
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

AN ENVIRONMENT SPECIFICATION

LANGUAGE FOR MULTI-AGENT SYSTEMS

SALEM DA SILVA P

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

12/2009

Rapport de Recherche N° 1531

An Environment Speci�cation Language for

Multi-Agent Systems

Paulo Salem da Silva

salem@lri.fr

Laboratoire de Recherche en Informatique

Université Paris-Sud 11

Orsay, France

December 15, 2009

Abstract

Multi-agent systems are employed to model complex systems, which
can be decomposed into several interacting pieces called agents. In such
systems, agents exist, evolve and interact within an environment. In this
report we present a language for the speci�cation of such environments.
This Environment Speci�cation Language (ESL), as we call it, de�nes
both structural and dynamic aspects of environments. Structurally, ESL
connects agents by a social network, in which the link between agents
is speci�ed as the capability that one agent has to act upon another.
Dynamically, ESL provides operations that can be composed together
in order to create a number of di�erent environmental situations and to
respond appropriately to agents' actions. These features are founded on
a mathematical model that we provide and that de�nes rigorously what
constitutes an environment. Formality is achieved by employing the π-
calculus process algebra in order to give the semantics of this model. This
allows, in particular, a simple characterization of the evolution of the
environment structure. Moreover, owing to this formal semantics, it is
possible to perform formal analyses on environments thus described. For
the sake of illustration, a concrete example of environment speci�cation
using ESL is also given.

Résumé

Les systèmes multi-agents sont utilisés pour modéliser des systèmes
complexes, qui peuvent être décomposés en beaucoup d'entités interagis-
sant qu'on appelle les agents. Dans ce genre de système, les agents existent,
évoluent et interagissent au sein d'un environnement. Dans ce rapport,
nous présentons un langage pour la spéci�cation de ces environnements.
Ce langage, que nous appelons Environment Speci�cation Language (ESL),
dé�nit les aspects structurels ainsi que dynamiques des environnements.
Structurellement, ESL lie les agents par un réseau social, où le lien entre
les agents est la capacité que chacun a d'agir sur un autre. Dynamique-
ment, ESL fournit des opérations qui peuvent être composées ensemble
a�n de créer plusieurs situations environnementales et de répondre aux

1

actions des agents. Ces caractéristiques sont fondées sur un modèle ma-
thématique que nous fournissons et qui dé�nit très précisément ce qui
constitue un environnement. La base formelle est l'algèbre de processus
π-calculus qui est utilisée pour donner la sémantique de ce modèle. Ceci
permet, notamment, une caractérisation simple des évolutions de la struc-
ture de l'environnement. En outre, grâce à cette sémantique formelle, il
est possible d'e�ectuer des analyses formelles sur les environnements ainsi
décrits. Pour illustrer notre approche, nous donnons aussi un exemple
concret d'utilisation d'ESL.

Contents

1 Introduction 2

2 Preliminary De�nitions 5

3 Environment Speci�cation Language 6

3.1 Underlying Elementary π-Calculus Events 6
3.2 Main Environment Structures . 8
3.3 Core Environment Operations and Functions 11

3.3.1 Agent Stimulation . 11
3.3.2 Action Transformers . 12
3.3.3 Sets . 12
3.3.4 Predicates and Logical Formulas 13
3.3.5 Quanti�cation . 13
3.3.6 Composition Operators 14

3.4 Convenience Environment Operations 15

4 Language Semantics 16

5 Example 19

6 Conclusion 21

A Brief Overview of the π-Calculus 22

1 Introduction

Multi-agent systems (MAS) [13] are useful to model complex systems in which
the entities to be studied can be decomposed into several interacting pieces
called agents. Human societies, computer networks, neural tissue and cell biol-
ogy are examples of systems that can be seen from this perspective. Given a
MAS, one technique often employed to study it is simulation [4]. That is, one
may implement the several agents of interest, compose them into a MAS, and
then run simulations in order to analyze their dynamic behavior. In such works,
the analysis method of choice is usually the collection or optimization of statis-
tics over several runs (e.g., the mean value of a numeric variable over time).
Examples of this approach include platforms such as Swarm [7], MASON [5]
and Repast [8]. There are, however, other possibilities for analyzing such simu-
lations. The crucial insight here is that simulations can be seen as incomplete

2

Figure 1: General architecture of our proposed tool. The simulator takes two
inputs: (i) a MAS, composed by agent models and an environment speci�cation;
(ii) a simulation purpose to be tested. The simulator then produces traces as
outputs. Veri�cation can be done at the simulation runtime level, as well as at
the trace level. The simulation purpose speci�es the property to be analyzed
and is used to guide the simulations (i.e., de�nes their purpose).

explorations of state-spaces, and thus can be subjected to some kinds of formal
analyses.

A MAS can be decomposed into two aspects. The �rst relates to the agents.
The second deals with how such agents come together and interact among them-
selves. The elements that form this second aspect constitute the environment1

of a MAS.
That said, our work is concerned about how one can build a MAS to model

a complex situation suitable for both exploratory simulation and approximate
formal veri�cation. To achieve this, we aim at providing three basic elements:
(i) an agent model, which we have already described in [1]; (ii) a formal speci-
�cation of the environment of these agents, so that they can be composed into
a MAS; and (iii) techniques to formally analyze the resulting MAS. Our ulti-
mate objective is to provide a tool that shall support these three elements and
thus allow the speci�cation, simulation and veri�cation of such MASs. We shall
build it on top of our existing simulation infrastructure [2]. Figure 1 outlines
the architecture for such a tool.

In this report, though, we focus on the problem of de�ning environments.
Our environments have a social network structure in which nodes are agents,
and the links between them are de�ned by the capabilities that agents have
to act upon each other. Furthermore, environments are more than a network
structure, as they may change dynamically, either spontaneously or as a reac-
tion to an agent's actions. These design choices arise from the agent model that

1Notice that the term �environment� is not used consistently in the MAS literature [14].
Sometimes, it is used to mean the conceptual entity in which the agents and other objects
exist and that allows them to interact; sometimes, it is used to mean the computational
infrastructure that supports the MAS (e.g., a simulator). We use the term in the former
sense.

3

we consider [1]. In it, agents are described from the point of view of Behavioral
Psychology [11], which suggests a number of desirable features from an environ-
ment that brings them together. For instance, great importance is placed on
the possibility of performing experiments of di�erent kinds, and of responding
to agent's actions in appropriate ways. As we shall see, our approach achieves
this by the environment behaviors it de�nes. Furthermore, interaction is mostly
interestingly treated by abstracting physical properties away and dealing only
with relationships, which we do by adopting a social network structure and
operations to modify it. We believe that these characteristics already di�erenti-
ate our work substantially from other existing environment description methods
(see Weyns et al. [14] for a survey).

