R2, we have:

Clusterv(c2) ⊆ {Clusterv(c1) ∪ CDv(c1)} (1)

For any rule performed by v during cs, v updates its variable CDv (see the rules action).
According to the macro CD2v, (see CD2v computation method):

CDv(c2) = ∅,or CDv(c1) ⊆ {CDv(c2) ∪ Clusterv(c1)} (2)

CD1v(c1) ∩ Clusterv(c1) = ∅ (3)

Lemma 1 Let cs be a computation step: c1

cs
→ c2, in which a node v performs an action.

If CDv(c2) 6= ∅ then |CDv(c2) ∪ Clusterv(c2)| 6 SizeBound.

Proof: The node v updates its CDv variable during cs (see Observation 1). Assume that
CDv(c2) 6= ∅. By definition of CD1v(c1), it contains at most SizeBound − |Clusterv(c1)|
elements. Thus, CD1v(c1) = ∅ ∨ |CD1v(c1) ∪ Clusterv(c1)| 6 SizeBound.
From CD2v’s computation method, we have (CDv(c2) = CD1v(c1))∧ (CD1v(c1) 6= ∅). Thus,
|CDv(c2) ∪ Clusterv(c1)| 6 SizeBound.

12

According to Equation (1), |CDv(c2) ∪ Clusterv(c2)| 6 |CDv(c2) ∪ CDv(c1) ∪ Clusterv(c1)|.
From Equation (2), we obtain: |CDv(c2)∪CDv(c1)∪Clusterv(c1)| 6 |CDv(c2)∪Clusterv(c1)|.
We conclude that |CDv(c2) ∪ Clusterv(c2)| 6 |CDv(c2) ∪ Clusterv(c1)| 6 SizeBound. �

Lemma 2 A1 is closed under any computation step.

Proof: Let c1 be a configuration in which Ps(v) is satisfied. Assume that a computation step
cs exists: c1

cs
→ c2, such that Ps(v) is not satisfied in c2. We will prove that cs does not exist. In

c1, |CDv(c1)∪Clusterv(c1)| 6 SizeBound, and in c2, |CDv(c2)∪Clusterv(c2)| > SizeBound.
Thus, there exists a node z such that, z /∈ {CDv(c1) ∪ Clusterv(c1)}, but
z ∈ {CDv(c2) ∪ Clusterv(c2)}.
According to Equation (1), v has changed the variable CDv during cs to include the node z:
CDv(c2) 6= ∅. According to Lemma 1, we have: |CDv(c2) ∪ Clusterv(c2)| 6 SizeBound.
There is a contradiction; so, cs does not exist. �

Lemma 3 A0 is closed under any computation step.

Proof: Assume that a computation step cs exists: c1

cs
→ c2, such that Ps(v)∨Pt(v) is satisfied

in c1. We will prove that Ps(v) ∨ Pt(v) stays satisfied in c2.
If Ps(v) is satisfied in c1, then Ps(v) ∨ Pt(v) stays satisfied in c2 (A1 is closed, Lemma 2).
If Ps(v) is not satisfied in c1, then according to our assumption, Pt(v) is satisfied in c1:
CDv(c1) = ∅. In the configuration c2, there are two possibilities:
• Case 1: CDv(c2) = ∅, implies that Pt(v) is verified in c2.

• Case 2: CDv(c2) 6= ∅, according to Lemma 1, Ps(v) is satisfied in c2.

In both cases, Ps(v) ∨ Pt(v) is satisfied in c2. �

Lemma 4 If Ps(v) ∨ Pt(v) is not satisfied in a configuration c, then the node v is enabled in
this configuration.

Proof: Let c be a configuration in which Ps(v) ∨ Pt(v) is not satisfied.
In the configuration c, we have: (Ps(v) = F) ∧ (Pt(v) = F).
According to the v’s state in c, there are two cases.
• Case 1: the node v is an ordinary node or a nearly ordinary node. v is enabled in c,
because G6(v) or G5(v) is satisfied in c (CDv(c) 6= ∅).

• Case 2: the node v is a clusterhead. If CDv(c) 6= CD2v(c), then v is enabled in c, because
G4(v) is satisfied. We will prove that CDv(c) 6= CD2v(c).
According to CD2v computation method, we have: CD2v(c) = ∅ or CD2v(c) = CD1v(c).
In the first case, CDv(c) 6= CD2v(c), because CDv(c) 6= ∅.
In the second case, we will prove that CDv(c) 6= CD1v(c).
CD1v contains at most SizeBound − |Clusterv| elements of CD0v. Two cases are possi-
ble:
.|Clusterv(c)| > SizeBound: we have, CD1v(c) = ∅. Thus, CDv(c) 6= CD1v(c).

