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Abstract. We introduce two criteria for judging “goodness” of the re-
sult when combining preference relations in information systems: com-
pleteness and consistency. Completeness requires that the result must be
the union of all preference relations, while consistency requires that the
result must be an acyclic relation. In other words, completeness requires
that the result contain all pairs appearing in the preference relations, and
only those pairs; while consistency requires that for every pair (x, y) in
the result, it must be able to decide which of x and y is preferred to the
other. Obviously, when combining preference relations, there is little hope
for the result to satisfy both requirements. In this paper, we classify the
various methods for combining preference relations, based on the degree
to which the result satisfies completeness and consistency. Our results
hold independently of the nature of preference relations (quantitative or
qualitative); and also independently of the preference elicitation method
(i.e. whether the preference relations are obtained by the system us-
ing query-log analysis or whether the user states preferences explicitly).
Moreover, we assume no constraints whatsoever on the preference rela-
tions themselves (such as transitivity, strict ordering and the like).

1 Introduction

The problem considered in this paper is how to combine preferences to arrive
at a consensus in the context of databases and information systems. Combining
preferences to arrive at a consensus is a problem known in the literature as Social
Choice Theory [20]. Variants of this problem, such as voting schemes, have been
studied since the 18th century (by Condorcet and Borda). More recently, pref-
erences have been used since the 50s in decision making for ranking alternative
choices (see [18] for an extensive survey). In databases and information systems,
however, the use of preferences started only in the late 90s and it is mainly con-
cerned with the ranking of query answers [13, 7, 19, 1, 6, 4, 5, 12, 15, 14]. Indeed,
with the explosion of the amount of information available today (e.g., on the
web) query results may be very large, and ranking these results according to
users’ preferences is of great help to users.

In the area of information systems, user preferences are classified from dif-
ferent points of view, as follows.



In terms of their nature, preferences can be:

– Quantitative (or absolute), expressed by a number on a scale (thus capturing
intensity of desire). For example, “I like BMW cars 80%” and “I like VW
cars 70%”. Quantitative preferences are difficult to express by the casual
user, but easy to compute by a machine from query logs.

– Qualitative (or relative), expressed by comparison. For example, “I like
BMW more than VW”. Qualitative preferences express no intensity of de-
sire; they are easy to express by the casual user and also easy to infer by a
machine (from quantitative preferences).

In terms of their duration in time, preferences can be:

– Long-term preferences; these may be either discovered by the system (unob-
trusively, from query logs) or declared explicitly by the user. In both cases
long-term preferences are stored in the so-called user profile.

– Short-term preferences; these are expressed explicitly by the user, on-line,
together with a query (in which case one usually talks about preference
queries).

We note that the nature and the duration in time are orthogonal characteristics
of preferences.

In this paper, we assume a set of objects O and we model a preference over
O as a pair (o, o′) meaning that o is preferred to o′; moreover, we refer to a set
of preferences over O as a preference relation.

We stress the fact that we model preference relations as binary relations over
O without any particular constraint such as transitivity, strict ordering and the
like. The reason for doing so is that there is no general consensus in the literature
as to what properties a preference relation should satisfy. For instance, although
transitivity is generally considered as a desirable property, in several situations
preference relations are assumed to be non-transitive [9–11, 22].

Our approach considers only positive preference statements of the kind “x is
preferred to y”; in other words, we do not take into consideration indifference
relations [18].

When O represents a set of alternative choices, one or more experts may
be asked to express their opinion directly on the alternatives, thus leading to
a set of preference relations over O. In other cases, the experts may be asked
to express their opinion on one or more features of the alternatives, each one
inducing a preference relation over O. In both cases, we end up with a set of
preference relations over O, and the problem is how to combine them into a
single preference relation incorporating as best as possible the opinions of all
experts.

In the area of databases and information systems, there are two general meth-
ods for combining a set of preference relations: the Prioritized method and the
Pareto method, in their restricted and unrestricted versions. Several studies in
the literature use these methods, for example for defining preference queries and
sky-line queries [3]. However, to our knowledge, no previous work has addressed



the problem of how well the information content of the individual preferences is
incorporated in the combined relation by these methods.