Here we develop a simple formal framework in which to de�ne such envi-
ronments so that they can be subject to automated analyses procedures. A
high-level speci�cation language is provided, which we call the Environment
Speci�cation Language (ESL), and its semantics is given in terms of the π-
calculus process algebra [6, 9].

Process algebras are typically employed to describe concurrent systems.
They are good at succinctly describing behaviors relevant for inter-process com-
munication. Our particular choice of π-calculus as a theoretical foundation is
motivated by a number of its distinguishing features among existing such al-
gebras. First, it takes communication through channels as a primitive notion,
which makes it a natural choice for representing networks. Second, it allows
for dynamic modi�cation, which makes the creation and destruction of connec-
tions between agents possible. Third, it provides a convenient representation for
broadcast behavior through its replication operator. Finally, it has few opera-
tors and a simple operational semantics, which is attractive for implementation.

It is worth to note that despite all of these qualities of process algebras in
general, and of π-calculus in particular, they are not usually employed in the
context of multi-agent systems simulation. One exception is the work of Wang
and Wysk [12], which uses a modi�ed π-calculus to express a certain class of
agents and their environments. But their approach is not su�cient to deal with
our problems, and thus we develop our own method.

We purposefully treat agents as black-boxes here. This does not mean that
they have no known internal structure; it merely means that such structure is
mostly irrelevant as far as their environment is concerned. We assume, thus, that
those two aspects of a MAS are complementary, but separate, issues. However,
there must be a way to interface the agents with their environment. This is
achieved through the assumption that agents receive stimuli as input and that
they output actions.

The text is organized as follows. Section 2 provides the preliminary de�ni-
tions in order to give an appropriate semantics to ESL. Then, Section 3 presents
the language itself. The language's semantics, in turn, is given in Section 4. For
the sake of clarity, Section 5 provides a concrete example of environment built
in ESL. At last, Section 6 summarizes the main points presented and considers
the new perspectives that ESL brings. A brief overview of the π-calculus is also
provided in Appendix A.

For the sake of readability, we have omitted π-calculus input and output
parameters when such parameters are not relevant (e.g., we write a instead of
a(x) if x is not used later). Moreover, some elements are colored in a di�erent
manner (i.e., preliminary de�nitions; expressions, sets and logical formulas of

4

ESL; and the []π translation function that we shall shortly introduce).

2 Preliminary De�nitions

The environment formalization presented in this report must have a way to
e�ectively interact with the agents of a MAS. Agents may trigger events that
have a meaning in the environment speci�cation (e.g., the performance of an
action). Conversely, the environment speci�cation may request the performance
of an operation (e.g., to stimulate an agent). It is necessary, therefore, to have
a mathematical foundation that formally de�nes how to accomplish this. We
ful�ll this requirement by providing both a vocabulary in which a few primitives
are de�ned and a de�nition for what constitutes an environment status with
respect to these primitives.

Both of these de�nitions emanate from a particular agent model [1] that we
are considering. This model establishes how agents are stimulated and how they
produce behavioral responses. And since it is precisely through stimulation and
behavior that agents interface with their environment, the assumptions about
these aspects must be made explicit here. In other words, the de�nitions below
can be seen as interfaces that allow an environment to communicate with its
agents.

De�nition 1 (Vocabulary). A vocabulary is a tuple

〈Stimuli, Actions, AgentIDs〉

such that:

• Stimuli is a �nite set of stimuli;

• Actions is a �nite set of actions;

• AgentIDs is a �nite set of agent identi�ers;

The sets Stimuli, Actions and AgentIDs de�ne, respectively, all available
stimuli, actions and agent identi�ers. These are sets containing primitive, un-
structured, elements.

De�nition 2 (Environment Status). An environment status is a pair

〈Stimulation, Response〉

such that:

• Stimulation : AgentIDs × Stimuli → {Beginning, Stable, Ending,Absent};

• Response : AgentIDs × Actions → {Emitting, NotEmitting}.

The Stimulation function controls the stimulation of a particular agent by
a particular stimulus. Notice that agent stimulation is not an instantaneous
operation. We assume the agent di�erentiates the beginning, the stable phase,
the ending, and the absence of a particular stimulation. Hence, we provide the
appropriate elements in the function's range.

5

The Response function keeps track of the actions being emitted by the
agents. We assume that actions begin and end instantaneously, and therefore
we de�ne only two elements in the function's range. Notice that this di�erence
in relation to the Stimulation function arises from the underlying agent model
[1], which expects things to work like this.

Moreover, we denote by ES the set of all such environment status.
Later on we will show how to relate an environment's π-calculus process with

such an environment status. By this provision, we will be able interpret the π-
calculus LTS in terms of MAS primitives. Roughly, this is how the semantics of
our environment formalization shall be given in Section 4.

3 Environment Speci�cation Language

The environment must be described in a formal way, and to this end we have
chosen to give its semantics using the π-calculus. However, in order to hide
the complexities of the underlying process algebra, it is convenient to provide a
higher-level language to write environment descriptions. We do this by de�ning
the Environment Speci�cation Language (ESL). Expressions in this language
can then be automatically translated into π-calculus. This is achieved by using
a translation function to map constructs of this language into π-calculus (i.e., a
construct C is translated to [C]π).

De�nition 3 (Translation function). The translation function []π maps con-
structs of ESL into π-calculus expressions.

The full de�nition of this function is given as new constructs are introduced.
The constructs of ESL can be roughly divided into structures and operations.

The former de�ne the elements that exist and how they interact. The later
account for the manipulation of these structures.

The text below is organized as follows. Section 3.1 de�nes the fundamental
π-calculus events upon which our formalization is built. Section 3.2 describes
the main structures that form an environment. Then, Section 3.3 introduces
some core operations and functions to manipulate these structures and which
provide the basis for the environment's dynamic aspect. Finally, Section 3.4
provides convenience operations built on top of these core ones.

3.1 Underlying Elementary π-Calculus Events

A π-calculus speci�cation can be divided into two parts. First, and most fun-
damentally, it is necessary to specify the set of events that are particular to
that speci�cation. Second, it is necessary to specify processes built using those
events. In this section we account for this �rst part.

Input and output events are all made from basic names. Hence, we �rst
formally de�ne a set of names in order to have the corresponding events. The
de�nition below de�ne such names, and Table 1 presents an informal description
of the events that arise. The formal description of their meaning, however, shall
be given later on, in Section 4, by characterizing environment status based on
the events that can be performed.

De�nition 4 (Environment Names). The environment names are de�ned by
the following set:

6

ENames = {emitna , stopn
a , beginningn

s , stablen
s , absentns ,

destroys,m
a,n , ccn, done|

a ∈ Actions, s ∈ Stimuli,m, n ∈ AgentIDs}

Notice that names are primitive entities, even though they are denoted here
with subscripts and superscripts, which could suggest some sort of parametriza-
tion. This writing style is merely for readability's sake.