.|Clusterv(c)| 6 SizeBound: we have, |CD1v(c)| 6 SizeBound − |Clusterv(c)|.
As |CDv(c)| > SizeBound − |Clusterv(c)| (by assumption), then CDv(c) 6= CD1v(c). �

Lemma 5 A0 is an attractor from C.

Proof: Assume that a computation e not reaching a configuration c of A0 exists. Thus, there
exists a node v that never satisfies Ps(v) ∨ Pt(v) during the computation e. The node v is
always enabled along the computation e (Lemma 4). By fairness, v will perform an action.
Let cs be a computation step: c1

cs
→ c2, in which v performs a rule. After the v’s action, two

cases are possible:

13

• Case 1: CDv(c2) = ∅, thus Pt(v) is satisfied in c2.

• Case 2: CDv(c2) 6= ∅. According to Lemma 1, Ps(v) is satisfied in c2.

Any computation of E reach a configuration of A0 (convergence). As A0 is closed under any
computation step (Lemma 3), then A0 is an attractor from C. �

The following corollary is a consequence of Lemma 5.

Corollary 1 A configuration of the set A0 is reached from any initial configuration in at
most one round.

Lemma 6 A1 is an attractor from C.

Proof: A0 is an attractor from C (Lemma 5) and A1 is closed (Lemma 2). To prove that A1

is an attractor from C, we need to prove that A1 is reached from any configuration of A0. Let
c1 be a configuration of A0 but not of A1.
In c1, there exists a node v that satisfies Pt(v) ∧ ¬Ps(v):

(CDv(c1) = ∅) ∧ (|Clusterv(c1)| > SizeBound).
Till Ps(v) is not verified, Pt(v) is verified (A0 is closed, see Lemma 3). Thus, in the configu-
ration c1, no node can join the cluster of v (CDv(c1) = ∅).
Let u be a node of Clusterv (Headu = v), then v /∈ N+

u is forever satisfied (by definition of
N+

v). In the configuration c1, the node u is enabled whatever its state:
• u is clusterhead: G4(u) is satisfied (Headu 6= u); and R3(u) or R4(u) is enabled.

• u is nearly ordinary node: G5(u) is satisfied (Headu 6= u); R1(u), R2(u) or R5(u) is
enabled.

• u is ordinary node: If SHeadu
6 SizeBound, then Sv 6= Sizev , and v is enabled (G4(v)

is verified). After v’s action, we have SHeadu
= Sizev > SizeBound (G0(u) is satisfied).

Therefore, G11(u) or G21(u) is satisfied, and R1(u) or R2(u) is enabled.

The node u stays enabled up to the time where it performs an action. By fairness, u eventually
performs a rule. After that, we get Headu ∈ N+

u ∪ {u} (see rules action); thus Headu 6= v.
This means that u leaves Clusterv. Eventually we reach a configuration in which
|Clusterv| 6 SizeBound; so, a configuration of A1 is reached.
A1 is closed under any computation step (Lemma 2). Thus, A1 is an attractor from C. �

The following corollary is a consequence of Lemma 6.

Corollary 2 A configuration of the set A1 is reached from A0 in at most two rounds.

Proof: In the first round, all clusterheads v having Sv ≤ SizeBound and
Sizev > SizeBound update their variable Sv to get Sv = Sizev > SizeBound. Thereafter,
all nodes of Clusterv are enabled because they verify G0. Thus, at the end of the second
round, these nodes have done an action (to quit the v’s cluster) or they are neutralized. The
only action that neutralizes these nodes is the updating of the variable Su to a value inferior
to SizeBound; this action occurs when Ps(u) is satisfied. �

Lemma 7 A2 = A1 ∩ {c ∈ C| ∀v : |Clusterv| 6 SizeBound} is an attractor from C.

Proof: In A1, each node v satisfies: |Clusterv| 6 |CDv ∪ Clusterv| 6 SizeBound.
So, A2 = A1. Therefore, A2 is an attractor from C (Lemma 6). �

Lemma 8 Let be the predicate Ph ≡ ∀v : ChHeadv
6= F .