In this paper, we propose to evaluate Prioritized and Pareto, and their vari-
ants, by introducing two criteria: completeness and consistency; and we classify
these methods based on the degree to which the combined relations satisfy the
two criteria.

Our results hold independently of the nature of preference relations (i.e. whether
they are qualitative or whether they have been inferred from quantitative rank-
ings); and also independently of the preference elicitation method (i.e. whether
the preference relations have been obtained by the system, using query-log anal-
ysis, or whether they have been stated by the user states, explicitly).

Section 2 gives the formal statement of the problem, as it appears in the
area of information systems, also providing some rationale; section 3 introduces
the classical methods for combining preference relations; section 4 analyzes how
these methods behave with respect to the measures introduced earlier, namely
consistency and completeness. Finally, Section 5 summarizes the results and
draws some conclusions. Proofs can be found in the appendix.

2 Statement of the problem and rationale

We say that a binary relation P is complete with respect to n > 1 given binary
relations P1, . . . , Pn iff P is the union of P1, . . . , Pn. Moreover, we say that P is
consistent iff it is acyclic. We note that both completeness and consistency [8]
can be tested efficiently.

Given a set of preference relations P1, . . . , Pn, the problem that we consider
is how to find a combined preference relation P that satisfies the following re-
quirements:

1. Completeness. This property requires that the result should contain all pairs
appearing in the preference relations, and only those pairs (i.e., no preference
expressed by the user is lost, and no extraneous preference is introduced in
the result).

2. Consistency. This property requires that the result must be an acyclic rela-
tion; that is, for every pair (x, y) appearing in the result, it must be able to
decide which of x and y is preferred to the other.

Clearly, when the result is complete, all expressed preferences are taken into
account, but there may be contradictions among the individual preference rela-
tions, generating cycles in their union. On the other hand, consistency expresses
absence of contradictions. So the presence of both completeness and consistency
characterizes the optimal situation, where all preferences are taken into account
and there is no contradiction.

We note that the presence of contradictions is natural, as they are the result
of putting together preferences which either come from different users, indepen-
dently, or come from the same user but address different aspects of the objects.
As we mentioned earlier, such non-contradiction is expressed by the absence of



cycles. Indeed, acyclicity allows the ranking of objects, as follows [21, 17]. Let P
be an acyclic binary relation (viewed as a digraph), and define the rank of an
object o as follows:

– if o is a root of P then rank(o) = 0 (a root is a node with no incoming edge);
– else rank(o) is the length of a maximal path among all paths from a root of

P to o.

The intuition behind this definition of rank is that the farther an object o is
from the best objects (represented by the roots) the less preferred it is. We note
that the computational complexity of computing ranks following this definition
is linear in the size of the preference graph (understood as usual as the number
of nodes plus the number of arcs). In reality, the size of the preference relations
is quite small as users often express just a few preferences. Clearly, the definition
of rank is sound only if P has at least one root, and this is guaranteed only when
P is acyclic.

Now, let us denote by Bi the set of objects with rank i, and let m be the
maximal path length among all paths starting from a root. Then it is easy to
prove the following proposition:

Proposition 1. The sequence B0, B1, . . . , Bm defined above has the following
properties:

– B0, B1, . . . , Bm is a partition of the set of objects appearing in P ;
– for each i = 0, 1, 2, . . . ,m, there is no arc of P connecting two objects of Bi;
– for each i = 1, 2, . . . ,m and each object t ∈ Bi there is an object s ∈ Bi−1

such that there exists an arc from s to t in P.

In general, when combining preference relations, there is little hope for the
result to satisfy both completeness and consistency. Since ranking is important
in information systems and acyclicity is a sufficient condition in order to do
ranking, a reasonable approach to follow when combining preference relations
is to satisfy acyclicity while minimizing the loss of completeness. In order to
achieve this goal, we must select as the result P of combining the given preference
relations a largest acyclic subset of the union. In other words, we must select P
in such a way that there is no proper superset of P which is an acyclic subset of
the union.