With these names, we may now establish the set of events relevant to ESL.

De�nition 5 (Environment Events). The environment events are de�ned by
the following set:

EEvents = {e(x), e〈x〉| e, x ∈ ENames} ∪ {τ}

As a technicality, it is sometimes convenient to be able to translate π-calculus
processes and events using the []π function. The result of such translation is, of
course, the process or event itself. Thus we extend the domain of []π to include
π-calculus and give the following de�nition.

De�nition 6. Let P be an arbitrary π-calculus process or pre�x. Then,

[P]π = P

A corollary of this de�nition is that the []π function is idempotent (i.e.,
[[C]π]π = [C]π).

Event Informal description

Agent to environment

emitna Agent identi�ed by n performs action a.
stopn

a Agent identi�ed by n stops performing action a.

Environment to agent

beginningn
s Delivery of stimulus s to the agent identi�ed by n is be-

ginning.
stablen

s Delivery of stimulus s to the agent identi�ed by n is stable.
endingn

s Delivery of stimulus s to the agent identi�ed by n is end-
ing.

absentns Delivery of stimulus s to the agent identi�ed by n becomes
absent.

Environment to environment

destroys,m
a,n Requests the destruction of an action transformer that

converts action a from agent identi�ed by n into stimulus
s accepted by the agent identi�ed by m.

ccn Requests the creation of a new action transformer.

done Signals that an operation has terminated.

Table 1: Informal description of events, divided in three categories according
to their origin and destination. The corresponding output or input events not
shown merely allow the ones described to work properly.

7

3.2 Main Environment Structures

The environment is the central structure of speci�cations. It de�nes which
agents are present, how they are initially connected, and what dynamic behav-
iors exist in the environment itself.

De�nition 7 (Environment). An environment is a tuple 〈AG,AT, EB〉 such
that:

• AG = {ag1 . . . agl} is a set of agent pro�les;

• AT = {t1 . . . tm} is a set of action transformers;

• EB = {eb1 . . . ebn} is a set of environment behaviors.

Moreover, let ENames = {en1, . . . , eno}. Then the corresponding π-calculus
expression for the environment is de�ned as:

[〈AG,AT, EB〉]π = (ν en1, . . . , eno)
([ag1]π|[ag2]π| . . . |[agl]π|
[t1]π|[t2]π| . . . |[tm]π|
[eb1]π|[eb2]π| . . . |[ebn]π|
!NewAT)

where

NewAT = ccn〈emit, stop, absent, beginning, stable, ending, destroy〉.
T (emit, stop, absent, beginning, stable, ending, destroy)

and T is given in De�nition 9.

This de�nition merits a few comments. First, all names from ENames are
restricted to the environment. Second, the set of action transformers provide the
network structure that connects the agents. Third, the environment behaviors,
as the name implies, speci�es behaviors that belong to the environment itself.
This is useful to model reactions to agent's actions, as well as to capture ways
in which the environment may evolve. In the �rst case the behavior is speci�ed
as an environment response (De�nition 10 below), while in the second case the
behavior is simply an ESL operation. Finally, the component NewAT allows
the creation of new action transformers. In order to do so, it receives a message
ccn (�create connection�), whose parameters initialize the rest of the expression.
To see this more clearly, suppose that NewAT is in parallel composition as
follows:

ccn(emitna , stopn
a , absentms , beginningm

s , stablem
s , endingm

s , destroys,m
a,n)|NewAT

Then ccn will react with ccn in NewAT , and the resulting expression will
be the following:

T (emitna , stopn
a , absentms , beginningm

s , stablem
s , endingm

s , destroys,m
a,n)

8

This expression corresponds to the de�nition of an action transformer, as
we shall shortly see (De�nition 9). Furthermore, notice that in the environment
de�nition there is a parallel replication operator on !NewAT . This ensures that
the creation of action transformers can happen as many times as needed to
produce reactions2, owing to the following structural congruence rule:

!NewAT ≡ NewAT |!NewAT

Environments exist in order to allow agents to interact. As we remarked
earlier, the internal structure of these agents, as complex as it may be, is mostly
irrelevant for their interaction model. Thus, we have abstracted it away as much
as possible. What is left are the interfaces that allow agents to interact with
each other and with the environment itself, which we call agent pro�les. Hence,
we have the following de�nition.

De�nition 8 (Agent Pro�le). An agent pro�le is a triple 〈n, S, A〉 such that:

• n ∈ AgentIDs is a unique identi�er for the agent;

• A = {a1 . . . ai} ⊆ Actions is a set of actions;

• S = {s1 . . . sj} ⊆ Stimuli is a set of stimuli.

Moreover,

[〈n, S, A〉]π = ([Act(a1, n)]π|[Act(a2, n)]π| . . . |[Act(ai, n)]π)|
([Stim(s1, n)]π|[Stim(s2, n)]π| . . . |[Stim(sj , n)]π)

such that, for all a ∈ A and s ∈ S, we have:

[Act(a, n)]π =!(emitna .stopn
a)

[Stim(s, n)]π = piStim(absentns , beginningn
s , stablen

s , endingn
s)

where

piStim(absent, beginning, stable, ending) =
absent.beginning.stable.ending.piStim(absent, beginning, stable, ending)

In this de�nition, it is clear that agents have several components, each re-
sponsible for controlling one particular action or stimulus. Act(a, n) de�nes that
the agent identi�ed by n can start emitting an action a and can then stop such
emission. The replication operator ensures that this sequence can be carried
out an unbounded number of times. Stim(s, n), in turn, de�nes that the agent
identi�ed by n can be stimulated by s, and that this stimulation follows four

2For the reader familiar with the π-calculus, it is worth to note that because all environment
names are restricted, the only way for the system to progress is by performing reactions by
the application of the COM rule found on the operational semantics (see De�nition 34).
Moreover, the rule STRUCT together with the structural congruence relation ensures that
COM will be applied as long as there are ccn events to react with NewAT .

9

steps. The recursive call ensures that this stimulation sequence can start again
as soon as it �nishes the last step. Notice that these de�nitions re�ect the
assumptions about the agent model we consider [1].

Agents interact by stimulating each other. But to have this capability, it is
�rst necessary to de�ne that an agent's action causes a stimulation in another
agent. This is done through action transformers.

De�nition 9 (Action Transformer). An action transformer is a tuple 〈ag1, a, s, ag2〉
such that:

• ag1 is an agent pro�le 〈n, S1, A1〉;

• ag2 is an agent pro�le 〈m,S2, A2〉;

• a is an action such that a ∈ A1;

• s is a stimulus such that s ∈ S2;

Moreover, the corresponding π-calculus expression for the action transformer
is de�ned as:

[〈ag1, a, s, ag2〉]π =
T (emitna , stopn

a , absentms , beginningm
s , stablem

s , endingm
s , destroys,m

a,n)

where

T (emit, stop, absent, beginning, stable, ending, destroy) =

(

Normal behavior
z }| {

emit.beginning.stable.stop.ending.absent .T (emit, stop, absent, beginning, stable, ending, destroy))+
destroy
| {z }

To disable the action transformer

The above de�nition can be divided in two parts. First, there is its normal
behavior, which merely de�nes the correct sequence through which an action is
transformed in a stimulus. Once such a sequence is completed, a recursive call
to the process de�nition restarts the action transformer. Second, there is the
part that allows the transformer to be destroyed. By performing destroy, the
action transformer disapears, since this event is not followed by anything.