A
′

2 = {c ∈ C|Ph is satisfied } is closed under any computation step.

14

Proof: Let c1 be a configuration in which Ph is satisfied. Assume that a computation step
cs exists: c1

cs
→ c2, such that Ph is not satisfied in c2. We prove that cs does not exist.

Let v be a node. Let u be the clusterhead of v in the configuration c1. According to our
assumption, Chu 6= F in the configuration c1.
During cs, there are two possibilities: either u has changed its status to become an ordinary
node, or v has chosen a new clusterhead z, such that Chz = F in c2.
If the node u or v performs the rule R1, R3, R4 or R5, then ChHeadv

6= F stays verified.

During cs, the nodes u and v have not performed the rule R6; because this rule action does
not change u’s status, or v’s clusterhead. Thus, during cs, one of the nodes u and v has
performed R2. There are two cases:
• Case 1: The node v has performed R2.
Let z be the clusterhead chosen by v during cs. In c1, we have Chz = T (z ∈ N+

v), and in
c2, we have Chz = F . The rule R2 is the only rule that changes the value of the variable
Ch to F . During cs, the node z cannot perform R2 (G2(z) is not verified in c1). There is a
contradiction.

• Case 2: The node u has performed R2.
In c1, we have Chu 6= F ; and in c2, we have Chu = F . The node u cannot perform the rule
R2 during cs, because G2(u) is not verified in c1 (Sizeu 6= 0). There is a contradiction.

After any computation step, Ph stays verified. �

Lemma 9 A3 = A2 ∩ {c ∈ C|∀v : [(Chv 6= F) ∧ (Headv = v) ∧ (Sv 6 SizeBound)] ∨
[(Chv = F) ∧ (Headv ∈ Nv) ∧ (Chheadv

6= F)]} is an attractor from A2.

Proof: Let v be a node. In a configuration of A2, Sizev 6 SizeBound (Lemma 7).
So, if Sv > SizeBound then Sv 6= Sizev . In a configuration of A2 but not of A3, v has one of
these states:
• Chv = T and, Headv 6= v or Sv > SizeBound: G4(v) is satisfied. By fairness, v will
perform R3 or R4. After v’s action, we have: (Chv 6= F)∧ (Headv = v)∧ (Sv 6 SizeBound).

• Chv = NF and, Headv 6= v or Sv > SizeBound: G5(v) is satisfied. By fairness, v will
perform R1, R2 or R5. After v’s action, we have:

. After R1 or R5: (Chv 6= F) ∧ (Headv = v) ∧ (Sv 6 SizeBound) hold.

. After R2: (Chv = F) ∧ (Headv ∈ Nv) ∧ (ChHeadv
= T) hold.

• Chv = F and, Headv /∈ Nv or ChHeadv
= F : we have Chv = F , then Headv 6= v or

ChHeadv
= F (Headv = v). So, G0(v) is satisfied; because Headv /∈ Nv∪{v} or ChHeadv

= F .
Therefore, G11(v) or G21(v) is satisfied. As all computations are fair, v will perform R1 or
R2. After the v’s action, v verifies:
(Chv = T ∧ Headv = v ∧ Sv 6 SizeBound) ∨ (Chv = F ∧ Headv ∈ Nv ∧ ChHeadv

= T).

Thus, a configuration of A3 is reached from a configuration of A2.
The values of Headv are never falsified (see the rule actions). In A2, the Sv value is inferior
to SizeBound after any updating (because |Clusterv| 6 SizeBound). Thus, in A2, once
Sv 6 SizeBound is verified, it stays verified forever. ChHeadv

6= F is forever verified, because
it is closed (Lemma 8). So, A3 is closed under any computation step. �

The following corollary is a consequence of proofs of Lemma 7 and Lemma 9.

Corollary 3 A configuration of the set A3 is reached from a configuration of A1 in at most
one round. A3 is an attractor from C.

Observation 2 In a configuration of A3, for each node v we have:
Headv 6= v if and only if Chv = F .

15

4.1 Convergence time to a safe configuration

The Convergence time to a safe configuration is the maximum rounds needed to reach a safe
configuration from any arbitrary initial configuration.
As the configurations of A3 are safe. Thus, according to Corollaries 1, 2 and 3, the Convergence
time to a safe configuration is at most four rounds.