If we view preference relations as digraphs, finding such a P is equivalent
to solving the maximum acyclic sub-graph problem, which is stated as follows:
Given a digraph G = (V,E), find a maximum cardinality subset E′ ⊆ E such
that (V,E′) is acyclic. This problem is known to be NP-hard [16].

Now, since there have been several proposals in the literature for combining
preference relations, one wonders how these proposals relate to the maximum
acyclic sub-graph problem. This is the question that we undertake in the rest of
this paper.

More specifically, we show that the classical methods for combining prefer-
ence relations provide a clever trade-off between maximality of the result and



efficiency of computation. As these methods were introduced long before the the-
ory of complexity was formulated, this is a rather surprising result that provides
an a posteriori justification for the introduction of these methods.

3 Classical methods for combining preference relations

There are several well-known methods for combining a set of preference relations
P1, . . . , Pn, into a single preference relation, most notably, the so-called Priori-
tized and Pareto (and their variants). In order to formally define these methods,
we use the following terminology from [2]. Let P be a preference relation:

– we use interchangeably the notations (x, y) ∈ P and xPy; if (x, y) /∈ P, we
write xPy;

– x and y are said to be equivalent with respect to P, written xP≡y, iff both
xPy and yPx hold;

– if xPy and yPx, we say that x and y are incomparable with respect to P,
written xP#y;

– finally, if xPy and yPx, x is said to be strictly preferred to y with respect
to P, written xP<y.

We first recall the definition of P∪, the union of the given preference relations
P1, . . . , Pn :

xP∪y ⇐⇒ ∃i.(xPiy)

A basic difference between Prioritized and Pareto is that the former, apart
from the given preference relations P1, . . . , Pn, requires some additional infor-
mation in order to be applied, whereas the latter requires no additional informa-
tion. Indeed, in the case of Prioritized, one assumes that the preference relations
P1, . . . , Pn, are ordered by a priority relation ≺, which is a strict partial order.
We recall that a strict partial order is a binary relation which is irreflexive and
transitive, and consequently asymmetric (asymmetric means that if a < b holds
then b < a does not hold).

Prioritized and Pareto each come into two variants:

1. Restricted Prioritized (RPR, for short).
This is the “classical” Prioritized rule, also used in [2]. Given a set of pref-
erence relations P1, . . . , Pn strictly ordered by ≺, the RPR rule defines a
binary relation Prr (P1, . . . , Pn,≺), or simply Prr when there is no ambigu-
ity, as follows:

xPrry ⇐⇒ ∀i.(xPiy ∨ ∃j.(j ≺ i ∧ xP<
j y))

xPr#
r y ⇐⇒ ∃i.(xP#

i y&∀j

Notice that x and y are incomparable in the combined relation (i.e., xPr#
r y)

if and only if x and y are incomparable on the preference relation with the
highest priority for which they are not equivalent.



We note that the well-known lexicographic ordering is a special case of Re-
stricted Prioritized. Indeed, the lexicographic ordering is a Prioritized order-
ing, in which:

– O stands for a set of words of finite length over some finite alphabet A,
where A is totally ordered by some strict total order <A (i.e., given any
two distinct letters a and a′, either a <A a′ or a′ <A a but not both);
the minimum element of <A is the special character blank;

– we have as many preference relations Pi as the number of characters in
the longest word in O;

– the i-th preference relation captures preference based on the i-th letter
of words (starting from the left), according to <A; so, carloP1nicolas
while nicolasP3carlo;

– the priority relation over the Pi’s is the natural total order <N over the
indices.

Under these assumptions, given two words w = a1a2 . . . am and w′ = a′1a
′
2 . . . a′n,

the RPR rule becomes:

wPrrw′ ⇐⇒ ∀i.(ai <A a′i ∨ ∃j.(j <N i ∧ aj <<
A a′j))

Now, since <A is a strict total order, <A=<<
A, therefore the rule becomes:

wPrrw′ ⇐⇒ ∀i.(ai <A a′i ∨ ∃j.(j < i ∧ aj <A a′j))

The last rule is clearly the rule used to order words in a dictionary.
2. Unrestricted Prioritized (UPR, for short).