We choose to have an intermediate structure such as the action transformer
between the agents instead of allowing a direct communication because an
agent's actions may have other e�ects besides stimulation. In particular, the
environment can also respond to such actions in custom ways. This is done by
expressions of environment response laws, which the user is supposed to de�ne,
and are part of the environment behavior.

De�nition 10 (Environment Response). Let 〈n, S,A〉 be an agent pro�le, and
a ∈ A an action. Then the environment response function ER() for this action
and agent is de�ned as follows:

ER(a, ag) = Op(a, ag)

where Op(a, ag) is some ESL operation in which a and ag are free variables.

10

Moreover, the corresponding π-calculus expression is as follows:

[ER(a, ag)]π = emitna .[Op(a, ag); ER(a, ag)]π

In this de�nition, Op(a, ag) must be given by the user. As an example of
such an environment response, we may cite the classical notion of reinforcement
from behavioral psychology. When an agent performs a desirable action, the
environment may be designed so that the agent receives a reward in order to
reinforce this behavior. This relation between the agent's action and an associate
reward can be elegantly modeled in a process algebraic way according to the
above de�nition of environment response.

3.3 Core Environment Operations and Functions

ESL provides a core of de�nitions upon which others can be built. In particular,
a number of operations are de�ned. The meaning of such operations is given as
π-calculus expressions with the particularity of signaling their own termination
by the done event. This detail is important because it will allow their sequential
composition, as we shall see in Section 3.3.6.

Below we present these core de�nitions according to their purpose.

3.3.1 Agent Stimulation

The following operations are provided to control the stimulation of agents.

De�nition 11 (Begin stimulation operation). Let ag = 〈n, S, A〉 be an agent
pro�le, and s ∈ S be a stimulus. Then the begin stimulation operation is writen
as:

BeginStimulation(s, ag)

Moreover,

[BeginStimulation(s, ag)]π = beginningn
s .stablen

s .done

De�nition 12 (End stimulation operation). Let ag = 〈n, S, A〉 be an agent
pro�le, and s ∈ S be a stimulus. Then the end stimulation operation is writen
as:

EndStimulation(s, ag)

Moreover,

[EndStimulation(s, ag)]π = endingn
s .absentns .done

De�nition 13 (Stimulate operation). Let ag = 〈n, S,A〉 be an agent pro�le,
and s ∈ S be a stimulus. Then the stimulate operation is de�ned as:

Stimulate(s, ag) = BeginStimulation(s, ag);EndStimulation(s, ag)

11

3.3.2 Action Transformers

The following operations are provided to manipulate action transformers.
Then we have the following operations.

De�nition 14 (Create action transformer operation). Let ag1 = 〈n, S1, A1〉
be an agent pro�le, ag2 = 〈m,S2, A2〉 be another agent pro�le, a ∈ A1 be an
action, and s ∈ S2 be a stimulus. Then the create action transformer operation
is writen as:

Create(ag1, a, s, ag2)

Moreover,

[Create(ag1, a, s, ag2)]π = ccn(emitna , stopn
a , absentms , beginningm

s ,

stablem
s , endingm

s , destroys,m
a,n).done

In the above de�nition, notice that ccn is crafted to react with the com-
ponent NewAT given in De�nition 7. Since operations will ultimately be
put together with parallel composition in the environment, it follows that the
Create(ag1, a, s, ag2) operation will be able to react with NewAT and originate
a new action transformer.

De�nition 15 (Destroy action transformer operation). Let ag1 = 〈n, S1, A1〉
be an agent pro�le, ag2 = 〈m,S2, A2〉 be another agent pro�le, a ∈ A1 be an
action, and s ∈ S2 be a stimulus. Then the destroy action transformer operation
is writen as:

Destroy(n, a, s, m)

Moreover,

[Destroy(n, a, s, m)]π = destroys,m
a,n .done

3.3.3 Sets

Certain sets of elements are particularly useful for modeling. The core language
provides functions that allow one to access them.

De�nition 16. Let X be any set, S ⊆ Stimuli, A ⊆ Actions, ag = 〈n, S, A〉
be an agent pro�le, i, j be natural numbers and I ⊆ AgentIDs. Then we have
the following special sets:

• ∅: The empty set.

• P(X): The set of all subsets of X (i.e., its power set).

• canReceive(n) = S

• canEmit(n) = A

• i..j = {k | i ≤ k ≤ j}.

• 〈I, S, A〉 = {〈id, S,A〉 | id ∈ I}

12

The 〈I, S, A〉 construction allows the concise speci�cation of large sets of
similar agents. It is especially useful if the agent identi�ers are natural numbers,
because in this case it can be used in association with the i..j construction. For
example, if we know that agent identi�ed by 1 up to 100 are all similar, we can
specify all of their pro�les at once by writing 〈1..100, S,A〉.

Composite sets can be obtained by the usual operators of ∪ (union), ∩
(intersection) and \ (subtraction).

3.3.4 Predicates and Logical Formulas

Primitive predicates are necessary to specify conditions. Below we de�ne rele-
vant predicates for ESL.

De�nition 17. Let X be a set, ag1 and ag2 be agent pro�les, a be an action,
s be a stimulus, and x and y be agents, stimuli or actions. Then we have the
following predicates:

• isConnected(ag1, a, s, ag2): True if, and only if, there exists an action
transformer that takes action a from agent ag1 and transforms it in stim-
ulus s delivered to agent ag2.

• x ∈ X: True if, and only if, x is in set X.

• x /∈ X: True if, and only if, x is not in the set X.

• x = y: True if, and only if, x and y refer to the same entity.

• x 6= y: True if, and only if, x and y refer to di�erent entities.

Formulas can be obtained by using the usual logical connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction) and → (implication).

3.3.5 Quanti�cation

In order to succinctly express arbitrary number either of choices or of concurrent
execution, it is convenient to de�ne two special quanti�cation operators. Given
a set of possible parameters and a parameterized expression, these operators
generate a new expression that corresponds to a composition of the several
instantiations that the given expression might have with respect to the speci�ed
set of possible parameters.