5 Convergence to a legitimate configuration

Once a safe configuration is reached, the system progresses to reach a legitimate configuration.
The convergence to a legitimate configuration is done in steps. At the end of the ieme step,
the configurations set L

′′

i is reached: All nodes of Seti have chosen their clusterhead. We
define the sets L

′′

i and Seti as follows:

Notation 3 Set0 = ∅; L
′′

0 = A3;
Vi = V − Seti; Vi is the set of nodes that do not belong to Seti.
Let vhi be the node having the highest weight in Vi;
Li+1 = L

′′

i ∩ {c ∈ C| (Chvhi
= T) };

SizeBoundi = Min(SizeBound, |Nvhi
∩ Vi|);

L
′

i+1
= Li+1 ∩ {c ∈ C| |Clustervhi

| = SizeBoundi };
Seti+1 = Seti ∪ {vhi} ∪ Clustervhi

;
L

′′

i+1 = L
′

i+1 ∩ {c ∈ C| ∀ v ∈ Seti+1 : CDv = ∅ };

In Figure 3, all configurations belong to L
′′

0 , The set L1 is reached after the first computa-
tion step. As L1 is closed, the configurations from b to f belongs to L1. The set L

′

1 is reached,
after the fourth computation step: now, the cluster of 9 is stabilized. The configuration f is
terminal and belongs to L

′′

1 . The configuration f is also legitimate because the well-balanced
clustering properties are verified by the both clusters.

Observation 3 In each step, the set Seti increases up to contain all nodes.

If (Seti 6= V) then Seti ⊂ Seti+1 ∧ Seti 6= Seti+1 (4)

If (v ∈ Seti) then Headv ∈ Seti (5)

If (v ∈ Vi) then Headv /∈ Seti (6)

For any value of i, each configuration of Li, L
′

i, or L
′′

i belongs to A3, because Li, L
′

i, and L
′′

i

are subsets of A3.

We will prove that L
′′

j , where Setj = V , is an attractor from C.

Lemma 10 For any value of i, Li+1 is an attractor from C assuming that L
′′

i is an attractor
from C.

Proof: Assuming that L
′′

i is an attractor from C, and by definition of vhi we have:
∀u ∈ Nvhi

, wvhi
> wu (u ∈ Vi) ∨ CDu = ∅ (u ∈ Seti). So, N+

vhi
is empty forever.

In L
′′

i , but not in Li+1 there are two possibilities :
• vhi is a nearly ordinary node: G12(vhi) is forever satisfied. By fairness, vhi eventually
performs R1. After that we get: Chvhi

= T .

• vhi is an ordinary node: from Observations 2 and 3, we have Headvhi
6= vhi. According

to Equation 6 and to the definition of vhi, we have: wvhi
> wHeadvhi

. So, G11(vhi) is forever
satisfied. By fairness, vhi eventually performs R1. After that we get: Chvhi

= T .

16

In both cases Li+1 is reached from L
′′

i . Furthermore, the value of Chvhi
is never modified,

because the rule R3(vhi) is never enabled (N+
vhi

is empty forever). Thus Li+1 is closed under
any computation step. �

Corollary 4 The configurations set Li+1 is reached from L
′′

i in at most one round.

Lemma 11 Let c1 be a configuration of Li+1. Assuming that Li+1 is an attractor from C,
for any computation step c1

cs
→ c2, we have: Clustervhi

(c1) ⊆ Clustervhi
(c2).

Proof: Let c1 be a configuration of Li+1. Let u be a node of Clustervhi
. In c1, Chu = F

(Observations 2); and ∀z ∈ Nu, wHeadu
> wz (z ∈ Vi) ∨ CDz = ∅ (z ∈ Seti). Thus, z /∈ N+

u ,
i.e., N+

u is empty forever.
G2(u) is never verified, so the node u cannot change its clusterhead (the rule R2 is disable).
G0(u) is never verified, because in Li+1 we have : SHeadu

6 SizeBound (Lemma 9), vhi ∈ Nu

(Lemma 9), wvhi
> wu (by definition of vhi), and Chvhi

= T (Lemma 10). Thus, G1(u) is
never verified and the node u cannot become a clusterhead (the rule R1 is disable).

According to that, once Li+1 is reached, no node can leave Clustervhi
. �

Lemma 12 For any value of i, L
′

i+1
is an attractor from C assuming that Li+1 is an attractor

from C.