This method extends RPR by allowing the combined preference to hold even
in presence of incomparability in some preference relation, as long as there
exists comparability in some other relation. The UPR rule defines a binary
relation Pru as follows:

xPruy ⇐⇒ ∀i.(xPiy ∨ (xP#
i y ∧ ∃k.(xPky)) ∨ ∃j.(j ≺ i ∧ xP<

j y))

Notice that x and y are incomparable if and only if x and y are incomparable
in all given preference relations.

3. Restricted Pareto (RPA, for short).
In this method, x is preferred to y in the combined relation if and only if for
every i, x is preferred to y, and for at least one Pi x is strictly preferred to
y. Formally, the RPA rule defines a binary relation Par as follows:

xPary ⇐⇒ ∀i.(xPiy) ∧ ∃j.(xP<
j y)

4. Unrestricted Pareto (UPA, for short).
In this method, x is preferred to y if and only if for at least one Pi x is
strictly preferred to y, and for no j y is strictly preferred to x (in all other
preferences x and y can be comparable in the same direction, incomparable
or equivalent). The UPA rule defines a binary relation Pau as follows:

xPauy ⇐⇒ ∀i.(yP<
i x) ∧ ∃j.(xP<

j y)



xP∪y ⇐⇒ ∃i.(xPiy)

xPrry ⇐⇒ ∀i.(xPiy ∨ ∃j.(j ≺ i ∧ xP <
j y))

xPruy ⇐⇒ ∀i.(xPiy ∨ (xP#
i y ∧ ∃k.(xPky)) ∨ ∃j.(j ≺ i ∧ xP <

j y))

xPary ⇐⇒ ∀i.(xPiy) ∧ ∃j.(xP <
j y)

xPauy ⇐⇒ ∀i.(yP <
i x) ∧ ∃j.(xP <

j y)

Fig. 1. Definitions of the classical methods

Based on the definitions given so far (and summarized in Figure 1 for con-
venience), we can prove the following proposition (we recall that proofs can be
found in the appendix).

Proposition 2. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, the following hold:

1. Par ⊆ Prr ⊆ Pru ⊆ P∪
2. Par ⊆ Pau ⊆ Pru ⊆ P∪
3. Pau and Prr are incomparable with respect to set-containment.

Par

Pru

P∪

Prr Pau

��

��

@@

@@

Fig. 2. Classical methods for combining preference relations

Figure 2 summarizes graphically the set-containment relations established by
proposition 2.

4 Completeness and consistency of classical methods

In order to characterize the classical methods with respect to completeness and
consistency, we consider three cases as follows:



Case 1 the union P∪ is acyclic.
In this case, consistency is guaranteed and we show that completeness holds
only for the unrestricted methods.

Case 2 the union P∪ is cyclic but each individual preference relation is acyclic.
In this case, we show that the restricted methods lead to an acyclic result,
but they are incomplete in the sense that they may not produce a maximum
acyclic sub-graph; on the other hand, the unrestricted methods may produce
a cyclic result.

Case 3 one or more individual preference relations are cyclic.
In this case, all methods may produce a cyclic result.

4.1 Acyclic union

It follows from proposition 2 that whenever the union of the preference relations
is acyclic, so are all the variants of Prioritized and Pareto defined above. In this
case, then, consistency is satisfied. It remains to be seen whether completeness
is satisfied as well.

The next lemma states a consequence of the acyclicity of the union that will
be used in what follows.

Lemma 1. Let P1, . . . , Pn, be preference relations whose union P∪ is acyclic. If
xP∪y then for some i we have that xP<

i y, and for all k 6= i we have that either
xPky or xP#

k y.

We can now prove the following.

Proposition 3. Let P1, . . . , Pn be preference relations whose union P∪ is acyclic.
Then,

1. P∪ = Pau

2. P∪ = Pru for any strict order ≺ of the preference relations.

Notice that in proving that Pru ⊆ P∪, the acyclicity of the union is not
required.

Concerning Prr and Par , we have that in some cases P∪ is acyclic and that
Prr ⊂ P∪ and Par ⊂ P∪. In proof, let us consider the example shown in Figure 3;
using RPR to combine P1 and P2 leads to the incomparability of 3 and 4 (if
P1 ≺ P2) or the incomparability of 1 and 2 (if P2 ≺ P1), while both these
pairs are in P∪ = P1 ∪ P2. Analogously, it can be seen that (3, 4) ∈ Pa#

r and
(1, 2) ∈ Pa#

r .