De�nition 18 (Universal quanti�cation with sum). Let Y be a �nite set, Exp()
be an arbitrary expression, and Formula be a logic formula that is obeyed by
the elements y1, y2, . . . yn ∈ Y . Then the universal quanti�cation with sum is
de�ned as:

∀+y : Y |Formula • Exp(y) = Exp(y1) + Exp(y2) + . . . + Exp(yn)

De�nition 19 (Universal quanti�cation with parallel composition). Let Y be a
�nite set, Exp() be an arbitrary expression, and Formula be a logic formula that
is obeyed by the elements y1, y2, . . . yn ∈ Y . Then the universal quanti�cation
with parallel composition is de�ned as:

∀|y : Y |Formula • Exp(y) = Exp(y1)|Exp(y2)| . . . |Exp(yn)

13

3.3.6 Composition Operators

In order to build complex operations on top of the basic ones, ESL provides
composition operators. Some of these can be mapped directly to π-calculus
operators, but others require more sophistication.

De�nition 20 (Sequential Composition). Let Op1 and Op2 be operations. Then
their sequential composition is also an operation and is written as:

Op1; Op2

Moreover,

[Op1; Op2]π = (ν start)[Op1]π{start/done}|start.[Op2]π

The above translation aims at accounting for the intuition that Op1 must
take place before Op2. However, we cannot translate Op1;Op2 immediatly as
[Op1]π.[Op2]π, because in general π-calculus would not allow the resulting syntax
(e.g., (P + Q).R would not be a valid expression). Therefore, we adapt the
suggestion o�ered by Milner [6] (in Example 5.27), which works as follows. We
assume that every operation signals its own termination using the done event.
Then, when composing Op1 and Op2, we: (i) create a new event, start; (ii)
rename the done event in Op1 to start; (iii) make start guard Op2; (iv) put
the two resulting processes in parallel. Notice that, by this construction, the
only way that Op2 can be performed is after start is performed, which can only
happen when Op1 terminates.

De�nition 21 (Sequence). Let Op be an operation and n be an integer such
that n ≥ 1. Then a sequence of n compositions of Op is de�ned as:

Seq(Op, n) =
{

Op;Seq(Op, n − 1) n > 1
Op n = 1

De�nition 22 (Unbounded Sequence). Let Op an operation. Then an un-
bounded sequence of compositions of Op is de�ned as:

Forever(Op) = Op; Forever(Op)

The translation of these two kinds of sequences to π-calculus follows, of
course, from the translation of the sequential composition operator.

De�nition 23 (Choice). Let Op1 and Op2 be operations. Then their composi-
tion as a choice is also an operation and is written as:

Op1 + Op2

Moreover,

[Op1 + Op2]π = [Op1]π + [Op2]π

De�nition 24 (Parallel Composition). Let Op1, Op2, . . ., Opn be n operations.
Then their parallel composition is also an operation and is written as:

Op1|Op2| . . . |Opn

14

Moreover,

[Op1|Op2| . . . |Opn]π = (ν start)[Op1]π{start/done}|[Op2]π{start/done}| . . . |
[Opn]π{start/done}| start.start.start︸ ︷︷ ︸

n times

.done

The translation for the parallel composition is not straightforward because
it is necessary to ensure that done is sent only once in the composed operation.
That is to say, the parallel composition of n operations3 is an operation itself,
and it only terminates when each of its components terminates. If this care is not
taken, later sequential compositions will not work as expected. Our de�nition
ensures the correct translation by: (i) creating a new name, start, restricted to
the composition; (ii) renaming done to start in Op1, Op2, . . ., Opn ; (iii) creating
a new component that waits for n start events before sending one done. By this
construction, the only way that a done event can be sent is by �rst producing n
start events, which can only happen if each operation terminates individually.

3.4 Convenience Environment Operations

Using the operations de�ned above, we may de�ne a number of other conve-
nience operations. There are many possibilities for such operations, but below
we give some examples that seem useful. We employ polymorphism where ap-
propriate to avoid creating new names and to show possible variations of an
operation.

Let S ⊆ Stimuli be a set of stimuli, s ∈ Stimuli be a stimulus, A ⊆ Actions
be a set of actions, and AG, AG1 and AG2 be sets of agent pro�les. Then we
have the following operations.

Stimulate several agents. A stimulus is delivered to the agents.

Stimulate(s,AG) = ∀|ag : AG|s ∈ canReceive(ag) • Stimulate(s, ag)

Stimulate several agents with several stimuli. Several stimuli are deliv-
ered to the agents.

Stimulate(S, AG) = ∀|s : S • Stimulate(s,A)

Connect two sets of agents. Allows the creation of action transformers be-
tween two speci�ed sets of agents using the speci�ed sets of actions and
stimuli. Notice that this does not mandate that the action transform-
ers should actually be created. Rather, it speci�es that it is possible for
them to be created. This allows one to consider all the possibilities of
connections between the two sets.

Connect(AG1, AG2, A, S) = ∀|ag1 : AG1 • ∀|ag2 : AG2 • ∀|a : A • ∀|s : S|
AG1 ∩ AG2 = ∅ ∧ a ∈ canEmit(ag1)∧
s ∈ canReceive(ag2)•
Create(ag1, a, s, ag2)

3We de�ne the operator for n operations instead of just two because this avoids the problem
of establishing its associativity properties.

15

Connect agents in set. Similarly, allows the creation of action transformers
between the agents of a speci�ed set using the speci�ed sets of actions and
stimuli.

Connect(AG, A, S) = ∀|ag1 : AG • ∀|ag2 : AG • ∀|a : A • ∀|s : S|
ag1 6= ag2 ∧ a ∈ canEmit(ag1) ∧ s ∈ canReceive(ag2)•
Create(ag1, a, s, ag2)

Disconnect agent in a set. Destroys the action transformers between the agents
in the speci�ed set.

Disconnect(AG) = ∀|ag1 : AG • ∀|ag2 : AG • ∀|a : canEmit(ag1)•
∀|s : canReceive(ag2)|
ag1 6= ag2 ∧ isConnected(ag1, a, s, ag2)•
Destroy(ag1, a, s, ag2)

4 Language Semantics

The semantics of ESL is given by considering: (i) a syntactical translation of
ESL into π-calculus expressions; (ii) a mathematical foundation which relates
π-calculus events to the stimuli and actions of agents. The π-calculus transla-
tion of (i), through its operational semantics (De�nition 34), provides an over-
approximation of the desired behavior, which is then made precise using the
restrictions provided by (ii). By this method, we shall be able to build an LTS
that de�nes the possible states and transitions for any particular environment
speci�cation.

More precisely, given an environment E, we shall build an annotated envi-
ronment LTS by considering the LTS induced by [E]π, whose states shall be
annotated with our environment status (De�nition 2), and whose structure shall
be subject to some restrictions based on the possible values for an environment
status. Then we shall then have an LTS whose states have the following form.