Proof: In a configuration c of Li+1, we have: Chvhi
= T . Let u be a node of {Nvhi

∩ Seti}.
Thus, there exists j (0 < j < i), such that: (u = vhj) ∨ (u ∈ Clustervhj

).
In Lj+1, the node u can never leave Clustervhj

(see Lemma 11). Every configuration of Li+1

belongs to Lj+1 (j < i). So, once a configuration of Li+1 is reached, u can never join the
Clustervhi

, i.e., Clustervhi
⊆ {Nvhi

∩ Vi}.
In Li+1, |Clustervhi

| 6 SizeBound (Observation 3), thus |Clustervhi
| 6 SizeBoundi is forever

verified.

Once |Clustervhi
| = SizeBoundi, the set Clustervhi

is never modified (see Lemma 11).
Assume that |Clustervhi

| < SizeBoundi is verified. Thus, CD1vhi
6= ∅, because CD1vhi

contains SizeBoundi − |Clustervhi
| elements of (Nvhi

∩ Vi) − Clustervhi
.

Till CDvhi
6= CD2vhi

the node vhi is enabled (G4(vhi) is verified). By fairness, vhi performs the
rule R4, and we get: CDvhi

= CD1vhi
or CDvhi

= ∅ (now, CDvhi
⊆ {CD1vhi

∪ Clustervhi
}).

In the last case, G4(vhi) still verified up to the time where vhi performs again the rule R4.
After that we have: CDvhi

= CD1vhi
6= ∅.

Let v be a node of CDvhi
. We have vhi ∈ N+

v : N+
v 6= ∅. v is enabled whatever its state:

• v is ordinary node: G21(v) is always verified.

• v is nearly ordinary node: All nodes z of Clusterv satisfy G0(z) (ChHeadz
6= T), thus

G1(z) or G2(z) is enabled. After z’s action, Headz 6= v holds. Thus, the size of Clusterv

decreases. Eventually we reach a configuration in which Sizev = 0, and G22(v) is now
satisfied.

• v is clusterhead: G3(v) is always verified. After performing R3(v), the node v becomes
nearly ordinary node. Eventually it will reach a configuration in which G22(v) is satisfied
(see the previous case).

By fairness v will perform the rule R2, and it chooses the node vhi as clusterhead, because
vhi is the node having the highest weight in N+

v : ∀z ∈ Nv, if wz > wvhi
then z ∈ Seti and

z /∈ N+
v (CDz = ∅). Eventually, when each node v of CDvhi

performs R2(v), a configuration
where |Clustervhi

| = SizeBoundi is reached. �

Corollary 5 The configurations set L
′

i+1 is reached from Li+1 in at most five rounds.

17

Proof: During the first and the second rounds, vhi updates its variable CDvhi
to get

CDvhi
= CD2vhi

. During the third round, every clusterhead v ∈ CDvhi
is enabled and will

perform the rule R3(v). After that v becomes nearly ordinary node. At the end of this round,
each node v of CDvhi

is either nearly ordinary node, or ordinary node.
During the fourth round, every node u member of Clusterv is enabled (v is a nearly ordinary
node), because G0(u) is verified (ChHeadu

6= T). At the end of this round, the members u
have quit their cluster, i.e., Sizev = 0.
During the last round, all nodes z of CDvhi

satisfy G2(z), and they perform the rule R2. After
that a configuration of L

′

i+1 is reached. �

Lemma 13 In L
′

i+1, for any node v of Seti+1, Chv 6= NF and Gk(v) = F, ∀ k = {1, 2, 3, 5}.

Proof: Let v be a node of Seti+1. There exists j (0 < j 6 i) such that:
(v ∈ Setj+1) ∧ (v /∈ Setj). So, (v = vhj) ∨ (v ∈ Clustervhj

).

In a configuration of L
′

j+1, if (v = vhj) then v is clusterhead (by definition of L
′

j+1 and Lemma
10); else (i.e. v ∈ Clustervhj

) v is ordinary node (see Observations 2, 3).

Thus, in L
′

j+1
the node v is either clusterhead or ordinary node.

• If v is a clusterhead (v = vhj); from the definition of L
′

j+1 and Lemma 10, v can never
execute the rule R3.

• If v is an ordinary node (v ∈ Clustervhj
); according to the definition of L

′

j+1 and Lemma
11, v can never execute the rules R1 and R2.