We can then conclude that when the union of the given preference relations is
acyclic, both RPR and RPA are incomplete, while UPR and UPA are “optimal”,
i.e. both complete and consistent.
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Fig. 3. Preference relations

4.2 Cyclic union with acyclic preference relations

We now consider the case in which the union of the preference relations is cyclic
while each individual preference relation is acyclic. In this case, we are inter-
ested to know (a) whether Prioritized and Pareto produce an acyclic combined
preference relation, and, if yes, (b) how close to the union P∪ they are.

In order to answer these questions, we first derive necessary and sufficient
conditions for the acyclicity of the result in each of the classical methods. We
then apply these conditions to answer the above questions.

We recall that a cycle in a binary relation P is a sequence of objects C =
(o0, o1, . . . , ok) with k ≥ 2, such that

– o0 = ok,
– oi−1Poi for each i = 1, . . . , k, and
– there is no repetition in o0, o1, . . . , ok−1.

Proposition 4. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, the Restricted Prioritized Prr is acyclic iff for each cycle
C = (o0, . . . , ok) in P∪ there exists an arc (ou−1, ou) such that for some prefer-
ence relation Pi, ou−1Piou and for each j such that ou−1Pjou, either ouPjou−1

or i ≺ j.

The last Proposition states the condition under which an undesired preference
(o, o′) (i.e., any one of the preferences found in a cycle in P∪) does not end up
in Prr . The condition is derived by combining two facts: oPio

′ and oPrro′ (the
latter in turn obtained by negating the RPR rule). By a similar technique, we
obtain the analogous conditions for the other considered variants of Prioritized
and Pareto. The proofs of the corresponding Propositions are omitted, as they
are very similar to that of the previous Proposition.

Proposition 5. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, the Unrestricted Prioritized Pru is acyclic iff for each
cycle C = (o0, . . . , ok) in P∪ there exists one arc (ou−1, ou) such that for some
preference relation Pi, ouP<

i ou−1 and for each j such that ou−1Pjou, either
ouPjou−1 or i ≺ j.

Proposition 6. Let P1, . . . , Pn, be n preference relations. Then, the Restricted
Pareto preference relation Par is acyclic iff for each cycle C = (o0, . . . , ok) in
P∪ there exists one arc (ou−1, ou) such that either ou−1Piou for some preference
relation Pi, or ouPjou−1 for all preference relations Pj .



Proposition 7. Let P1, . . . , Pn, be n preference relations. Then, the Unrestricted
Pareto Pau is acyclic iff for each cycle C = (o0, . . . , ok) in P∪ there exists one
arc (ou−1, ou) such that ouP<

i ou−1 for some preference relation Pi or ou−1Pjou

implies ouPjou−1) for all j.

Having established under which condition each of the considered methods
produces a cyclic relation, we now examine whether this condition can ever
occur.

Proposition 8. The Restricted Prioritized Prr of n acyclic preference relations
P1, . . . , Pn is acyclic for any strict order ≺ on P1, . . . , Pn.

The last Proposition says that when each one of the given preference rela-
tions is acyclic, the necessary and sufficient conditions for the acyclicity of Prr
established by Proposition 4 are always met. This can be verified by considering
that under the circumstances, every cycle in P∪ involves at least two preference
relations, one of which has necessarily a lower priority than the other; thus, any
arc (x, y) in the cycle coming from a preference relation with a lower priority
can play the role of (ou−1, ou) in Proposition 4.

The last Proposition shows that in presence of a cyclic union, the RPR rule
produces an acyclic relation. However, the rule turns out to be too restrictive
in that it may exclude from the result preferences that are unproblematic (i.e.,
preferences which do not produce any cycle if included in the result). In other
words, RPR may not produce a maximum acyclic sub-graph of P∪.