De�nition 25 (State). Let E be an environment and P be a π-calculus process
obtained by applying π-calculus operational semantics rules to [E]π. Moreover,
let 〈Stimulation, Response〉 be an environment status. Then a state is de�ned
as the following pair:

(P, 〈Stimulation, Response〉)

By this construction, at any point of the LTS we shall be able to know both
what is the current situation of the agents (because of the added environment
status) and what are the possible changes from that point (because of the π-
calculus operational semantics).

To proceed with this construction, we need a number of de�nitions. Let
us begin by providing a way to observe the internal transitions of an environ-
ment, which is a fundamental capability that we need before proceeding. Recall
from De�nition 7 that an environment's π-calculus process has a number of re-
strictions that would prevent such observations (i.e., the transitions would be

16

internal to the process and not discernible in the LTS). It is, however, possible to
characterize these restrictions syntactically, and thus we may provide a simple
method to remove them when needed. This is accomplished by the following
environment unrestriction function unr.

De�nition 26 (Environment Unrestriction Function). Let P and Q be π-
calculus processes such that

P = (ν en1, . . . , eno)Q

where {en1, . . . , eno} = ENames. Then the environment unrestriction func-
tion is de�ned as unr(P) = Q.

We may now de�ne the Stimulation function present in each state as follows.

De�nition 27 (Stimulation). Let (P, 〈Stimulation, Response〉) be a state. More-
over, let → be the transition relation induced by the π-calculus operational se-
mantics. Then, for all s ∈ Stimuli and n ∈ AgentIDs, we have:

Stimulation(n, s) =


Absent if there exists a P ′such that unr(P)

beginningn
s→ P ′

Beginning if there exists a P ′such that unr(P)
stablen

s→ P ′

Stable if there exists a P ′such that unr(P)
endingn

s→ P ′

Ending if there exists a P ′such that unr(P)
absentn

s→ P ′

The Stimulation de�nition establishes the status of a particular stimulation
based on the order that stimulations must change (see De�nition 8). For in-
stance, if a process is capable of receiving a beginningn

s event, it must be the case
that stimulus s is currently absent in agent identi�ed by n. The Stimulation
function, therefore, merely gives a way of reading the π-calculus LTS in order
to have this information explicitly for every agent and stimulus in any given
process.

The Response function, on the other hand, is assumed as given. Thus, we
do not de�ne it. However, it imposes some constraints on the LTS, which we
must specify and take in account. As we shall see shortly, these constraints turn
the π-calculus over-approximation into an exact description of the transition
system's structure that we wish to assign to ESL.

De�nition 28 (Transition constraints). Let s1 = (P1, 〈Stimulation1, Response1〉)
and s2 = (P2, 〈Stimulation2, Response2〉) be states in an annotated environ-
ment LTS 〈S, L, 〉. Moreover, let → be the transition relation induced by the

π-calculus operational semantics. Then the transition s1
l s2 is forbidden if

one of the cases hold:

• there exists a ∈ Actions and n ∈ AgentIDs such that:

� Response1(n, a) = Emitting;

� P2 was obtained by internally producing the event stopn
a in P1.

• there exists a ∈ Actions and n ∈ AgentIDs such that:

� Response1(n, a) = NotEmitting;

17

� P2 was obtained by internally producing the event emitna in P1.

• there exists a ∈ Actions and n ∈ AgentIDs such that:

� Response1(n, a) = Emitting;

� Response2(n, a) = NotEmitting;

� there exists a P ′ such that unr(P1)
emitn

a→ P ′.

• there exists a ∈ Actions and n ∈ AgentIDs such that:

� Response1(n, a) = NotEmitting;

� Response2(n, a) = Emitting;

� there exists a P ′ such that unr(P1)
stopn

a→ P ′.

The �rst constraint asserts that if an agent identi�ed by n is emitting an
action a, then it cannot produce the stopn

a event to proceed to a new state.
Conversely, the second constraint states that if the agent is not emitting such
an action, then it cannot produce the emitna event. The third constraint asserts
that if the agent is emitting the action in a given state, and it proceeds to a
state in which it is no longer emitting such an action, then it must not be the
case that some process was still ready to receive that action (i.e., by producing
the input event emitna). This means that it can only stop emitting an action
when the action has already produced all of its e�ects. The �nal constraint is
the counterpart for stopping an emission. Hence, if an agent is not emitting
some action, and then it starts emitting it, it must not be the case that some
process was still ready to receive the stop signal (i.e., by producing the input
event stopn

a).
At last, we may de�ne the annotated environment LTS as follows.

De�nition 29 (Annotated Environment LTS). Let E be an environment (Def-
inition 7), and let → be the transition relation induced by the π-calculus oper-
ational semantics (De�nition 34). Then an annotated environment LTS is an
LTS 〈S,L, 〉 such that:

• L = EEvents (see De�nitions 5);

• S and are constructed inductively as follows:

� Initial state. ([E]π, es) ∈ S, where es = 〈Stimulation, Response〉
such that for all a ∈ Actions, s ∈ Stimuli, and n ∈ AgentIDs we
have Stimulation(n, s) = Absent and Response(n, a) = NotEmitting.

� Other states and transitions.
If s1 = (P1, 〈Stimulation1, Response1〉) ∈ S,

then s2 = (P2, 〈Stimulation2, Response2〉) ∈ S and s1
l s2 if and

only if:

∗ P1
l→ P2;

∗ Stimulation2 is de�ned w.r.t. P2 according to De�nition 27;

∗ s1
l s2 is not forbidden by De�nition 28.

18

This de�nition can be summarized as follows. The LTS has an initial state,
which is made of the π-calculus process of some environment, as well as an en-
vironment status that says that all actions are not being emitted, and that all
stimuli are absent in every agent. From this initial state we begin the construc-
tion of the remaining states and of the transition relation. This is accomplished
by using the π-calculus operational semantics to know the available transitions
at any given state, and then by applying the de�nitions and constraints we
gave previously to prune the possible transitions and augment the reachable
states with environment status. This procedure is repeated to every new state
introduced until there are no new transitions possible.

5 Example

Let us consider a concrete example in order to see how the previous constructs
can be e�ectively used. We shall model an hierarchical business structure in
order to simulate it. In the Business environment we shall have several workers,
who have powers over one another. The purpose of the system is to produce a
certain amount of the Work action. The problem is that the workers are also
humans and behave di�erently according to their work load. In particular, some
will be more prone to stress than others. The simulation aims at discovering
if the particular environment being modeled is capable of achieving the desired
amount of work. Below we construct the model step by step.

Actions de�nition. We begin by de�ning the possible actions. Employees
may work and rest, whereas the president just works.

EmployeeActions = {Work,Rest}
PresidentActions = {Work}

Stimuli de�nitions. Similarly, we may de�ne the existing stimuli.