According to that, in L
′

j+1 a node of Seti+1 (j 6 i) can never perform the rules R1, R2, R3,

and R5. L
′

i+1 ⊆ L
′

j+1. �

Lemma 14 In L
′

i+1
, CD2vhi

= ∅.

Proof: In L
′

i+1, we have |Clustervhi
| = SizeBoundi (Lemma 12).

If |Clustervhi
| = SizeBound, then CD1vhi

= ∅.
If |Clustervhi

| = |Nvhi
∩ Vi| (< SizeBound), then a node u of Nvhi

cannot join Clustervhi
,

because wHeadu
> wvhi

. So, CD0vhi
= ∅.

Thus, in L
′

i+1, CD2vhi
= ∅. �

Lemma 15 For any value of i, L
′′

i+1
is an attractor from C assuming that L

′

i+1
is an attractor

from C.

Proof: Let v be a node of Seti+1 but not of Seti. According to Lemma 13, Chv 6= NF ; thus
two cases are possible :
• v is an ordinary node : If CDv 6= ∅, then v is enabled (G6(v) is verified). By fairness,
the node v eventually performs the rule R6. After that, CDv = ∅ holds forever.

• v is a clusterhead : By definition, v is vhi. In L
′

i+1, we have CD2vhi
= ∅ (Lemma

14). If CDvhi
6= ∅, then G4(vhi) is verified (CDvhi

6= CD2vhi
). By fairness R4(vhi) will be

performed. After that, CDvhi
= ∅ holds forever. �

Corollary 6 The configurations set L
′′

i+1
is reached from L

′

i+1
in at most one round.

Theorem 1 The system eventually reaches a terminal configuration of L
′′

j , where Setj = V ,
from any configuration.

Proof: According to Observation 3, there exists j such that Setj = V .
As L

′′

0 = A3 is an attractor from C (Lemma 9); for any value of i, the sets Li, L
′

i, L
′′

i , are
attractors from C (Observation 3, and Lemmas 10, 12, 15). Therefore, we conclude that L

′′

j

is an attractor from C.

In a configuration of L
′′

j , we have:

18

. A node v can perform only the rules R4 and R6 (Lemma 13).

. If v is a clusterhead then Headv = v (Observations 2, 3).

. CDv = ∅ for any node v (By definition of L
′′

j).

. If v is a clusterhead then CD2v = ∅ (see lemma 14).

Thus, in a configuration of L
′′

j , v can perform R4 or R6 only if Sv 6= Sizev (v is clusterhead)
or Sv 6= 0 (v is ordinary node).
In L

′′

j , the value of Sizev stays identical forever, because no node changes of cluster (Lemma
11). So, once Sv = Sizev, the rules R6(v) and R4(v) are disabled forever. A node v performs
the rule R4 or R6 only once. After this action, v is disable forever; a terminal configuration
is reached. �

Corollary 7 The terminal configuration is reached from L
′′

j in at most one round.

5.1 Stabilization time

The stabilization time is the maximum rounds needed to reach a legitimate configuration from
any arbitrary initial configuration.
The set Li+1 is reached from L

′′

i in at most one round (Corollary 4). Five more rounds are
needed to reach L

′

i+1 from Li+1 (Corollary 5). The set L
′′

i+1 is reached from L
′

i+1 in at most
one round (Corollary 6).

We note that when the vhi’s cluster is empty, i.e., no ordinary node belongs to vhi’s cluster,
the sets L

′

i+1
and L

′′

i+1
are reached once Li+1 is reached (no round is necessary), i.e., L

′′

i+1
is

reached from L
′′

i in at most one round. So, in the worst case :
(1) no cluster is empty: seven rounds are necessary to reach L

′′

i+1 from L
′′

i , for 0 < i 6 j.
(2) each cluster contains exactly one ordinary node.

We conclude that, in the worst case, the configurations set L
′′

i+1
is reached from L

′′

i after seven

rounds, and L
′′

j is reached from L
′′

0 after 7 ∗ j rounds, where j = |V |
2

.

The time to reach L
′′

0 (A3) is 4 rounds (see the Section 4.1), and a terminal configuration is
reached from L

′′

j in at most one round (see Corollary 7). Therefore, along any computation,

and from any initial configuration, the legitimate configuration is reached in at most 7∗|V |
2

+5
rounds.

6 Proof of correctness

Theorem 2 In a terminal configuration, the well-balanced clustering properties are satisfied.

Proof: Let j be an integer, such that Setj = V . L
′′

j is an attractor from C (Theorem 1).