Consider for instance the following preference relations: P1 = {(2, 3)}, P2 =
{(1, 2)} and P3 = {(3, 2)}, together with the following strict order: P1 ≺ P2 ≺ P3.
In this case, we have Prr = {(2, 3)}, which is a non-maximum acyclic sub-graph
of P∪, since it misses the preference (1, 2).

Furthermore, there may be maximum acyclic sub-graphs of P∪ that RPR
cannot define under any ≺ . The example presented in Figure 4 is a case in
point: we have Prr = P1 (if P1 ≺ P2) or Prr = P2 (if P2 ≺ P1). But for no
ordering of the preference relations we can have Prr = R1 or Prr = R2 (also
shown in Figure 4).

1 1 1 12 2 2 2

3 3 3 3
?

-

6

�

P1 P2 R1

?

�

R2

-

6

Fig. 4. Prioritized combinations

Let us now consider Pru . It is easy to construct an example that falsifies the
condition of Proposition 5 (i.e., a cyclic P∪ leading to a cyclic Pru): Assume
P1 ≺ P2 and P1 = {(1, 2)} whereas P2 = {(2, 3), (3, 1)}. In this case, none of



the arcs making up the cycle (1, 2, 3, 1) in P∪ has a reverse arc as required by
Proposition 5. In fact, Pru = P∪ and so we have a cyclic Pru .

For Pareto, the situation is identical.

Corollary 1. The Restricted Pareto Par of n acyclic preference relations P1, . . . , Pn

is acyclic.

As for Proposition 8, the acyclicity of each preference relation Pi implies that
the condition established by Proposition 6 are always met. In particular, each
cycle in P∪ comes from preferences belonging to different relations; then, any
arc (x, y) in the cycle is missed at least by one Pi, i.e. xPiy, and as such it plays
the role of (ou−1, ou) in Proposition 6.

Since Par is a subset of Prr (Proposition 2), we have that the above remarks
related to the completeness of Prr carry over to Par .

Finally, the previous example can be used also to show that a cyclic P∪ may
lead to a cyclic Pau .

We may then conclude that when each preference relation is acyclic but their
union is cyclic, both Prr and Par are acyclic but incomplete. On the other hand,
their unrestricted versions Pru and Pau may be cyclic.

4.3 Cyclic preference relations

In considering cyclic preference relations, we distinguish between two cases:

– the cycle involves only two objects.
We call these objects equivalent in the sense defined earlier.

– the cycle involves at least three objects.

In the classical methods, object equivalence arises only in very special circum-
stances or not at all, as shown by the following corollary (that follows from
Propositions 4 to 7):

Corollary 2. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, for any two objects x, y

– xPr≡r y iff xP≡i y for all i = 1, . . . , n, and
– xPr≡u y iff the following hold:

1. for some i we have xP≡i y, and
2. for all j = 1, . . . , n we have either xP≡j y or xP#

j y.

Moreover, both Par and Pau are asymmetric.

Thus, two objects are equivalent with respect to Restricted Prioritized if
they are equivalent with respect to each preference relation. In this case they
are incomparable for both versions of Pareto. For Unrestricted Prioritized, two
objects are equivalent if they are comparable on some dimension but in no di-
mension one of the two is strictly preferred to the other. Pareto rules out object
equivalence by being asymmetric in both its variants.



For cycles involving three or more objects, the situation is much worse. If
some of the P1, . . . , Pn contain such a cycle, then all variants of Prioritized and
Pareto may produce a cyclic result.

The following example shows that this is indeed the case for RPA. Suppose
P1 = P2 = {(1, 2), (2, 3), (3, 1)}. Then, it is easy to see that Par = P1. Notice
that if we assume transitivity of the Pi’s, then for all objects x and y involved in
a cycle, we have xP≡i y and therefore (x, y) /∈ Par . In the example, transitivity
of the Pi’s implies that P<

i = ∅ for all i and consequently Par = ∅.
Since Par is the smallest relation among those produced by the classical

methods, we have that all methods can produce a cyclic result.

5 Concluding remarks

From an information system perspective, there are two basic requirements that
must be satisfied when combining preference relations into a single preference
relation: completeness and consistency. Completeness means that the result must
be the union of all preference relations, while consistency means that the result
must be an acyclic relation.