EmployeeStimuli = {Money, Stress,Order,Entertainment}
PresidentStimuli = {Stress, Order}

Agent pro�les de�nitions. Agent pro�les can then be speci�ed in terms of
the previous actions and stimuli. Our example shall have a president,
three top directors and 100 other employees. To specify their pro�les, we
shall use individual agent declarations for the president and the directors,
as well as a group declaration for the remaining employees. Furthermore,
we assume that the agent identi�ers are natural numbers.

president = 〈0, P residentStimuli, PresidentActions〉
director1 = 〈1, EmployeeStimuli, EmployeeActions〉
director2 = 〈2, EmployeeStimuli, EmployeeActions〉
director3 = 〈3, EmployeeStimuli, EmployeeActions〉
Others = 〈4..103, EmployeeStimuli, EmployeeActions〉
AG = {president, director1, director2, director3} ∪ Others

19

Action transformers. Once we have de�ned agent pro�les, we may specify
how they relate to each other through action transformers. In our case,
we shall begin by just specifying the fact that the business in question has
a president and some directors that receives orders from him. That is to
say, the work of the president is to give orders, as follows.

at1 = 〈president, Work,Order, director1〉
at2 = 〈president, Work,Order, director2〉
at3 = 〈president, Work,Order, director3〉
AT = {at1, at2, at3}

Further relations are given later on.

Environment response laws. Some characteristics of the model can be bet-
ter captured through our environment response laws. The employee's work
produces money for him, but also some stress. So for all ag ∈ AG we have:

ER(Work, ag) = Stimulate(Money, ag)|Stimulate(Stress, ag)

Hence, an employee also needs time o� to avoid stress. We may model this
by specifying that when an agent ag ∈ AG rests, he entertains himself:

ER(Rest, ag) = Stimulate(Entertainment, ag)

The fact that this causes the employee's stress to be reduced is hidden
withing the agent. By stating this environment response law, we are
actually using this knowlege of the internal behavior of the agent, which
is not given in the environment speci�cation.

Initial environment structure. With the previous elements we may de�ne
the initial structure of an environment.

Business = 〈AG,AT, EB〉

Enrichment of environment structure. There are many ways in which a
business hierarchy can be designed. Thus, the problem of choosing an ap-
propriate structure arises. Our formalism allows for the speci�cation of a
number of possibilities at once, in order to capture a whole proposed �ar-
chitecture�. This frees the modeler from having to de�ne each possibility
individually and then simulating it.

In our example, we have already de�ned a relation between the president
and the top directors. Let us now specify the rest of the company's hier-
archy in a less rigid form. Again, the fundamental idea is that some work
is done and then this results in orders for one or more subordinates. So
�rst we de�ne the actions and stimuli that matter for this purpose.

A = {Work}
S = {Order}

Then we specify the possible candidates for each hierarchical layer. If we
suppose that employees

20

Best = { 5, 7, 11, 13, 17, 19, 23 }

are known to be more competent, and that we want three layers below the
president, we can get the following ones:

L1 = {director1, director2, director3}
L2 = 〈Best, EmployeeStimuli, EmployeeActions〉
L3 = 〈Others\Best, EmployeeStimuli, EmployeeActions〉

Finally, we state explicitly that these agents sets should be part of a layered
structure. To do so, we include the following environment behaviors.

Connect(L1, L2, A, S) ∈ EB

Connect(L2, L3, A, S) ∈ EB

This speci�es that any connections between adjacent layers are possible.
So, for instance, an employee may end up receiving orders from more than
one superior.

Notice that while all the employees look similar (i.e., are capable of sim-
ilar actions and stimulation), it is not at all the case that they really act in
the same way. For instance, the stress tolerance of the several agents may be
very di�erent, and therefore some of them might be better suitable for certain
positions. But these characteristics are not exposed in the environment's speci�-
cation, which has access only to the agent pro�les (i.e., restrictions about which
interactions are possible for the agent).

6 Conclusion

In this report we have presented a formalization for environments of MASs. We
provided a high-level description for this formalization, with a semantics given
in π-calculus. We also provided a vocabulary in which to describe primitives
that are necessary for the understanding of some crucial π-calculus events.

The presented environments have both structural and operational aspects.
That is to say, they represent certain structures, which can then be changed by
certain operations. These operations serve to two purposes. First, they provide
a way to specify behaviors of the environments themselves (e.g., environment
responses to the actions of agents). Second, they allow the succint speci�cation
of several possible scenarios for an environment (e.g., several possible network
structures).

With the presented formalization, we will now consider concrete means for
analyzing our MASs. To this end, a number of questions can be formulated,
namely:

• Since the semantics of ESL is given as an LTS, it follows that now we we
need criteria for selecting paths in it. With such paths, we shall be able
to perform concrete simulations.

21

• The available formal elements suggest logical predicates of interest. For
instance, a predicate which asserts that an agent is beginning to be stimu-
lated (e.g., for an agent identi�ed by n and a stimulus s, stimulationBeginning(n, s))
is a natural choice, since we can obtain this information by observing the
annotated environment LTS.

• We may also consider how to implement the proposed language. In this
respect, we believe that the π-calculus base can be particularly useful,
since we could implement its few elements in order to have our whole
language on top of it. A similar approach for simulation is taken by Wang
and Wysk [12]. More generally, there are programming languages based
on π-calculus, such as the Join-Calculus [3] and Pict [10].

With all of these artifacts, we shall then be able to assemble an actual tool,
which is our �nal objective.

Acknowledgments

The author would like to thank Prof. Dr. Marie-Claude Gaudel (Laboratoire
de Recherche en Informatique, Université Paris-Sud 11) for her numerous com-
ments and suggestions during the preparation of this work, as well as Prof. Dr.
Ana C. V. de Melo (Institute of Mathematics and Statistics, University of São
Paulo) for her remarks on the last versions of the text.

This work bene�ted from the �nancial support of Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de
Desenvolvimento Cientí�co e Tecnológico (CNPq).

A Brief Overview of the π-Calculus

This section presents a brief account of the π-calculus. Our objective is not to
teach the calculus, but merely to quickly recall the notions that we employ to
accomplish our work. The de�nitions we present are adapted from Parrow [9],
which the reader might also �nd useful as an introduction to the calculus.

The π-calculus is a process algebra designed to model interaction and mobil-
ity of processes4. To do so, it provides an algebraic language in which to write
such processes, as well as a mathematical framework that interprets them in
terms of Labeled Transition Systems (LTS). Let us then begin by de�ning what
an LTS is.

De�nition 30 (Labeled Transition System). A labeled transition system is a
tuple 〈S,L,→〉 such that:

• S is a set of states;

• L is a set of labels;

• →∈ S × L × S is a transition relation.

4In the literature, π-calculus processes are often called �agents�. We avoid using this
terminology in order to don't confuse it with our own notion of agents.

22

Moreover, let s1, s2 ∈ S and l ∈ L. Then, if 〈s1, l, s2〉 ∈→, we also denote

this fact by writing s1
l→ s2. The opposite fact, in turn, is denoted by ¬(s1

l→
s2).