According to Definition 1, any terminal configuration belongs to L
′′

j . Thus, in a terminal

configuration c, CDv = ∅ for any node v; and v is not a nearly ordinary node (L
′′

j ⊆ L
′

j and
Lemma 13).

• v is an ordinary node:

G11(v) = F implies that: (Headv ∈ Nv) ∧ (ChHeadv
= T) ∧ (wHeadv

> wv). So, the
affiliation property is satisfied in the configuration c.

• v is a clusterhead:

|Clusterv| 6 SizeBound is an attractor from C (Lemma 7). According to Definition 1, in
any terminal configuration c, the size property is satisfied.

Assume that there exists a node z ∈ Nv, such that:
(Chz = T) ∧ (wz > wv) ∧ (Sizez < SizeBound). The node v belongs to CD0z because

19

wHeadv
= wv < wz, and CD1z 6= ∅ because Sizez < SizeBound. Since, in the configuration

c, CDz = ∅; then according to the CD2 computation method, CD2z 6= ∅ in the configuration
c. Thus, G4(z) is satisfied (CDz 6= CD2z). There is a contradiction.
We conclude that, in c, for any clusterhead z ∈ Nv: (wv > wz) ∨ (Sizez = SizeBound).
Thus, the neighboring clusterhead property is verified in the configuration c. �

7 Proof of robustness

Lemma 16 The predicate SPv is closed under any computation step.

Proof: Once Headv ∈ Nv ∪ {v} is verified, then the value of Headv is never falsified (see the
rule actions). So, for any node v: Headv ∈ Nv ∪ {v} is closed.
According to Lemma 8, ChHeadv

6= F is closed.
Ps(v) ≡ (|Clusterv ∪ CDv| 6 SizeBound).
A1 = {c ∈ C|∀v : Ps(v) is satisfied} is closed (Lemma 2). We conclude that SPv is closed
under any computation step. �

Definition 4 Let IC be the following set of input changes that can occur in the network:
• the change of node’s weight,

• the crash of an ordinary node,

• the failure of a link between (1) a clusterhead and a nearly ordinary node, (2) two cluster-
heads, (3) two nearly ordinary nodes, or (4) two ordinary nodes,

• the joining of a subnetwork that verifies the predicate SP .

Lemma 17 SPv, is closed under the input changes of IC.

Proof: Let z be the clusterhead of the node v (z is a clusterhead or nearly ordinary node).
The safety predicate SPv ensure that the clusterhead z is a neighbor of the node v, z is not
an ordinary node, and the size of z’s cluster is less than SizeBound.
Once the safety predicate SPv is verified and without occurrence of faults, it stays verified
forever (see Lemma 16).
SPv will be not verified only if one of the following events occurs: z’s removal (or crash of
the clusterhead z), or failure of the link between z and v.
Therefore, the safety predicate SP is preserved under any input changes of IC. �

Corollary 8 The protocol is robust under any input changes of IC.

Proof: The proof follows directly from Lemma 16 and Lemma 17. �

8 Conclusion

A robust self-stabilizing clustering protocol building bounded size weight-based clusters has
been proposed.
Starting from an arbitrary configuration, in four rounds, the protocol reaches a safe configu-
ration. Once a safe configuration is reached, each node belongs to a cluster having a leader,
and each cluster contains at most SizeBound members, but clusters may not satisfy the well-
balanced clustering properties. During the construction of the final clusters, that satisfy the
well-balanced clustering properties, the safety property is preserved.

Our protocol is designed for the state model. Nevertheless, it can be easily transformed into
a protocol for the message-passing model.

20

Each node v broadcasts periodically to its neighbors a message containing its state. Based
on this message, v’s neighbors decide whether to update their states or not. After a change
in the value its state, a node broadcasts to its neighbors its new state.

As future work, we plan to study how the proposed work could be used to conceive a robust
and self-stabilizing hierarchical routing protocol.

References

[1] A. A. Abbasi and M. Younis. A survey on clustering algorithms for wireless sensor
networks. Computer Communications, 30:2826–2841, 2007.

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in multi-
hop wireless networks. In Proceedings of the IEEE 50th International Vehicular Technol-
ogy Conference (VTC’99), pages 889–893, 1999.

[3] D. Bein, A. K. Datta, C. R. Jagganagari, and V. Villain. A self-stabilizing link-cluster
algorithm in mobile ad hoc networks. In Proceedings of the 8th International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN’05), pages 436–441. IEEE
Computer Society, 2005.