However, it is rarely possible to satisfy these two requirements simultane-
ously, due to the fact that the union of the given preference relations may be
cyclic. Given the importance of acyclicity in ranking the objects, we have argued
that a reasonable compromise is to aim at a maximum acyclic sub-graph of the
union of the given relations.

We have analyzed two classical methods for combining preference relations,
Prioritized and Pareto, each in two variants: restricted and unrestricted. We
have shown that all four methods are inadequate with respect to the above
requirements, as they may produce a result that is either incomplete or cyclic.
In particular,

– In the (fully unproblematic) case when the union of the given preference
relations is acyclic, both restricted approaches are incomplete, while the
unrestricted ones are optimal (i.e., complete and acyclic).

– When each preference relation is acyclic but their union is cyclic, both re-
stricted approaches produce an acyclic result, which however looses more
preferences than needed to obtain acyclicity; under the same circumstances,
the unrestricted methods may produce a cyclic result.

– Finally, when one or more preference relations have cycles involving at least
three objects, all four methods may produce a cyclic result.

Thus, all four classical methods are for various reasons unsatisfactory. However,
if we look at the problem from a purely computational perspective, we are faced
with the fact that computing a maximum acyclic sub-graph of a given graph
is known to be NP-hard. This fact sheds a different light on the classical ap-
proaches.

In fact we may conclude that both Prioritized and Pareto trade off effi-
ciency to optimality (unless P=NP). In their unrestricted variants, both methods



achieve optimality only when it is computationally easy to do so, (i.e., when the
union is acyclic). In all other cases, they retain efficiency while loosing optimality.

From a practical point of view, there are several options:
If the size of the problem is not prohibitive, one can go for the optimal

solution and compute a maximum acyclic sub-graph of the union of the given
preference relations. In this respect, we make the following observation. Let A be
a binary relation and Ao stand for the set of all maximum acyclic sub-graphs of
A. When some of the Pi’s are cyclic, for any X ∈ (P∪)o and for any Y ∈ ∪(P o

i )
we have that X ⊆ Y, but not necessarily Y ⊆ X (we recall that P∪ is the union
of the preference relations P1, . . . Pn). As a consequence, it is more efficient
to compute a minimum acyclic sub-graph from P∪ rather than from maximum
acyclic sub-graphs of the individual preference relations.

If the size of the problem is prohibitive, three alternatives are possible. First,
one might want to go for an approximation technique for computing the max-
imum acyclic sub-graph [16]. Second, one can use a classical method. As our
results show, Unrestricted Prioritized is clearly the best candidate. Finally, we
mention the following method, based on the premise that objects on the same
preference cycle can be regarded as indistinguishable. Define the following equiv-
alence relation ≡ over the objects appearing in P∪ : x ≡ y iff either x = y or
x 6= y and x and y are on the same cycle in the graph of P∪. Next, define a
binary relation P over the set of equivalence classes as follows: [x]P [y] iff x′P∪y

′

for some x′ ∈ [x] and y′ ∈ [y]. Finally, apply the algorithm given in Section 2 to
rank the equivalence classes in P.

In this paper we have considered preference relations simply as binary re-
lations without any additional constraint. We are currently investigating how
different constraints on preference relations (such as transitivity) might influ-
ence the classification of the classical methods with respect to completeness and
consistency. We also plan to investigate the trade-offs between completeness and
consistency with respect to more general classes of schemes, such as schemes
following Condorcet’s Principle.
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A Proofs

Proposition 2. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, the following hold:

1. Par ⊆ Prr ⊆ Pru ⊆ P∪
2. Par ⊆ Pau ⊆ Pru ⊆ P∪
3. Pau and Prr are incomparable with respect to set-containment.

Proof. 1 and 2 follow immediately from the definitions, except for Pau ⊆ Pru . In
order to prove it, we show that for any x, y xPruy implies xPauy. By unfolding
the definition, we have that xPruy iff:

∃i{xPiy
∧

[xP#
i y ∨ ∀k(xPky)]

∧
∀j(j ≺ i→ xP<

j y)}



or equivalently:

∃i{xPiy
∧

xP#
i y

∧
∀j(j ≺ i→ xP<

j y)}
∨

(1)

{xPix
∧
∀k(xPky)

∧
∀j(j ≺ i→ xP<

j y)}. (2)

Now, the first two conjuncts in (1) are equivalent to yP<
i x, while (2) is equivalent

to ∀k(xPky), so we have

xPruy ⇐⇒ ∃i{yP<
i x

∧
∀j(j ≺ i→ xP<

j y)}
∨
∀k(xPky).