Processes are written by using names to create pre�xes and by using several
operators to combine such pre�xes. These pre�xes represent events5.

De�nition 31 (π-calculus Process). Let a, x, y, x1, . . . , xn and y1, . . . , yn be
names. Then a π-calculus process is an expression de�ned by the following
syntax.

Pre�xes

α ::= a(x) Output
a〈x〉 Input
τ Internal

Processes

P ::= 0 Nil
α.P Pre�x
P + P Choice
P |P Parallel composition
(νx)P Restriction
[x = y]P Match
[x 6= y]P Mismatch
!P Parallel replication
A(y1, . . . , yn) Identi�er

De�nitions

A(x1, . . . , xn) = P Process de�nition (i 6= j ⇒ xi 6= xj)

Given a a process P , we denote the set of its bound names by bn(P), and of
its free names by fn(P). Moreover, we denote by Pπ the set of all processes.

Names often need to change over the course of a process execution. This is
achieved using substitution functions.

De�nition 32 (Substitution Function). Let x1, . . . , xn and y1, . . . , yn be names,
and P be a process. Then a substitution function

{x1, . . . , xn/y1, . . . , yn}

maps process P into P ′, such that in P ′:

• For all yi ∈ fn(P), xi will substitute yi in P ′;

• Alpha-conversion is performed in order to prevent that xi ∈ bn(P ′).

Moreover, we denote the application of the substitution function on P as:

P{x1, . . . , xn/y1, . . . , yn}

It is often the case that processes which are syntactically di�erent should
have the same behavior. To model this, the calculus provides a structural con-
gruence relation, which de�nes equivalences that can be determined by syntax
alone. This is useful, in particular, to fully de�ne the replication operator.

5In the literature, such events are often called �actions�. Again, we avoid using this termi-
nology in order to prevent confusion with our own notion of actions.

23

De�nition 33 (π-calculus Structural Congruence). Let P , Q and R be arbitrary
π-calculus processes. Then the structural congruence relation ≡ is the smallest
relation that satis�es the following axioms.

• If P and Q are variants by alpha-conversion, then P ≡ Q

• P |Q ≡ Q|P , (P |Q)|R ≡ P |(Q|R), P |0 ≡ P

• P + Q ≡ Q + P , (P + Q) + R ≡ P + (Q + R), P + 0 ≡ P

• !P ≡ P |!P

• Scope extension laws:

� (νx)0 ≡ 0

� (ν x)(P |Q) ≡ P |(ν x)Q if x /∈ fn(P)

� (ν x)(P + Q) ≡ P + (ν x)Q if x /∈ fn(P)

� (ν x)(ν y)P ≡ (ν y)(ν x)P

� (ν x)[u = v]P ≡ [u = v](ν x)P if x 6= u and x 6= v

� (ν x)[u 6= v]P ≡ [u 6= v](ν x)P if x 6= u and x 6= v

The behavior of processes is given by an operational semantics. That is to
say, a number of rules that de�ne how algebraic expressions should be translated
to LTSs.

De�nition 34 (π-calculus Operational Semantics). Let P , P ′, Q and Q′ be pro-
cesses, α be a pre�x, and a, x and u be names. Then the operational semantics
of the π-calculus is given by the following rules.

P ′ ≡ P P
α→ Q Q′ ≡ Q

P ′ α→ Q′ STRUCT
α.P

α→ P
PREFIX

P
α→ P ′

P + Q
α→ P ′ SUM

P
α→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α→ P ′|Q
PAR

P
a〈x〉→ P ′ Q

a(u)→ Q′

P |Q τ→ P ′{u/x}|Q′ COM
P

α→ P ′ x /∈ α

(νx)P α→ (νx)P ′ RES

P
a(x)→ P ′ a 6= x

(νx)P aνx→ P ′
OPEN P

α→ P ′

[x = x]P α→ P ′ MATCH

P
α→ P ′ x 6= y

[x 6= y]P α→ P ′ MISMATCH

Notice that on all of these de�nitions, pre�xes can have only one parameter.
It is possible, however, to have pre�xes with multiple parameters (the so called
polyadic π-calculus) and de�ne them in terms of these simple ones. It is this
polyadic notation that we use in this report.

24

References

[1] Paulo Salem da Silva and Ana C. V. de Melo. A simulation-oriented for-
malization for a psychological theory. In Matthew B. Dwyer and Antonia
Lopes, editors, FASE 2007 Proceedings, volume 4422 of Lecture Notes in
Computer Science, pages 42�56. Springer-Verlag, 2007.

[2] Paulo Salem da Silva and Ana C. V. de Melo. Reusing models in multi-
agent simulation with software components. In Müller Padgham, Parkes
and Parsons, editors, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), volume 2, pages 1137 � 1144. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2008.

[3] Cedric Fournet and Georges Gonthier. The join calculus: A language for
distributed mobile programming. In In Proceedings of the Applied Seman-
tics Summer School (APPSEM), Caminha, pages 268�332. Springer-Verlag,
2000.

[4] Nigel Gilbert and Steven Bankers. Platforms and methods for agent-based
modeling. Proceedings of the National Academy of Sciences of the United
States, 99(Supplement 3), 2002.

[5] Sean Luke, Claudio Cio�-Revilla, Liviu Panait, and Keith Sul-
livan. MASON: A new multi-agent simulation toolkit. 2004.
http://cs.gmu.edu/ eclab/projects/mason/.

[6] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, 1999.

[7] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm simula-
tion system: A toolkit for building multi-agent simulations. 1996. Working
Paper 96-06-042.

[8] Michael North, Nick Collier, and Jerry R. Vos. Experiences creat-
ing three implementations of the Repast agent modeling toolkit. ACM
Transactions on Modeling and Computer Simulation, 16(1):1�25, 2006.
http://repast.sourceforge.net/.

[9] Joachim Parrow. An introduction to the pi-calculus. In J. A. Bergstra,
Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra,
pages 479�543. Elsevier, 2001.

[10] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, 1997.

[11] Burrhus Frederic Skinner. Science and Human Behavior. The Free Press,
1953.

[12] Jianrui Wang and Richard A. Wysk. A pi-calculus formalism for discrete
event simulation. In WSC '08: Proceedings of the 40th Conference on
Winter Simulation, pages 703�711. Winter Simulation Conference, 2008.

25

[13] Gerhard Weiss, editor. Multiagent systems: a modern approach to dis-
tributed arti�cial intelligence. MIT Press, Cambridge, MA, USA, 1999.

[14] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and
Jacques Ferber. Environments for multiagent systems: State-of-the-art and
research challenges. In Danny Weyns et al., editor, Proceedings of the 1st
International Workshop on Environments for Multi-agent Systems (Lecture
Notes in Computer Science, 3374), pages 1�47. Springer, 2005.

26

	RR1531entete
	RR1531rapp