[4] M. Chatterjee, S. K. Das, and D. Turgut. A weight-based distributed clustering algorithm
for mobile ad hoc networks. In Proceedings of the 7th International Conference on High
Performance Computing (HiPC’00), LNCS 1970, pages 511–524, 2000.

[5] M. Chatterjee, S. K. Das, and D. Turgut. Wca: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing, 5(2):193–204, 2002.

[6] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643–644, 1974.

[7] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election. IEEE
Transactions on Parallel and Distributed Systems, 8:167–180, 1997.

[8] S. Dolev and N. Tzachar. Empire of colonies: Self-stabilizing and self-organizing dis-
tributed algorithm. Theoretical Computer Science, 410:514–532, 2009.

[9] V. Drabkin, R. Friedman, and M. Gradinariu. Self-stabilizing wireless connected
overlays. In the 10th International Conference On Principles Of Distributed Systems
(OPODIS’06), Springer LNCS 4305, pages 425–439, 2006.

[10] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network. Journal of
Wireless Networks, 1(3):255–265, 1995.

[11] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P.K. Srimani. Self-stabilizing protocols
for maximal matching and maximal independent sets for ad hoc networks. In Proceedings
of the 17th International Symposium on Parallel and Distributed Processing (IPDPS’03),
page 162.2. IEEE Computer Society, 2003.

[12] A. Jain and A. Gupta. A distributed self-stabilizing algorithm for finding a connected
dominating set in a graph. In Proceedings of the 6th International Conference on Parallel
and Distributed Computing Applications and Technologies (PDCAT’05), pages 615–619,
2005.

21

[13] C. Johnen and L. H. Nguyen. Self-stabilizing construction of bounded size clusters. In
the 2008 IEEE International Symposium on Parallel and Distributed Processing with
applications (ISPA’08), pages 43–50, 2008.

[14] C. Johnen and L. H. Nguyen. Robust self-stabilizing weight-based clustering algorithm.
Theoretical Computer Science, 410(6-7):581–594, 2009.

[15] C. Johnen and S. Tixeuil. Route preserving stabilization. In the 6th International Sym-
posium on Self-stabilizing System (SSS’03), Springer LNCS 2704, pages 184–198, 2003.

[16] H. Kakugawa and T. Masuzawa. A self-stabilizing minimal dominating set algorithm with
safe convergence. In Proceedings of the 8th IPDPS Workshop on Advances in Parallel
and Distributed Computational Models (APDCM’06), 2006.

[17] S. Kamei and H. Kakugawa. A self-stabilizing approximation for the minimum connected
dominating set with safe convergence. In the 12th International Conference On Principles
Of Distributed Systems (OPODIS’08), Springer LNCS 5401, pages 496–511. Springer,
2008.

[18] L. Kleinrock and K. Faroukh. Hierarchical routing for large networks; performance eval-
uation and optimization. Computer Networks, 1:155–174, 1977.

[19] C R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal
on Selected Areas in Communications, 15:1265–1275, 1997.

[20] N. Mitton, A. Busson, and E. Fleury. Self-organization in large scale ad hoc networks.
In Proceedings of the third Annual Mediterranean Ad Hoc Networking Workshop (MED-
HOC-NET’04), June 2004.

[21] N. Mitton, E. Fleury, I. Guérin-Lassous, and S. Tixeuil. Self-stabilization in self-organized
multihop wireless networks. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems Workshops (WWAN’05), pages 909–915, 2005.

[22] P. Sheu and C. Wang. Minimizing both the number of clusters and the variation of cluster
sizes for mobile ad hoc networks. In International Conference on Information Networking:
Networking Technologies for Enhanced Internet Services (ICOIN’03), Springer LNCS
2662, pages 682–691, 2003.

[23] O. Tomoyuki, I. Shinji, K. Yoshiaki, I. Kenji, and M. Kaori. An adaptive maintenance of
hierarchical structure in ad hoc networks and its evaluation. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS’02), pages 7–13.
IEEE Computer Society, 2002.

[24] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-stabilizing
minimal domination protocol in an arbitrary network graph. In Proceedings of the 5th
International Workshop on Distributed Computing (IWDC’03), Springer LNCS 2918,
pages 26–32, 2003.

22

	RR1518entete
	RR1518rapp