On the other hand,

xPauy ⇐⇒ ∃i{yP<
i x

∨
∀j(xP<

j y)}

or equivalently:

xPauy ⇐⇒ ∃i{yP<
i x

∨
∀j(xPjy ∨ yPjx)}.

Clearly, xPruy implies xPauy, hence Pau ⊆ Pru .
Finally, in order to show 3, we give counterexamples. In order to show that
Pau ⊂ Prr , let us consider the two preference relations P1 and P2 shown in
Figure 5.(a), with P1 ≺ P2. In this case, we have ∅ = Pau ⊂ Prr = {(1, 2)}. On
the other hand, with the preference relations P1 and P2 shown in Figure 5.(b),
with P1 ≺ P2, we have ∅ = Prr ⊂ Pau = {(1, 2)}.

P2 :

P1 :

1← 2

1→ 2

(a)

P2 :

P1 :

1→ 2

(b)

Fig. 5. Preference relations

For any binary relation A, A? denotes the transitive closure of A.

Lemma 1. Let P1, . . . , Pn, be preference relations whose union P∪ is acyclic. If
xP∪y then for some i we have that xP<

i y, and for all k 6= i we have that either
xPky or xP#

k y.
Proof. If xP∪y, then for some i xPiy. Acyclicity implies that (y, x) /∈ (P∪)?.

In particular, yPjx for all k. This means that for all k, either xPky or xP#
k y.

Moreover, xPiy and yPix means xP<
i y.

Proposition 3. Let P1, . . . , Pn be preference relations whose union P∪ is acyclic.
Then,



1. P∪ = Pau

2. P∪ = Pru for any strict order ≺ of the preference relations.

Proof. We have already observed that Pru ⊆ P∪. P∪ ⊆ Pru follows from Lemma
1 and the UPR rule. The proof that P∪ = Pau is very similar.

Proposition 4. Let P1, . . . , Pn, be n preference relations and let ≺ be any strict
ordering on them. Then, the Restricted Prioritized Prr is acyclic iff for each cy-
cle C = (o0, . . . , ok) in P∪ there exists an arc (ou−1, ou) in C such that for
some preference relation Pi, ou−1Piou and for each j such that ou−1Pjou, either
ouPjou−1 or i ≺ j.
Proof. (→) Suppose for each cycle C in P∪ there exists one arc (ou−1, ou) sat-
isfying the hypotheses. Then by definition of Prr , ou−1Prrou, therefore Prr is
acyclic.
(←) Conversely, if Prr and P∪ are both acyclic, the proposition is vacuously sat-
isfied. Now suppose that Prr is acyclic while P∪ is cyclic. As a consequence, on
each cycle C in P∪ there exists some arc (o, o′) ∈ P∪ \ Prr . Since oPrro′, (o, o′)
does not satisfy the RPR rule. By negating the rule, the proposition follows.

Proposition 8. The Restricted Prioritized Prr of n acyclic preference relations
P1, . . . , Pn is acyclic for any strict order ≺ on P1, . . . , Pn.
Proof. Since Prr ⊆ P∪, if P∪ is acyclic so is Prr . Then, suppose C is a cycle
in P∪. Then, suppose C is a cycle in P∪, and let Pi be a ≺-minimal preference
relation which must exist because ≺ is finite. As all preference relations are
acyclic, Pi must fail on some arc of the given cycle C. Then Prr evidently also
fails on this arc. It follows that it is acyclic.

Corollary 1. The Restricted Pareto Par of n acyclic preference relations P1, . . . , Pn

is acyclic.
Proof. As already observed, Par ⊂ Prr . By the previous Proposition, Prr is
acyclic, so Par is acyclic too.
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